Journal of Genetic Engineering and Biotechnology Research

Vector-Valued Convex Functions

Mustapha Laayouni*
Moulay Ismail University, Sciences and technologies Faculty, Department of Mathematics, B.P. 509, Errachidia, 52000, Morocco

*Corresponding Author
Mustapha Laayouni, Moulay Ismail University, Sciences and technologies Faculty, Department of Mathematics, B.P. 509, Errachidia, 52000, Morocco.

Submitted: 2023, June 03; Accepted: 2023, June 30; Published: 2023, July 19

Citation: Laayouni, M. (2023). Vector-Valued Convex Functions. J Gene Engg Bio Res, 5(2), 119-123.

Abstract

In this paper, we will extend some properties of the convex real functions to the valued functions in a Banach lattice: with adequate definitions, we will establish that an order convex function is continuous on a convex C if and only if it is continuous at a point of C (Theorem 1.2). We will show that order convex functions on a compact satisfy Bauer's maximal principle (Theorem 2.2). A fixed-point theorem is given for the contracting orders functions (Theorem 2.3).

Keywords: Order, Riesz Space, Banach Lattice, Convexity and Ordre Convexity.

1. Order Convexity of Vector-Valued Functions

Often in functional analysis, one needs local algebraic linearity. Thus, one of the interactions of the algebraic and topological structure of a topological vector is manifested in the important properties of the class of convex functions. So far, we have allowed the convex functions defined on the convex subsets of a vector space to be real valued. We will extend the definition of convexity to the valued functions in a Banach lattice [1-4].

Definition 1.1

Let E be a Banach lattice. A function $f: C \rightarrow E$ on a convex set C in a vector space X is:
(i) order convex (denoted by o-convex) iffor all $x, y \in C$ and all $0 \leqslant \alpha \leqslant 1, f(\alpha x+(1-\alpha) y) \leqslant \alpha f(x)+(1-\alpha) f(y)$.
(ii) Strictly o-convex if for all $x, y \in C$ with $x \sigma=y$ and all $0<\alpha<$ $1, f(\alpha x+(1-\alpha) y)<\alpha f(x)+(1-\alpha) f(y)$.
(iii) O-concave (respectively, strictly o-concave) if - fis an o-convex (respectively, strictly o-concave) function.

It is easy to realize that; f is o-convex if and only if,

$$
f\left(\sum_{k=1}^{n} \alpha_{k} x_{k}\right) \leqslant \sum_{k=1}^{n} \alpha_{k} f\left(x_{k}\right)
$$

For every convex combination $\sum_{k=1}^{n} \alpha_{k} x_{k}$.

Example 1.1 Here are some familiar examples of o-convex mappings.

- Obviously, any convex real function is o-convex.
- Let E be a Banach lattice. The absolute value $x \rightarrow|x|$ is an o-convex mapping from E to E.
- Let A be a commutative unital real Banach algebra. The set of all multiplicative linear functionals on A is denoted by Δ_{A}. It is well known that Δ_{A}, endowed with the the Gelfand topology, is compact and the Gelfand representation φ of A into $C\left(\Delta_{A}\right)$ is an homomorphism [3, Theorem 13]. Thus, φ is o-convex.

Proposition 1.1 A function f : $C \rightarrow E$ on a convex subset of a vector space into a Banach lattice E is o-convex if and only if its epigraph, epi $(f)=\{(x, \chi) \in C \times E: \chi>f(x)\}$, is convex. Similarly, f is o-concave if and only if its hypograph, $\{(x, \chi) \in C \times E: \chi f(x)\}$, is convex.

Proof. We prove the first part of this proposition, the remaining assertion is identical. Suppose that f is o-convex, then for $\left(x_{1}, \chi_{1}\right)$, $\left(x_{2}, \chi_{2}\right) \in$ epif and $\alpha \in[0,1]$ we have

$$
\begin{aligned}
\alpha_{1} \chi_{1}+(1-\alpha) \chi_{2} & \geqslant \alpha_{1} f\left(x_{1}\right)+(1-\alpha) f\left(x_{2}\right) \\
& \geqslant f\left(\alpha x_{1}+(1-\alpha) x_{2}\right)
\end{aligned}
$$

So, $\left(\alpha_{1} \chi_{1}+(1-\alpha) \chi_{2}, \alpha_{1} x_{1}+(1-\alpha) x_{2}\right) \in$ epif. The 'only if' part stems from the fact that $\left(x_{1}, f\left(x_{1}\right)\right) \in$ epi f and $\left(x_{2}, f\left(x_{2}\right)\right) \in$ epi f.

Proposition 1.2 The collection of o-convex functions on a fixed convex set C into a Banach lattice E has the following properties.

1. Sums and nonnegative scalar multiples of o-convex functions are o-convex.
2. The (finite) pointwise order limit of a net of o-convex functions is o-convex.
3. The (finite) pointwise supremum of a family of o-convex functions is o-convex.

Proof. The first statement is trivial. For the second assertion, consider a net $\left\{f_{i}\right\}$ of o-convex functions (finite) pointwise order convergent to f, that is, for any finite part F of C, there is a net $\left\{\chi_{i}\right\}$ (with the same directed set) satisfying $\chi_{i} \downarrow 0$ and $|f(z)-f(z)| \chi_{i}$ for each i and every $z F$. Let $x, y \in C$ and $\alpha \in[0,1]$. For $F=\{x, y, \alpha x+$ $(1-\alpha) y\}$ we have:

$$
\begin{aligned}
(1-\alpha) y) & \leqslant \chi_{i}+f_{i}(\alpha x+(1-\alpha) y) \\
& \leqslant \chi_{i}+\alpha f_{i}(x)+(1-\alpha) f_{i}(y) \\
& \leqslant \chi_{i}+\alpha\left[f(x)+f_{i}(x)-f(x)\right]+(1-\alpha)\left[f(y)+f_{i}(y)-f(y)\right] \\
& \leqslant \chi_{i}+\alpha f(x)+(1-\alpha) f(y)+\chi_{i} \\
& \leqslant\left[2 \chi_{i}+\alpha f(x)+(1-\alpha) f(y)\right] \downarrow f(x)+(1-\alpha) f(y)
\end{aligned}
$$

So, f is o-convex.
Now, let $f_{1} f_{2}, \ldots$,fn are o-convex functions on a convex set C into a Banach lattice E. For all $x \in C$, we ask $f(x)=\bigvee_{1 \leqslant k \leqslant n} f_{k}(x)$. It is easy to see that:

$$
\begin{aligned}
f(\alpha x+(1-\alpha) y) & =\bigvee_{1 \leqslant k \leqslant n} f_{k}(\alpha x+(1-\alpha) y) \\
& \leqslant \bigvee_{1 \leqslant k \leqslant n}\left[\alpha f_{k}(x)+(1-\alpha) f_{k}(y)\right] \\
& \leqslant \bigvee_{1 \leqslant k \leqslant n}\left[\alpha f_{k}(x)\right]+\bigvee_{1 \leqslant k \leqslant n}\left[(1-\alpha) f_{k}(y)\right] \\
& \leqslant \alpha \bigvee_{1 \leqslant k \leqslant n} f_{k}(x)+(1-\alpha) \bigvee_{1 \leqslant k \leqslant n} f_{k}(y) \\
& \leqslant \alpha f(x)+(1-\alpha) f(y)
\end{aligned}
$$

So, f is o-convex, what completes the proof.
Proposition 1.3 Let f : C ! E be an o-convex function, where C is a convex subset of a vector space and E is a Banach lattice. Let x belong to C and suppose z satises $x+z \in C$ and $x \in z C$. Let $\alpha \in$ [0; 1]: Then

$$
|f(x+\alpha z)-f(x)| \leqslant \alpha([f(x+z)-f(x)] \vee[f(x-z)-f(x)])
$$

Proof. $f(x+\alpha z) \leqslant(1-\alpha) f(x)+\alpha f(x+z)$ because the hypothesis and the equality: $x+\alpha z=(1-\alpha) x+\alpha(x+z)$. Rearranging terms yields

$$
\begin{align*}
& f(x+\alpha z)-f(x) \leqslant \alpha[f(x+z)-f(x)] \tag{1.1}\\
& \leqslant \alpha([f(x+z)-f(x)] \vee[f(x-z)-f(x)]) \tag{1.2}
\end{align*}
$$

Replacing z by -z in (1.1) gives

$$
\begin{equation*}
f(x-\alpha z)-f(x) \leqslant \alpha[f(x-z)-f(x)] \tag{1.3}
\end{equation*}
$$

Since $x=\frac{1}{2}(x+\alpha z)+\frac{1}{2}(x-\alpha z)$
we have $f(x) \leqslant \frac{1}{2} f(x+\alpha z)+\frac{1}{2} f(x-\alpha z)$.
Multiplying by two and rearranging terms we obtain

$$
\begin{equation*}
f(x)-f(x+\alpha z) \leqslant f(x-\alpha z)-f(x) \tag{1.4}
\end{equation*}
$$

(1.3) implies

$$
\begin{align*}
f(x)-f(x+\alpha z) & \leqslant f(x-\alpha z)-f(x) \\
& \leqslant \alpha[f(x-z)-f(x)] \\
& \leqslant \alpha([f(x+z)-f(x)] \vee[f(x-z)-f(x)]) \tag{1.5}
\end{align*}
$$

With definition of the absolute value in mind, (1.2) in conjunction with (1.5) yields the conclusion of the proposition.

Recall that a subset A of a Riesz space X is order bounded, from above if there is a vector u (called an upper bound of A) that dominates each element of A, that is, satisfying $a \leq u$ for each $a \in A$. Sets order bounded from below are defined similarly. A box or an order interval, is any set of the form

$$
[a, b]=\{x \in X: a \leqslant x \leqslant b\}
$$

Definition 1.2 A mapping $f: X \rightarrow E$ between Riesz spaces is o-bounded above (respectively, o-bounded) on a subset V of X, if $f(V)$ is order bounded from above (respectively, iff $f(V) \subset[a, b]$ for some box [a,b] of E).

We would have liked an o-convex function $f: X \rightarrow E$ to be order continuous, but this is not true even in the trivial case when $E=\mathrm{R}$. Indeed, let $X=C[0,1]$, we emphasize: There is no nonzero σ-order continuous linear functional on the Riesz space X. However for the topological continuity we have the following, which generalizes a similar result previously proved for the convex (real) functions.

Theorem 1.1 Let $f: C \rightarrow E$ be an o-convex function, where C is a convex subset of a normed space X, and E is a Banach lattice. Iff is,o-bounded above on a neighborhood of an interior point of C, then fis continuous at that point.

Proof. We may assume that for some $x \in C$ there exist an open ball V of radius η at 0 and some $\chi \in E$ satisfying $x+V \subset C$ and $f(y)<$ $f(x)+\chi$ for each $y \in x+V$. Fix $\varepsilon>0$ and choose some $0<\alpha<1$ so that $\alpha\|\chi\|<\varepsilon$. From Proposition1.3, it follows that for each $y \in$ $x+\alpha V$ we have $|f(y)-f(x)|<\alpha \chi$.

Now, the norm of E is lattice, then $\|f(y)-f(x)\|<\alpha\|\chi\|<\varepsilon$.
Remark 1.1 We shall say that a vector $e \in E$ is an order unit, if for each $x \in E$ there exists $\lambda>0$ such that $x<\lambda e$. It is well known that, in an ordered topological vector space E, a positive vector e is an interior point of the cone $E+$ if and only if, the order interval [$-e, e$] is a neighborhood of zero [2, Lemma 2.5]. From the fact that every
neighborhood of zero is absorbing set, it follows that the interior points of E_{+}are order units.

Provided that the interior $\operatorname{Int}\left(E_{+}\right)$of the cone E_{+}is non-empty, semicontinuity can be generalized to vector functions as follows.

Definition 1.3 A mapping $f: X \rightarrow E$ from a topological space X into a Banach lattice E is:

* Lower o-semicontinuous iffor each $c \in E$ the set
$\left\{x \in X: f(x)-c \in \operatorname{Int}\left(E_{+}\right)\right\}$
is open.
* Upper o-semicontinuous iffor each $c \in E$ the set

$$
\{X \in X: c-f(x) \in \operatorname{Int}(E+)\}
$$

is open.
Obviously, a mapping f is lower o-semi continuous if and only $-f$ is upper
O-semi continuous, and vice versa.
The classic example of a lower (resp. upper) o-semi continuous mapping is given by the lower (resp. upper) semi continuous real functions. Now assume that E is a Banach lattice with an order unit e. It is well known that the principal ideal E_{e} generated by e coincides with E which when provided with the norm $\|x\|_{\infty}=\inf$ $\{\lambda>0:|x|<\lambda e\}$ becomes an AMspace with unit. Let $f: R \rightarrow R$ be a continuous real function. Then the mapping $f: E \rightarrow E$ defined by $f e(x)=f\left(\|x\|_{\infty}\right)$ e is a lower and upper o-semi continuous mapping.

The E-valued mapping on a Banach lattice is a useful device, but it needs to be handled with care. For example, the complement of the set $\{x \in X: f(x)>c\}$ in X is not at all the set $\{x \in X: f(x)<c\}$. However, the following lemma reduces this difficulty by reducing us to functions with real values.

Proposition 1.4 If E_{+}(respectively, $E_{+}{ }_{+}$) is the positive cone of a Banach lattice E (respectively, of E^{0}), then $x / \in E+$ if and only if it exists ' $\in E$ ' + such that $\phi(x)<0$.

Proof. The definition of the positive cone E_{+}^{\prime} gives a sense of lemma. Conversely, if $x / \in E+$, since E_{+}is closed and convex, it follows from the HahnBanach theorem that there is $a \phi \in E^{\prime}$ with $\phi(x)$ $<\phi(y)$ for all $y \in E_{+}$.

Thus $\phi(x)<0=f(0)$ and $\phi(\mathrm{x})<\phi(n y)$ for all non-negative integer number n. So $\phi(x)<0 \phi(y)$ for all $y \in E+$.

As a first application of the above definitions, we have the following result.

Theorem 1.2 For an o-convex mapping $f: C \rightarrow E$ on an open convex subset of a topological vector space X into a Banach lattice E, the following statements are equivalent.

1. f is continuous on C.
2. fis upper o-semicontinuous on C.
3. fis o-bounded above on a neighborhood of each point in C.
4. fis o-bounded above on a neighborhood of some point in C.
5. f is continuous at some point in C.

Proof. (1) $\Rightarrow(2)$ is obvious.
$(2) \Rightarrow(3)$; Assume that f is upper o-semicontinuous. Let $x \in C$ and $a \in \operatorname{Int}\left(E_{+}\right)-\{0\}$. Then the set $\left\{y \in E: f(x)+a-f(y) \in \operatorname{Int}\left(E_{+}\right)\right\}$is an open neighborhood of x on which f is o-bounded above.
(3) \Rightarrow (4) Obvious.
$(4) \Rightarrow(5)$ This is Theorem 1.1.
(5) \Rightarrow (1) Suppose f is continuous at the point x, and let y be any other point in C. Since C is open and convex, therefore C does not contain extreme points. This implies that there exist $z \in C$ and $0<$ $\lambda<1$ such that $y=\lambda x+(1-\lambda) z$. Fix $\varepsilon>0$ and choose some circled neighborhood V of zero so that for all $v \in V$. We claim that, $\| f(y)$ $-f(y+v) \|<\varepsilon$ for all $v \in \lambda V$. Indeed, let $v \in V$, Then $y+\lambda v=\lambda(x+$ v) $+(1-\lambda) z \in C$ and the o-convexity of f implies

$$
\begin{aligned}
f(y+\lambda v) & =f(\lambda(x+v)+(1-\lambda) z) \\
& \leqslant \lambda f(x+v)+(1-\lambda) f(z)
\end{aligned}
$$

and

$$
\begin{aligned}
f(y) & =f(\lambda x+(1-\lambda) z) \\
& \leqslant \lambda f(x)+(1-\lambda) f(z)
\end{aligned}
$$

Thus

$$
\begin{align*}
f(y+\lambda v)-f(y) & \leqslant \lambda(f((x+v)-f(x))) \\
& \leqslant \lambda|f((x+v)-f(x))| \tag{1.6}
\end{align*}
$$

and

$$
\begin{align*}
f(y)-f(y+\lambda v) & \leqslant \lambda(f(x)-f((x+v))) \\
& \leqslant \lambda|f((x+v)-f(x))| \tag{1.7}
\end{align*}
$$

This shows that

$$
\begin{equation*}
|f(y)-f(y+\lambda v)| \leqslant \lambda|f((x+v)-f(x))| \tag{1.8}
\end{equation*}
$$

Then

$$
\begin{aligned}
\|f(y)-f(y+\lambda v)\| & \leqslant \lambda \| f((x+v)-f(x)) \\
& <\varepsilon
\end{aligned}
$$

So, f is continuous at y.

2. Order Lipschitzian Vector-Valued Functions

Lipchitzian and contractive real functions have important properties that we want to extend to infinite dimensional analysis. For this purpose, we adopt the following definition.

Definition 2.1 A mapping from a subset B of a normed tvs ($X,\| \| \|)$ to a Banach lattice E is order Lipschitz continuous on B if there exists $e \in E_{+}$such that for every $y, z \in B$

$$
|f(y)-f(z)| \sigma|\mid y-z \| e
$$

If moreover $\|e\|<1$ then f is called an order contraction.

The following gives examples of order Lipschitz continuous mappings.

Theorem 2.1 Let f : $C \rightarrow E$ be o-convex positive mapping from a convex subset C of a normed tvs ($X, \||| |$) to a Banach lattice E. Iff is continuous at the interior point x of C, then f is order Lipschitz continuous on a neighborhood of x. That is, there exists $\delta>0$ and $e \in E_{+}$, such that $B_{\delta}(x) \subset C$ and for $y, z \in B_{\delta}(x)$, we have

$$
|f(y)-f(z)| \leqslant\|y-z\| e
$$

Proof. Since f is continuous at x, it follows from Theorem 1.3 that there exists $e \in E+$ and $\delta>0$ satisfying $B_{2 \delta}(x) \subset C$ and $f(y) \leqslant e$. So, $w, z \in B_{2} \delta(x)$ implies $0 \leqslant f(w) \leqslant e$ and $-e \leqslant-f(z) \leqslant 0$. By addition, we achieve $|f(w)-f(z)| \leqslant e$, for all $w, z B_{2 \delta}$ Let $y, z \in B_{2 \delta}(x)$ and $\alpha=$ $\|y-z\|$. Then $w=y+\frac{\delta}{\alpha}(y+z)$ belongs to $B_{2 \delta}$ and we have $y=\frac{\alpha}{\alpha+\delta} w+\frac{\delta}{\alpha+\delta} z$.
Therefore

$$
f(y) \leqslant \frac{\alpha}{\alpha+\delta} f(w)+\frac{\delta}{\alpha+\delta} f(z)
$$

Subtracting $f(z)$ from each side gives

$$
\begin{aligned}
f(y)-f(z) & \leqslant \frac{\alpha}{\alpha+\delta}[f(w)-f(z)] \\
& \leqslant \frac{\alpha}{\alpha+\delta} e \\
& \leqslant \alpha e
\end{aligned}
$$

Switching the roles of y and z allows us to conclude

$$
|f(y)-f(z)| \leqslant\|y-z\| e
$$

A net $\left\{x_{\alpha}\right\}$ in a Riesz space E is order convergent to some $x \in E$, written $\{x \alpha\} \rightarrow^{0} x$, if there is a net $\left\{q_{\alpha}\right\}$ (with the same directed set) satisfying $\left\{Q_{\alpha}\right\} \downarrow 0$ and $|x \alpha-x| 6 q_{\alpha}$ for each α. A function f : $E \rightarrow F$ between two Riesz spaces is order uniformly continuous if $\left\{y_{\alpha}-z_{\alpha}\right\} \rightarrow^{0} 0$ in E implies $\left\{f\left(y_{\alpha}\right)-f\left(z_{\alpha}\right)\right\} \rightarrow^{\circ} 0$ in F.

Proposition 2.1 Let $f ; X \rightarrow E$ be an order Lipschitz continuous mapping between banach latties. If the lattice norm on X is order continuous then fis order uniformly continuous.

Proof. Obvious.

Now we will generalize, to convex order applications, one of the important themes of the analysis, namely the extreme points of a convex functions on a compact convex set. Let C be a convex subset of a vector space X. Recall that an extreme subset of C, is a nonempty subset F of C with the property that if x belongs to F it cannot be written as a convex combination of points of C outside F. A point x is an extreme point of C if the singleton $\{x\}$ is an extreme set.

Proposition 2.2 Letf: $C \rightarrow$ E be o-convex mapping from a convex subset C of a normed tvs $(X,\| \|)$ to a Banach lattice E. The set of maximizers off is either an extreme set or is empty.

Proof. Suppose f achieves a maximum on C; that is, f satisfies the identitie $\sup \{f(x): x \in C\}=f(e)$ for some $e \in C$. Put $M=\{x \in C$ $: f(x)=f(e)\}$. Suppose that $x=\alpha y+(1-\alpha) z \in M, 0<\alpha<1$ and y, z $\in C$. If $y / \in M$ then $f(y)<f(e)$, so

$$
\begin{aligned}
f(e)=f(x) & =f(\alpha y+(1-\alpha) z) \\
& \leqslant \alpha f(y)+(1-\alpha) f(z) \\
& <\alpha f(e)+(1-\alpha) f(e)=f(e)
\end{aligned}
$$

a contradiction. Hence $y, z \in M$, so M is an extreme subset of C.
Recall that the order \leqslant of a Banach lattice E is continuous if \leqslant is a closed subset of $E \times E$. Let us say that \leqslant is upper semicontinuous if $\{x \in E: y \leqslant x\}$ is closed for each y.

Theorem 2.2 Let $f: K \rightarrow E$ be a continuous vector-valued function from a compact space into a Banach lattice with a continuous order. Suppose that $f(K)$ satisfies the condition (C): $c \vee d$ belongs to $f(K)$ for all $c, d \in f(K)$, then f attains a minimum value, and the nonempty set of minimizers is compact. Similarly, a continuous vector-valued function on a compact set attains a maximum value, provided that $f(K)$ satisfies the condition ($\left.C^{\prime}\right)$: $c \wedge d$ belongs to $f(K)$ for all $c, d \in f(K)$ and the nonempty set of maximizers is compact.

Proof. Let K be a compact of a normed vector space X and let f $: K \rightarrow E$ be a continuous mapping from K to a Banach lattice E. For each $c \in f(K)$, put $F c=\{x \in K: f(x)>c\}$. It follows from the continuity of f and of the order that the nonempty set F_{c} is closed ($c=f(x)$ implis $x \in F)$. Moreover, the family $F=\{F c: c \in f(K)\}$ has the finite intersection property. In deed, let $F c_{1}, F c_{2}, \ldots F_{\text {cn }}$ be a finite familly in F. Since $F(K)$ satisfies condition (C)

$$
\text { so, } c_{0}=\bigvee_{i=1}^{i=n} c_{i} \in f(K) \text {. For all } x \in F_{c_{0}} \text { and } 1 \leqslant i \leqslant n
$$

we have

$$
0 \leqslant f(x)-c_{0} \leqslant f(x)-c_{i}
$$

so, $x \in \bigcap_{1 \leqslant i \leqslant n} F_{c_{i}}$ and $F_{c_{0}} \subset \bigcap_{1 \leqslant i \leqslant n} F_{c_{i}}$. Since K is compact,
[Aliprantis,
Theorem.2.31] implies that the set of minimizers $\bigcap_{c \in f(K)} \quad F_{c}$ is compact and Nonempty.

We realize that, in its real context, the assumptions (C) and $\left(C^{\prime}\right)$ in Theorem 2.2 are ensured from the fact that the order in R is total.

A complete lattice is a lattice in which every nonempty subset that is order bounded from above has a supremum. (Equivalently, if every nonempty subset that is bounded from below has an infimum).

Now consider a vector form of the Contraction Mapping Theorem.
Theorem 2.3 Let B be a closed subset of a Banach Lattice E and
let $f: B \rightarrow B$ be an order contraction mapping. Then f has a unique fixed point x. Moreover, for any choice $x 0$ in X, the sequence defined recursively by $x n+1=f\left(x_{n}\right), n=0,1,2, \ldots$, converges to the fixed point and $\left\|x_{n}-x\right\|<\|e\|^{n}\left\|x_{0}-x\right\|$ for each n.

Proof. Let $e \in E_{+}$such that $\|e\|<1$ and $|f(y)-f(z)| \leqslant\|y-z\| e$, for all $y, z \in B . \operatorname{Iff}(x)=x$ and $f(y)=y$ then $|x-y|=\mid f(x)-f(x)\|\leqslant\| x-$ $y \| e$. Since the norm of E is lattice, we have $\|x-y\| \leqslant\|x-y\|\|e\|$ and hence $\|x-y\|=0$. Thus f can have at most one fixed point.

Now, if x_{0} is chosen in B then the formula $x_{n+1}=f(x n), n=0,1,2, \ldots$ defines inductively the sequence $\left(x_{n}\right)$ which satisfies: $|x n+1-x n|$ $\leqslant\|x n-x n-1\| e$, for every $n>1$. The lattice property verified by the norm of E implies that $\|x n+1-x n\| \leqslant\|x n-x n-1|\|| | e\|$ and by induction, we see that for all $n>1,\|x n+1-x n\| \leqslant\|x 1-x 0 \mid\|\|e\| n$. Hence, for $n>m$ the triangle inequality yields.

$$
\begin{aligned}
\left\|x_{m}-x_{n}\right\| & \leqslant \sum_{k=m+1}^{n}\left\|x_{k}-x_{k-1}\right\| \\
& \leqslant\left\|x_{1}-x_{0}\right\| \sum_{k=m+1}^{n}\|e\|^{k} \\
& \leqslant\left\|x_{1}-x_{0}\right\| \frac{\|e\|^{m}}{1-\|e\|}
\end{aligned}
$$

This implies that $\left(x_{n}\right)$ is a Cauchy sequence.
Since B is closed in the complete space E then, $\left(x_{n}\right) \rightarrow x \in B$. obviously, f is continuous, and:

$$
x=\lim _{n \rightarrow \infty} x_{n+1}=\lim _{n \rightarrow \infty} f\left(x_{n}\right)=f(x)
$$

so x is the fixed point of f.

References

1. C. D. Aliprantis and K. C. (1996). Border, Infinite Dimensional Analysis. Third Edition. Springer-Verlag Berlin Heidelberg Printed in Germany.
2. Aliprantis, C. D., \& Tourky, R. (2007). Cones and duality (Vol. 84). American Mathematical Soc.
3. Rickart, C. E., FF Bonsall and J. Duncan. (1975). Complete normed algebras.
4. Meyer-Nieberg, P. (1991). Banach lattices. Springer Science \& Business Media.

Copyright: ©2023 Mustapha Laayouni. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

