

ISSN: 2690-912X

Short Communication

Journal of Genetic Engineering and Biotechnology Research

Vector-Valued Convex Functions

Mustapha Laayouni*

Moulay Ismail University, Sciences and technologies Faculty, Department of Mathematics, B.P. 509, Errachidia, 52000, Morocco

*Corresponding Author

Mustapha Laayouni, Moulay Ismail University, Sciences and technologies Faculty, Department of Mathematics, B.P. 509, Errachidia, 52000, Morocco.

Submitted: 2023, June 03; Accepted: 2023, June 30; Published: 2023, July 19

Citation: Laayouni, M. (2023). Vector-Valued Convex Functions. J Gene Engg Bio Res, 5(2), 119-123.

Abstract

In this paper, we will extend some properties of the convex real functions to the valued functions in a Banach lattice: with adequate definitions, we will establish that an order convex function is continuous on a convex C if and only if it is continuous at a point of C (Theorem 1.2). We will show that order convex functions on a compact satisfy Bauer's maximal principle (Theorem 2.2). A fixed-point theorem is given for the contracting orders functions (Theorem 2.3).

Keywords: Order, Riesz Space, Banach Lattice, Convexity and Ordre Convexity.

1. Order Convexity of Vector-Valued Functions

Often in functional analysis, one needs local algebraic linearity. Thus, one of the interactions of the algebraic and topological structure of a topological vector is manifested in the important properties of the class of convex functions. So far, we have allowed the convex functions defined on the convex subsets of a vector space to be real valued. We will extend the definition of convexity to the valued functions in a Banach lattice [1-4].

Definition 1.1

Let E be a Banach lattice. A function $f: C \to E$ on a convex set C in a vector space X is:

(i) order convex (denoted by o-convex) if for all $x, y \in C$ and all $0 \le \alpha \le 1$, $f(\alpha x + (1 - \alpha)y) \le \alpha f(x) + (1 - \alpha)f(y)$.

(ii) Strictly o-convex if for all $x,y \in C$ with $x \in G$ and all $0 < \alpha < 1$, $f(\alpha x + (1 - \alpha)y) < \alpha f(x) + (1 - \alpha)f(y)$.

(iii) O-concave (respectively, strictly o-concave) if -f is an o-convex (respectively, strictly o-concave) function.

It is easy to realize that; f is o-convex if and only if,

$$f\left(\sum_{k=1}^{n} \alpha_k x_k\right) \leqslant \sum_{k=1}^{n} \alpha_k f\left(x_k\right)$$

For every convex combination $\sum_{k=1}^{n} \alpha_k x_k$.

Example 1.1 Here are some familiar examples of o-convex mappings.

- Obviously, any convex real function is o-convex.
- Let *E* be a Banach lattice. The absolute value $x \to |x|$ is an o-convex mapping from *E* to *E*.
- Let A be a commutative unital real Banach algebra. The set of all multiplicative linear functionals on A is denoted by Δ_A . It is well known that Δ_A , endowed with the Gelfand topology, is compact and the Gelfand representation φ of A into C (Δ_A) is an homomorphism [3, Theorem 13]. Thus, φ is o-convex.

Proposition 1.1 A function $f: C \to E$ on a convex subset of a vector space into a Banach lattice E is o-convex if and only if its epigraph, epi $(f) = \{(x,\chi) \in C \times E : \chi > f(x)\}$, is convex. Similarly, f is o-concave if and only if its hypograph, $\{(x,\chi) \in C \times E : \chi \ f(x)\}$, is convex.

Proof. We prove the first part of this proposition, the remaining assertion is identical. Suppose that f is o-convex, then for (x_1, χ_1) , $(x_2, \chi_2) \in \text{epi} f$ and $\alpha \in [0, 1]$ we have

$$\alpha_1 \chi_1 + (1 - \alpha) \chi_2 \geqslant \alpha_1 f(x_1) + (1 - \alpha) f(x_2)$$

$$\geqslant f(\alpha x_1 + (1 - \alpha) x_2)$$

So, $(\alpha_1 \chi_1 + (1 - \alpha) \chi_2, \alpha_1 \chi_1 + (1 - \alpha) \chi_2) \in \text{epif. The 'only if' part stems from the fact that } (x_1, f(x_1)) \in \text{epif and } (x_2, f(x_2)) \in \text{epif.}$

Proposition 1.2 The collection of o-convex functions on a fixed convex set C into a Banach lattice E has the following properties.

- 1. Sums and nonnegative scalar multiples of o-convex functions are o-convex.
- 2. The (finite) pointwise order limit of a net of o-convex functions is o-convex.
- 3. The (finite) pointwise supremum of a family of o-convex functions is o-convex.

Proof. The first statement is trivial. For the second assertion, consider a net $\{f_i\}$ of o-convex functions (finite) pointwise order convergent to f, that is, for any finite part F of C, there is a net $\{\chi_i\}$ (with the same directed set) satisfying $\chi_i \downarrow 0$ and $|f_i(z) - f(z)| \chi_i$ for each i and every z F. Let $x,y \in C$ and $\alpha \in [0,1]$. For $F = \{x,y,\alpha x + (1-\alpha)y\}$ we have:

$$\begin{array}{ll} (1-\alpha)y) & \leqslant & \chi_{i} + f_{i} \left(\alpha x + (1-\alpha)y\right) \\ & \leqslant & \chi_{i} + \alpha f_{i} \left(x\right) + (1-\alpha)f_{i} \left(y\right) \\ & \leqslant & \chi_{i} + \alpha \left[f \left(x\right) + f_{i} \left(x\right) - f \left(x\right)\right] + (1-\alpha)\left[f \left(y\right) + f_{i} \left(y\right) - f \left(y\right)\right] \\ & \leqslant & \chi_{i} + \alpha f(x) + (1-\alpha)f(y) + \chi_{i} \\ & \leqslant & \left[2\chi_{i} + \alpha f(x) + (1-\alpha)f(y)\right] \downarrow \alpha f(x) + (1-\alpha)f(y) \end{array}$$

So, f is o-convex.

Now, let f_1f_2 ,...,fn are o-convex functions on a convex set C into a Banach lattice E. For all $x \in C$, we ask $f(x) = \bigvee_{1 \le k \le n} f_k(x)$. It is easy to see that:

$$\begin{split} f\left(\alpha x + (1-\alpha)y\right) &= \bigvee_{1 \leq k \leq n} f_k\left(\alpha x + (1-\alpha)y\right) \\ &\leqslant \bigvee_{1 \leq k \leq n} \left[\alpha f_k(x) + (1-\alpha)f_k(y)\right] \\ &\leqslant \bigvee_{1 \leq k \leq n} \left[\alpha f_k(x)\right] + \bigvee_{1 \leq k \leq n} \left[(1-\alpha)f_k(y)\right] \\ &\leqslant \alpha \bigvee_{1 \leq k \leq n} f_k(x) + (1-\alpha) \bigvee_{1 \leq k \leq n} f_k(y) \\ &\leqslant \alpha f(x) + (1-\alpha)f(y). \end{split}$$

So, f is o-convex, what completes the proof.

Proposition 1.3 Let f: C! E be an o-convex function, where C is a convex subset of a vector space and E is a Banach lattice. Let x belong to C and suppose z satisfs $x + z \in C$ and $x \in z$ C. Let $\alpha \in [0; 1]$: Then

$$|f\left(x+\alpha z\right)-f(x)|\leqslant \alpha\left(\left[f\left(x+z\right)-f(x)\right]\vee\left[f\left(x-z\right)-f(x)\right]\right)$$

Proof. $f(x + \alpha z) \leq (1 - \alpha)f(x) + \alpha f(x + z)$ because the hypothesis and the equality: $x + \alpha z = (1 - \alpha)x + \alpha(x + z)$. Rearranging terms yields

$$f(x + \alpha z) - f(x) \leqslant \alpha [f(x + z) - f(x)] \tag{1.1}$$

$$\leq \alpha \left(\left[f\left(x+z\right) -f(x)\right] \vee \left[f\left(x-z\right) -f(x)\right] \right) \quad (1.2)$$

Replacing z by -z in (1.1) gives

$$f(x - \alpha z) - f(x) \leqslant \alpha [f(x - z) - f(x)] \tag{1.3}$$

Since
$$x = \frac{1}{2}(x + \alpha z) + \frac{1}{2}(x - \alpha z)$$
,

we have
$$f(x) \leq \frac{1}{2}f(x + \alpha z) + \frac{1}{2}f(x - \alpha z)$$
.

Multiplying by two and rearranging terms we obtain

$$f(x) - f(x + \alpha z) \leqslant f(x - \alpha z) - f(x) \tag{1.4}$$

(1.3) implies

$$f(x) - f(x + \alpha z) \leq f(x - \alpha z) - f(x)$$

$$\leq \alpha [f(x - z) - f(x)]$$

$$\leq \alpha ([f(x + z) - f(x)] \vee [f(x - z) - f(x)]) \quad (1.5)$$

With definition of the absolute value in mind, (1.2) in conjunction with (1.5) yields the conclusion of the proposition.

Recall that a subset A of a Riesz space X is order bounded, from above if there is a vector u (called an upper bound of A) that dominates each element of A, that is, satisfying $a \le u$ for each $a \in A$. Sets order bounded from below are defined similarly. A box or an order interval, is any set of the form

$$[a,b] = \{x \in X : a \leqslant x \leqslant b\}$$

Definition 1.2 A mapping $f: X \to E$ between Riesz spaces is o-bounded above (respectively, o-bounded) on a subset V of X, if f(V) is order bounded from above (respectively, if $f(V) \subset [a,b]$ for some box [a,b] of E).

We would have liked an o-convex function $f: X \to E$ to be order continuous, but this is not true even in the trivial case when E = R. Indeed, let X = C[0,1], we emphasize: There is no nonzero σ -order continuous linear functional on the Riesz space X. However for the topological continuity we have the following, which generalizes a similar result previously proved for the convex (real) functions.

Theorem 1.1 Let $f: C \to E$ be an o-convex function, where C is a convex subset of a normed space X, and E is a Banach lattice. If f is,o-bounded above on a neighborhood of an interior point of C, then f is continuous at that point.

Proof. We may assume that for some $x \in C$ there exist an open ball V of radius η at 0 and some $\chi \in E$ satisfying $x + V \subset C$ and $f(y) < f(x) + \chi$ for each $y \in x+V$. Fix $\varepsilon > 0$ and choose some $0 < \alpha < 1$ so that $\alpha ||\chi|| < \varepsilon$. From Proposition 1.3, it follows that for each $y \in x+\alpha V$ we have $|f(y)-f(x)| < \alpha \chi$.

Now, the norm of E is lattice, then $||f(y) - f(x)|| < \alpha ||\chi|| < \varepsilon$.

Remark 1.1 We shall say that a vector $e \in E$ is an order unit, if for each $x \in E$ there exists $\lambda > 0$ such that $x < \lambda e$. It is well known that, in an ordered topological vector space E, a positive vector e is an interior point of the cone E+ if and only if, the order interval [-e,e] is a neighborhood of zero [2, Lemma 2.5]. From the fact that every

neighborhood of zero is absorbing set, it follows that the interior points of E_+ are order units.

Provided that the interior $Int(E_+)$ of the cone E_+ is non-empty, semicontinuity can be generalized to vector functions as follows.

Definition 1.3 A mapping $f: X \to E$ from a topological space X into a Banach lattice E is:

* Lower o-semicontinuous if for each $c \in E$ the set $\{x \in X : f(x) - c \in Int(E_c)\}$

is open.

* Upper o-semicontinuous if for each $c \in E$ the set $\{X \in X: c - f(x) \in Int(E+)\}$

is open.

Obviously, a mapping f is lower o-semi continuous if and only -f is upper

O-semi continuous, and vice versa.

The classic example of a lower (resp. upper) o-semi continuous mapping is given by the lower (resp. upper) semi continuous real functions. Now assume that E is a Banach lattice with an order unit e. It is well known that the principal ideal E_e generated by e coincides with E which when provided with the norm $||x||_{\infty} = \inf \{\lambda > 0: |x| < \lambda e\}$ becomes an AMspace with unit. Let $f: R \to R$ be a continuous real function. Then the mapping $f: E \to E$ defined by $fe(x) = f(||x||_{\infty})$ e is a lower and upper o-semi continuous mapping.

The *E*-valued mapping on a Banach lattice is a useful device, but it needs to be handled with care. For example, the complement of the set $\{x \in X: f(x) > c\}$ in *X* is not at all the set $\{x \in X: f(x) < c\}$. However, the following lemma reduces this difficulty by reducing us to functions with real values.

Proposition 1.4 If E_+ (respectively, E'_+) is the positive cone of a Banach lattice E (respectively, of E^0), then $x \in E^+$ if and only if it exists ' $\in E'$ + such that $\phi(x) < 0$.

Proof. The definition of the positive cone E'_+ gives a sense of lemma. Conversely, if $x \in E^+$, since E_+ is closed and convex, it follows from the HahnBanach theorem that there is $a \phi \in E'$ with $\phi(x) < \phi(y)$ for all $y \in E_+$.

Thus $\phi(x) < 0 = f(0)$ and $\phi(x) < \phi(ny)$ for all non-negative integer number n. So $\phi(x) < 0$ $\phi(y)$ for all $y \in E^+$.

As a first application of the above definitions, we have the following result.

Theorem 1.2 For an o-convex mapping $f: C \to E$ on an open convex subset of a topological vector space X into a Banach lattice E, the following statements are equivalent.

1. f is continuous on C.

2. f is upper o-semicontinuous on C.

3. f is o-bounded above on a neighborhood of each point in C.4. f is o-bounded above on a neighborhood of some point in C.5. f is continuous at some point in C.

Proof. (1) \Rightarrow (2) is obvious.

 $(2) \Rightarrow (3)$; Assume that f is upper o-semicontinuous. Let $x \in C$ and $a \in Int(E_+) - \{0\}$. Then the set $\{y \in E: f(x) + a - f(y) \in Int(E_+)\}$ is an open neighborhood of x on which f is o-bounded above.

 $(3) \Rightarrow (4)$ Obvious.

 $(4) \Rightarrow (5)$ This is Theorem 1.1.

(5) \Rightarrow (1) Suppose f is continuous at the point x, and let y be any other point in C. Since C is open and convex, therefore C does not contain extreme points. This implies that there exist $z \in C$ and $0 < \lambda < 1$ such that $y = \lambda x + (1 - \lambda)z$. Fix $\varepsilon > 0$ and choose some circled neighborhood V of zero so that for all $v \in V$. We claim that, $||f(y) - f(y+v)|| < \varepsilon$ for all $v \in \lambda V$. Indeed, let $v \in V$, Then $v + \lambda v = \lambda (x+v) + (1-\lambda)z \in C$ and the o-convexity of f implies

$$f(y + \lambda v) = f(\lambda(x + v) + (1 - \lambda)z)$$

$$\leq \lambda f(x + v) + (1 - \lambda)f(z)$$

and

$$f(y) = f(\lambda x + (1 - \lambda)z)$$

$$\leq \lambda f(x) + (1 - \lambda)f(z)$$

Thus

$$f(y + \lambda v) - f(y) \leqslant \lambda \left(f\left((x + v) - f(x) \right) \right)$$

$$\leqslant \lambda |f\left((x + v) - f(x) \right)| \quad (1.6)$$

and

$$f(y) - f(y + \lambda v) \leqslant \lambda \left(f(x) - f((x+v)) \right)$$

$$\leqslant \lambda |f((x+v) - f(x))| \qquad (1.7)$$

This shows that

$$|f(y) - f(y + \lambda v)| \le \lambda |f((x+v) - f(x))|$$
 (1.8)

Then

$$||f(y) - f(y + \lambda v)|| \le \lambda ||f((x+v) - f(x))|$$

 $< \varepsilon$

So, f is continuous at y.

2. Order Lipschitzian Vector-Valued Functions

Lipchitzian and contractive real functions have important properties that we want to extend to infinite dimensional analysis. For this purpose, we adopt the following definition.

Definition 2.1 A mapping f from a subset B of a normed tvs (X,||||) to a Banach lattice E is order Lipschitz continuous on B if there exists $e \in E$, such that for every $y,z \in B$

$$|f(y) - f(z)| |6| ||y - z|| |e|$$

If moreover ||e|| < 1 then f is called an order contraction.

The following gives examples of order Lipschitz continuous mappings.

Theorem 2.1 Let $f: C \to E$ be o-convex positive mapping from a convex subset C of a normed tvs (X, |||||) to a Banach lattice E. If f is continuous at the interior point x of C, then f is order Lipschitz continuous on a neighborhood of x. That is, there exists $\delta > 0$ and $e \in E$, such that $B_s(x) \subset C$ and for $y,z \in B_s(x)$, we have

$$|f(y) - f(z)| \le ||y - z||e$$

Proof. Since f is continuous at x, it follows from Theorem1.3 that there exists $e \in E+$ and $\delta > 0$ satisfying $B_{2\delta}(x) \subset C$ and $f(y) \leq e$. So, $w,z \in B_2\delta(x)$ implies $0 \leq f(w) \leq e$ and $-e \leq -f(z) \leq 0$. By addition, we achieve $|f(w)-f(z)| \leq e$, for all $w,z B_{2\delta}$. Let $y,z \in B_{2\delta}(x)$ and $\alpha = ||y-z||$. Then $w = y + \frac{\delta}{\alpha}(y+z)$ belongs to $B_{2\delta}$ and we have $y = \frac{\alpha}{\alpha+\delta}w + \frac{\delta}{\alpha+\delta}z$.

Therefore

$$f(y) \leqslant \frac{\alpha}{\alpha + \delta} f(w) + \frac{\delta}{\alpha + \delta} f(z)$$

Subtracting f(z) from each side gives

$$f(y) - f(z) \leq \frac{\alpha}{\alpha + \delta} [f(w) - f(z)]$$
$$\leq \frac{\alpha}{\alpha + \delta} e$$
$$\leq \alpha e$$

Switching the roles of y and z allows us to conclude

$$|f(y) - f(z)| \le ||y - z||e$$

A net $\{x_a\}$ in a Riesz space E is order convergent to some $x \in E$, written $\{x\alpha\} \to^{\circ} x$, if there is a net $\{q_{\alpha}\}$ (with the same directed set) satisfying $\{Q_{\alpha}\} \downarrow 0$ and $|x\alpha - x|$ 6 q_{α} for each α . A function f: $E \to F$ between two Riesz spaces is order uniformly continuous if $\{y_{\alpha} - z_{\alpha}\} \to^{\circ} 0$ in E implies $\{f(y_{\alpha}) - f(z_{\alpha})\} \to^{\circ} 0$ in F.

Proposition 2.1 Let $f; X \to E$ be an order Lipschitz continuous mapping between banach latties. If the lattice norm on X is order continuous then f is order uniformly continuous.

Proof. Obvious.

Now we will generalize, to convex order applications, one of the important themes of the analysis, namely the extreme points of a convex functions on a compact convex set. Let C be a convex subset of a vector space X. Recall that an extreme subset of C, is a nonempty subset F of C with the property that if X belongs to X it cannot be written as a convex combination of points of X outside X is an extreme point of X if the singleton X is an extreme set.

Proposition 2.2 Let $f: C \to E$ be o-convex mapping from a convex subset C of a normed tvs (X,|||||) to a Banach lattice E. The set of maximizers of f is either an extreme set or is empty.

Proof. Suppose f achieves a maximum on C; that is, f satisfies the identitie sup $\{f(x) : x \in C\} = f(e)$ for some $e \in C$. Put $M = \{x \in C : f(x) = f(e)\}$. Suppose that $x = \alpha y + (1 - \alpha)z \in M, 0 < \alpha < 1$ and $y,z \in C$. If $y \in M$ then f(y) < f(e), so

$$f(e) = f(x) = f(\alpha y + (1 - \alpha)z)$$

$$\leqslant \alpha f(y) + (1 - \alpha)f(z)$$

$$< \alpha f(e) + (1 - \alpha)f(e) = f(e)$$

a contradiction. Hence $y,z \in M$, so M is an extreme subset of C.

Recall that the order \leq of a Banach lattice E is continuous if \leq is a closed subset of $E \times E$. Let us say that \leq is upper semicontinuous if $\{x \in E : y \leq x\}$ is closed for each y.

Theorem 2.2 Let $f: K \to E$ be a continuous vector-valued function from a compact space into a Banach lattice with a continuous order. Suppose that f(K) satisfies the condition $(C): c \lor d$ belongs to f(K) for all $c,d \in f(K)$, then f attains a minimum value, and the nonempty set of minimizers is compact. Similarly, a continuous vector-valued function on a compact set attains a maximum value, provided that f(K) satisfies the condition $(C'): c \land d$ belongs to f(K) for all $c,d \in f(K)$ and the nonempty set of maximizers is compact.

Proof. Let K be a compact of a normed vector space X and let $f: K \to E$ be a continuous mapping from K to a Banach lattice E. For each $c \in f(K)$, put $Fc = \{x \in K : f(x) > c\}$. It follows from the continuity of f and of the order that the nonempty set F_c is closed (c = f(x) implies $x \in F_c$). Moreover, the family $F = \{Fc : c \in f(K)\}$ has the finite intersection property. In deed, let Fc_1 , Fc_2 ,... F_{cn} be a finite familly in F. Since F(K) satisfies condition F(K)

so,
$$c_0 = \bigvee_{i=1}^{i=n} c_i \in f(K)$$
. For all $x \in F_{c_0}$ and $1 \leq i \leq n$

we have

$$0 \leqslant f(x) - c_0 \leqslant f(x) - c_i$$

so,
$$x \in \bigcap_{1 \le i \le n} F_{c_i}$$
 and $F_{c_0} \subset \bigcap_{1 \le i \le n} F_{c_i}$. Since K is compact,

[Aliprantis,

Theorem.2.31] implies that the set of minimizers $\int_{c \in f(K)} F_c$ is compact and Nonempty.

We realize that, in its real context, the assumptions (C) and (C') in Theorem 2.2 are ensured from the fact that the order in R is total.

A complete lattice is a lattice in which every nonempty subset that is order bounded from above has a supremum. (Equivalently, if every nonempty subset that is bounded from below has an infimum).

Now consider a vector form of the Contraction Mapping Theorem.

Theorem 2.3 Let B be a closed subset of a Banach Lattice E and

let $f: B \to B$ be an order contraction mapping. Then f has a unique fixed point x. Moreover, for any choice x0 in X, the sequence defined recursively by $xn+1=f(x_n)$, n=0,1,2,..., converges to the fixed point and $||x_n-x|| \le ||e||^n||x_0-x||$ for each n.

Proof. Let $e \in E_+$ such that ||e|| < 1 and $|f(y) - f(z)| \le ||y - z||e$, for all $y, z \in B$. If f(x) = x and f(y) = y then $|x - y| = |f(x) - f(x)|| \le ||x - y||e$. Since the norm of E is lattice, we have $||x - y|| \le ||x - y|||e||$ and hence ||x - y|| = 0. Thus f can have at most one fixed point.

Now, if x_0 is chosen in B then the formula $x_{n+1} = f(xn)$, n = 0,1,2,... defines inductively the sequence (x_n) which satisfies: $|xn+1-xn| \le ||xn-xn-I||e$, for every n > 1. The lattice property verified by the norm of E implies that $||xn+1-xn|| \le ||xn-xn-I||||e||$ and by induction, we see that for all n > 1, $||xn+1-xn|| \le ||xI-x0||||e||n$. Hence, for n > m the triangle inequality yields.

$$||x_m - x_n|| \leq \sum_{k=m+1}^n ||x_k - x_{k-1}||$$

$$\leq ||x_1 - x_0|| \sum_{k=m+1}^n ||e||^k$$

$$\leq ||x_1 - x_0|| \frac{||e||^m}{1 - ||e||}$$

This implies that (x_n) is a Cauchy sequence.

Since *B* is closed in the complete space *E* then, $(x_n) \to x \in B$. obviously, *f* is continuous, and:

$$x = \lim_{n \to \infty} x_{n+1} = \lim_{n \to \infty} f(x_n) = f(x),$$

so x is the fixed point of f.

References

- C. D. Aliprantis and K. C. (1996). Border, Infinite Dimensional Analysis. Third Edition. Springer-Verlag Berlin Heidelberg Printed in Germany.
- 2. Aliprantis, C. D., & Tourky, R. (2007). Cones and duality (Vol. 84). American Mathematical Soc.
- 3. Rickart, C. E., FF Bonsall and J. Duncan. (1975). Complete normed algebras.
- 4. Meyer-Nieberg, P. (1991). Banach lattices. Springer Science & Business Media.

Copyright: ©2023 Mustapha Laayouni. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.