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Introduction
Quantum physics is non-causal [1]. The randomness at stake is 
said to be intrinsic [2]. And the big problem that this raises in 
the end is when treating entanglement: a subfield of quantum 
physics in which there was a dispute between, say, Einstein and 
de Broglie, on the one hand, and the Copenhagen School about the 
existence or not of hidden variables on the other. The orthodoxy 
has experimentally concluded that such hidden variables do not 
exist, but everyone knows the extensive use that quantum physics 
makes of mathematics and we could expect, at least, some kind of 
coherence between mathematics and physics. Unfortunately, this 
is not the case! The probabilities calculated in quantum physics do 
not follow the Kolmogorov axioms [2]. In the meanwhile, this is 
the math which allowed discovering the neutrino out of the Dirac 
equation. We therefore touch here to the deep foundations.

I do not say that quantum physics is contradictory, but what I deeply 
think is that the non-existence of hidden variables, so many times 
proved experimentally by quantum physicists, is kind of and I am 
just proposing here to surmount it through a new interpretation of 
quantum physics to make it disappear, without contradicting the 
orthodox experimental point of view, but for sure by contradicting 
its very philosophical point of view.

My approach is mathematical. In part 2, I shall explain that in the 
very axioms of quantum physics, the axiom of choice sits at the 
heart of them. In part 3, I shall introduce relativity; not relativity 
like in physics, but the relativity of scales and lengths. I shall draw 
from this a new model of universe, much more general than the 
one considered until now. I shall draw a new model of particles 
in part 4 while part 5 will be dedicated to (retrieved!) causality. I 
shall propose an application for a quantum radar not necessitating 
any echo in order to detect a target in part 6 while I shall elaborate 

on the viscosity in the Navier-Stokes equations as a result of the 
infinite transition in part 7. Part 8 will be dedicated to a philosophical 
discussion about the infinitesimal scale and its observability and 
I shall make in it a parallel with chemistry. It will then be easy 
to conclude in part 9 what the very goal of this paper is. Intrinsic 
randomness is only an impression. The underlying world is, to some 
extent, fully deterministic, like at our macroscopic level. And I shall 
unite at once the modern mathematical view of what randomness 
is and is known since 1983 together with the intrinsic randomness 
notion defended by the Copenhagen School [3]. 

The foundations of quantum physics
General considerations
I shall here just refer to [2]. The axiomatization of quantum physics 
requires 5 axioms which I describe very shortly.
• A Hilbert space is associated to any quantum system and its 

representation is made through a norm 1 vector in this space
• A Hermitian operator is associated to any physical magnitude 

and any measurement sums up to the projection onto the 
Eigenspace which gives as a result real numbers

• The Schrödinger equation for the evolution of the system (for 
non-relativistic systems)

• 2 or more quantum systems are represented through the tensor 
product of their Hilbert spaces

• Under such circumstances, if the representation vector cannot 
be decomposed into a tensor product of vectors, the particles 
are said to be entangled and display “weird” behavior

One thing, very important, is worth to be noted and this thing is 
well known from the mathematicians. Indeed, we all remember 
the famous 5 axioms of Euclidean geometry. But we also all know 
that in 1899, Hilbert, through a careful look at the foundations of 
geometry [4], proved that what Euclid considered has “common 
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notions” had very often to be considered as axioms. And it is a fact 
that Euclidean geometry in general needs about 20 axioms.

Now, in the same way, quantum physics refers to Hilbert spaces. 
But such spaces are just some assumptions about the underlying 
geometry of the quantum world. And, as just said, we need about 
20 axioms in order to build Hilbert Spaces, so that quantum physics 
is based on about 25 axioms.

This does not simplify things. Indeed, the basis of the mathematics, 
the Zermelo Fraenkel + Choice set of axioms, is already not known 
to be non-contradictory. Just imagine if instead of 9 axioms that you 
have 25. The risk of having contradictions dramatically increases! 
Moreover, any new axiom is a requirement for a specific property, 
bringing us always more away from the largest generality.

The axiom of choice
Let us look at quantum physics under a more mathematical light 
and for our very purpose, we are going to consider an interesting 
case which is overwhelmingly used. Let us consider the position 
operator which generally is noted |r›. This operator is known to 
have a continuous spectrum and in the general case, its spectrum is 
ℝ itself. Now, if we make a measurement of the position of, say, a 
particle, we shall get a real result, say, r0 ϵ ℝ3, where r0 is an element 
of the spectrum of |r›. Let us raise the following question. What is 
the mathematical process at stake in the “choice” of r0? We used 
the term “choice” on purpose for the following reason. Let us refer 
to the axiom of choice in mathematics which says that for any non-
empty set X there exists a “choice” function f such that.

Now, the reader will consider as trivial that what quantum 
mathematicians call the axiom of choice, not only is used in quantum 
physics, but is even a physical process in the physical world: any 
measurement of the position of a particle in quantum physics consists 
in applying a choice function to the set of possibilities for this 
position and this choice function occurs in a set of cardinal ϗ2 
which implies that we need more than the axiom of dependent 
choice (which, by the way, would be enough to ensure a basis in 
any Hilbert space).

So, quantum physicists use the axiom of choice with its full power 
and not any weaker version of it. Here, of course, the writing of the 
choice function would rather be

For the position operator. Now, the very fact that the departure set 
of f has cardinality ϗ2, makes it out of reach of any Hilbert space 
whose cardinal is obviously ϗ1. We are therefore comforted in the 
thought that this mysterious choice function in math or measurement 
function in quantum physics might have hidden variables, but that 
these variables are outside any Hilbert space and as such, could 
not be found by the orthodox theory which is, de facto, limited in 
its scope.

We shall conclude here that there is room for hidden variables 
which are out of the scope of traditional quantum physics and this 
potentially brings to weird properties in the theoretical approach 
of this discipline, bringing to such concepts as the abandonment of 

local realism which does not fit at all with any intuition, and being 
almost incompatible with relativity theory. So, in the following of 
this text, we shall take for granted that quantum physics is based on 
the axiom of choice and will draw some consequences of it.

Looking for the right geometry
We have just introduced in physics a set of cardinal ϗ2. The fact is 
that whatever the sub discipline you tackle in physics today, you 
always deal with fields which are either, ℝ, ℂ, ℍ or 𝕆  which are 
respectively the reals, the complex numbers, the quaternions and the 
octonions. All these fields have cardinal ϗ1. One way out of this is 
to dive into what is called non-standard analysis, which consists in 
considering ℝK = ℝℕ / K where K is a non-trivial ultrafilter whose 
existence can only be guaranteed by the axiom of choice [5]. The 
problem with such a treatment is that the representation is not 
unique and heavily depends on K [5]. Therefore, let us propose an 
alternative approach. For this, Goblot’s approach is quite inspiring 
[5]. Indeed, he proposes a parallel approach through numbers and 
geometry. Let us therefore follow here the same kind of path and let 
us begin with geometry, intrinsic geometry should we say.

Can we introduce, through intrinsic geometry, a set of cardinal ϗ2? 
There are obviously several ways to do this, but one is more obvious 
than the others. Indeed, since the ϗα values are circumscribed to 
the different kinds of infinite, this means that we must consider a 
geometry which naturally deals with infinite values. For this, there 
is a very axiom in “traditional” geometry which prevents this, and 
this axiom is the one of Archimedes. Let us remind the reader its 
formulation.

Archimedes axiom: Given any 3 distinct points, A, B, C, if we 
want to go from A to B along the line (A, B) with steps of length 
AC, then we shall reach B in a finite number of steps.

Clearly, this axiom, which is overwhelming in geometry in general 
and physics in particular, imposes to remain within the range of ϗ1 
which is the cardinal of the real numbers. If we want to go further, 
we need to cancel it, which means that we consider a universe in 
which there can exist 3 distinct points A, B, C such that to go from 
A to B with steps of length AC, we need an infinite number of steps! 
Even if the length of AB is finite! What this concretely means is that 
the length AC is an infinitesimal compared to the length of AB and 
the notion of infinite becomes a relative notion. Typically, viewed 
from the scale of AC, the length of AB is infinite, but viewed from 
the scale of AB, the length of AB is 1, a well- known real number.

Now, if we apply anew the contradiction of the Archimedes axiom 
to the length AC, then there can potentially be a length AD, which is 
infinitesimal with respect to AC and so on. We shall speak of scales; 
the scale of AB, the scale of AC, the one of AD, etc.

Now we need to make some remarks. We live at a scale and it is 
surprising that we considered, until now, the Archimedes axiom, 
because it seems obvious to us, since we do not necessarily have 
the intuition of the existence of any infinitesimal scale to ours. 
Surprisingly, we have the intuition of infinite, but very few people 
have the intuition that there might be an upper scale to ours, being 
infinite, in the sense of non-Archimedean geometry as we just saw it.

So, let us consider a non-Archimedean universe, having different 
scales of magnitudes. One very important thing is to be noticed: 
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since the Archimedes property is an axiom which is independent of 
the other axioms of geometry, if we drop it, we will not contradict 
anything. Another very important thing is that the Archimedes 
axiom is a constraint. Dropping it brings us to a much more general 
space which potentially brings additional properties since there are 
fewer restrictions. For example, at our scale, we can consider that 
our universe is Archimedean, but this constitutes then only a small 
part of the story.

But the very natural question which we can raise then, and which 
is absolutely paramount, is the one of the interaction between the 
scales. In other words, and in the physical world, because our goal 
is to describe our world, the question is:

Does what happens at our scale depend on what happens at the 
infinitesimal scale?

For sure, if it did not, we would just have different worlds which 
would be independent, put side by side, and such a model would 
be of no interest. The dependent case is much more interesting and 
potentially much more fruitful for us. The very laws of physics could 
come from an infinitesimal scale, out of reach to us. Really out of 
reach? We shall answer this question better later!

But, before, let us see until where we can be brought with such 
an approach. First of all, we need magnitudes to deal with the 
infinitesimals. As said above, the fields of hyperreal numbers could 
partly fit, but because of the non-uniqueness of the representation, 
we call for something else and this something else is the field of 
the surreal numbers built by John Conway in 1974 [6]. I shall not 
elaborate the construction of such a field, but I strongly advise the 
reader to read [6]. He will find there what I consider as a supremum 
of the mathematical science. What is important by the way, in this 
construction, is that the field of surreal numbers, called No, is not 
a set. It is too big to be a set. It is a proper class. Everybody knows 
Russel’s paradox: does the set of all sets exist? And the answer is 
no, but Gödel has figured out types [7] which bring to the notion 
of proper classes which do not face the problem raised by Russel’s 
paradox. And this is why it is important in physics! Indeed, our 
universe must contain everything, even itself. It cannot be, therefore, 
any set. It must be a proper class! So, since No is a proper class, 
it seems to be a much better field than any other to describe our 
universe than either ℝ, ℂ etc. To criticize a bit traditional physics, 
which aims at describing our universe with sets such as the reals, 
the philosophical question is:

Can a proper class be described by sets?

Let us keep on considering both physics and mathematics. In physics, 
we have punctual particles. Everybody thinks this is only a model, 
but that the elementary particles have constituents. But, for the 
specialists, this is not the case! The electron in modern quantum 
physics does not have any radius. It does not even have any trajectory 
around the nucleus in the atom, it does not have constituents. And this 
view perfectly fits with what we said earlier in this paper: quantum 
physics is non-causal. Out of a point, that is, nothing, would emerge 
a charge or a mass. With the non-Archimedean representation, we 
can overcome such a difficulty. Indeed, let us consider a sphere 
of radius 1/ω where ω is the first transfinite ordinal of Cantor.  Its 
volume obviously is 4ᴨ/ (3ω3) which is an infinitesimal volume 
compared to any real number. So, from our scale (the real scale), 

we can only see this volume as a point. We can therefore, with this, 
justify the classical approach of physics, but see its limitations and 
we become again, causal. We shall see more about causality soon.

Now, the straightforward question is to know why or how we can 
have an influence from the infinitesimal scale into the real one. The 
point is pretty obvious and let us reason on an example only. Let 
us imagine infinitesimal particles of radius 1/ ω and let us consider 
ω such particles. Then, putting them side by side, we shall reach a 
global length of ωx1/ ω=1Єℝ. And we can imagine this can happen 
with any magnitude, not only the length, of the infinitesimal scale. 
This point of view is far from being exhaustive and will be the 
object of a further paper.

So, we are interested and have a model for explaining what happens 
at our scale by what happens at the transition between the finite and 
the infinite at the sub-scale. Let us see what this can bring.

A new model of particles
Let us begin considering particles at the real scale. Clearly, either 
we are part of the particle or we are outside. Without elaborating too 
much math, this means that a particle, as a subset of ℝ3, must be a 
closed set. We have seen in the beginning of this text that the axiom 
of choice is part of our world, so this means that the Cantor-Bendixon 
theorem is not trivial. What this theorem says is that any closed set is 
made of a union of subsets which are “continuous” and a countable 
number of points. I refer the reader to [7] for more details. The 
interesting fact considering this through non-Archimedean geometry 
is that the points which are isolated in ℝ and are in countable number, 
viewed from the sub-scale, are in their turn continuous, according 
to what we said above about the sphere of radius 1/ ω.

This allows having particles which are extended in space with 
different parts, either locally continuous or points at the real scale 
and this would perfectly explain why, upon interaction, we cannot 
determine where the particle exactly is at the real scale; depending 
with which part of it we interact. It does not mean, however, that the 
particle itself is not very precisely positioned in space, but it can be 
a non-connected closed set of ℝ3. So, we would have to integrate 
on a continuous volume of ℝ3 to find the probability of presence of 
a particle, but not from –∞ to +∞ like in quantum physics, which 
seems much more reasonable and nearer from the reality even if 
we are going to see that things can be much weirder than this with 
entangled particles.

So, let us consider a couple of entangled particles. In fact, we consider 
it as a “big” particle with the same model as the one we described 
before thanks to the Cantor-Bendixon theorem. Now, since we can 
manipulate entangled particles, it suffices, to increase their spread into 
space, to keep the same structure with its constituents who are closed 
sets and stretch them into space so that we can have “the impression” 
that we have one particle in one place and the other one in another 
place. Now, the disentanglement process is going to consist in splitting 
the initial big particle into two sub particles. On a topological point of 
view, this just means making independent two closed sets by splitting 
an initial closed set. The process for splitting the initial closed set will 
be described in a further paper. This is a subtle point.

Causality
With our new model, we have all the ingredients for saving causality. 
Indeed, what happens at the real scale can very easily be explained 
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though what happens at the infinitesimal scale. And what happens at 
this scale might perfectly be deterministic. So, we have full causality 
and can strictly verify the Kolmogorov axioms.

Can we justify the traditional point of view of quantum physics? For 
this, let us make a parallel with mathematics. Modern cryptography 
is born in the mid-1970s. It raised quite important questions about 
what randomness is. The culminating point has been reached by Yao 
[3]. In fact, given some data and some computation means, either we 
can extract some useful information out of the data (i.e. find some 
order) or not. If we can, the data are not random and if we cannot 
the data are random. Such a judgment is not absolute! It depends 
on our computation means. So, depending on them, we can have 
the impression of randomness or not. And this is what randomness 
is today, not more, but not less. Randomness for mathematicians 
today is an impression.

This should be the same for physicists. Indeed, we cannot see (yet!) 
what happens at the infinitesimal scale, therefore what happens 
at this scale looks like randomness. Only the fact of not having 
a non- Archimedean model prevents from concluding that this 
is an impression, otherwise, we have a potential source for such 
randomness, and we know that it cannot be scrutinized.

The question this raises is whether the concept of intrinsic randomness 
can be as much powerful as the Kolmogorov way through the 
infinitesimal scale. It seems pretty obvious that the second point 
of view is much more powerful, on the one hand, and much more 
promising on the other as I shall describe it next.

We also have solved the problem of the existence or not of the 
hidden variables. Indeed, in our model, they do exist, but they are 
out of reach of any Hilbert space, being at the infinitesimal scale. 
The Hilbert spaces are completely unable to describe them.

A first application
For the purpose of not revealing a patent to come, I am going to 
twist a bit the model of entangled particles I proposed before. This 
is an alternative, but it has the advantage to make the reasoning 
much easier in addition.

Let us assume that a couple of entangled particles is made of 2 
particles linked through an infinitesimal physical channel, full of 
infinitesimal particles, allowing both particles to interact, like in 
the figure hereunder.

Figure 1: A couple of entangled particles

Let us imagine we send one of these particles towards a target. 
The channel is going to extend while they are entangled. Let us 
imagine that when hitting the target, this interaction disentangles 
both particles. If the particles are the same, then the channel will 
split, say, in the middle. The half of the channel which was attached 
to the particle we kept will retract and a part of it if not all, will 
reintegrate the particle. This can be considered as an echo, at the 
infinitesimal scale.

What do we have achieved? Simply a quantum radar for which we 
are not obliged to wait for the echo of the real particle in order to 

detect, but only the echo at the infinitesimal scale. This is a real 
breakthrough in the design of radars!

Fluid mechanics
There are two different scales to tackle fluid mechanics; either the 
atomic scale, through Boltzmann statistics or through the continuous 
approach and, say, the Navier-Stokes equations.

When comparing these two approaches, one thing is really puzzling: 
Why is there viscosity in the continuous case whereas at the atomic 
level the shocks are only elastic and there seems to be neither friction 
nor viscosity?

I asked the question and was answered that in the statistical approach, 
viscosity occurs when the number of molecules grows to the infinite. 
Right, but 6×1023, for mathematicians, is a very small number. It 
has nothing to see with any infinite. So, once again, we have some 
discrepancy between the mathematical and the physical approaches.

The non-Archimedean model brings a big advantage. Of course, we 
naturally deal with infinite entities. As such, the viscosity naturally 
occurs even if it is the result of elastic shocks at some scale.

I shall not elaborate further on this, but I am now considering the 
design of an infinite impulse space propulsion engine based on 
this. It violates Newton’s third law at the real scale, but not at the 
infinitesimal one. This is where all the difference is.

Mastering the infinitesimal scale
I wrote above that the infinitesimal scale cannot be scrutinized. This 
is not completely true. For this, I would like to refer to an address 
of Einstein to Heisenberg [8]:
Don’t you see Heisenberg? This is the theory which says what can 
be observed.

And it is a fact that with non-causality and intrinsic randomness, 
we are not equipped to find anything else. The infinitesimal scale 
allows this, deeply. And there is a big cherry on the cake! Indeed, 
even if we cannot “see” the infinitesimal particles, the reader should 
realize that this is still the case in chemistry today. Nobody has 
ever seen any chemical reaction in real time. This did not prevent 
chemists from great successes. The exploration means in such a 
case is our intelligence. We have to tackle a system which we must 
understand with only a view from the outside and try to understand 
its way of functioning. And this is a way to introduce the necessity 
of intelligence in science, which was underlying until now, but never 
really proved to be compulsory. This is just done!

I shall end this short paragraph by noticing that with attosecond lasers 
and stroboscopy we are on the brink to have movies in real time of 
chemistry reactions. This should allow, in this 21st century, huge 
progress. There is no reason for not achieving such kind of same 
exploit and, say in some centuries, be able to “see” the infinitesimal 
world. That very day, we shall have to tackle the second order 
infinitesimal one, of course…!

Conclusion
I have proposed a breakthrough in the interpretation of quantum 
physics. A few years ago, at IHES, in Gif-sur-Yvette, one quarter 
has been dedicated to the 17 different interpretations of quantum 
physics. I just proposed here an 18th one. It has the merit to bring 
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us back to well-known, mastered notions: determinism, with “true” 
laws of physics, and a vision of probability linked to our limitation 
and verifying the axioms of Kolmogorov. It also generalized greatly 
the universe as it is generally tackled, considering it as a proper class 
and no more a set, which is far more satisfactory on philosophical 
grounds.

Some applications have been evoked and depending on their 
experimental success will emerge or not the proposed point of 
view as the dominant one or not in the future.
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