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Abstract
In this paper, we will extend some properties of the convex real functions to the valued functions in a Banach lattice: 
with adequate definitions, we will establish that an order convex function is continuous on a convex C if and only if 
it is continuous at a point of C (Theorem 1.2). We will show that order convex functions on a compact satisfy Bauer’s 
maximal principle (Theorem 2.2). A fixed-point theorem is given for the contracting orders functions (Theorem 2.3).
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1. Order Convexity of Vector-Valued Functions
Often in functional analysis, one needs local algebraic linearity. 
Thus, one of the interactions of the algebraic and topological struc-
ture of a topological vector is manifested in the important proper-
ties of the class of convex functions. So far, we have allowed the 
convex functions defined on the convex subsets of a vector space 
to be real valued. We will extend the definition of convexity to the 
valued functions in a Banach lattice [1-4].

Definition 1.1 
Let E be a Banach lattice. A function f: C → E on a convex set C 
in a vector space X is:
(i) order convex ( denoted by o-convex) if for all

(ii) Strictly o-convex if for all x,y ∈ C with x 6= y and all 0 < α < 
1, f (αx + (1 − α)y) < αf(x) + (1 − α)f(y).

(iii) O-concave (respectively, strictly o-concave) if −f is an o-con-
vex (respectively, strictly o-concave) function.

It is easy to realize that; f is o-convex if and only if,
 

For every convex combination 

Example 1.1 Here are some familiar examples of o-convex map-
pings.
• Obviously, any convex real function is o-convex.
• Let E be a Banach lattice. The absolute value x  → |x| is an o-con-
vex mapping from E to E.
• Let A be a commutative unital real Banach algebra. The set of all 
multiplicative linear functionals on A is denoted by ∆A. It is well 
known that ∆A, endowed with the the Gelfand topology, is compact 
and the Gelfand representation φ of A into C (∆A) is an homomor-
phism [3, Theorem 13]. Thus, φ is o-convex.

Proposition 1.1 A function f: C → E on a convex subset of a vector 
space into a Banach lattice E is o-convex if and only if its epi-
graph, epi (f) = {(x,χ) ∈ C × E : χ > f(x)}, is convex. Similarly, f 
is o-concave if and only if its hypograph, {(x,χ) ∈ C × E : χ  f(x)} 
, is convex.

Proof. We prove the first part of this proposition, the remaining 
assertion is identical. Suppose that f is o-convex, then for (x1, χ1), 
(x2, χ2) ∈ epif and α ∈ [0, 1] we have

So, (α1χ1 + (1 − α) χ2, α1x1 + (1 − α) x2) ∈epif. The ’only if’ part 
stems from the fact that (x1, f (x1)) ∈ epif and (x2, f (x2)) ∈ epif. 
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It is easy to realize that, f is o-convex if and only if,

f

(
n∑

k=1

αkxk

)
�

n∑
k=1

αkf (xk)

for every convex combination
n∑

k=1

αkxk.

Example 1.1 Here are some familiar examples of o-convex mappings.
• Obviously, any convex real function is o-convex.
• Let E be a Banach lattice. The absolute value x �→ |x| is an o-convex

mappings from E to E.
• Let A be a commutative unital real Banach algebra. The set of all

multiplicative linear functionals on A is denoted by ∆A. It is well known that
∆A, endowed with the the Gelfand topology, is compact and the Gelfand
representation φ of A into C (∆A) is an homomorphism [3, Theorem 13].
Thus φ is o-convex.

Proposition 1.1 A function f : C → E on a convex subset of a vector
space into a Banach lattice E is o-convex if and only if its epigraph, epi(f) =
{(x, χ) ∈ C × E : χ � f(x)}, is convex. Similarly, f is o-concave if and only
if its hypograph, {(x, χ) ∈ C × E : χ � f(x)} , is convex.

Proof. We prove the first part of this proposition, the remaining assertion
is identical. Suppose that f is o-convex, then for (x1, χ1) , (x2, χ2) ∈ epif
and α ∈ [0, 1] we have

α1χ1 + (1− α)χ2 � α1f (x1) + (1− α)f (x2)

� f (αx1 + (1− α)x2)

So, (α1χ1 + (1− α)χ2, α1x1 + (1− α)x2) ∈epif . The ’only if’ part stems
from the fact that (x1, f (x1)) ∈ epif and (x2, f (x2)) ∈ epif . �

Proposition 1.2 The collection of o-convex functions on a fixed convex set
C into a Banach lattice E has the following properties.
1. Sums and nonnegative scalar multiples of o-convex functions are o-convex.
2. The (finite) pointwise order limit of a net of o-convex functions is o-
convex.
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Proposition 1.2 The collection of o-convex functions on a fixed 
convex set C into a Banach lattice E has the following properties.

1. Sums and nonnegative scalar multiples of o-convex functions 
are o-convex. 
2. The (finite) pointwise order limit of a net of o-convex functions 
is o-convex.
3. The (finite) pointwise supremum of a family of o-convex func-
tions is o-convex.

Proof. The first statement is trivial. For the second assertion, con-
sider a net {fi} of o-convex functions (finite) pointwise order con-
vergent to f, that is, for any finite part F of C, there is a net {χi} 
(with the same directed set) satisfying χi ↓ 0 and |fi(z) − f(z)| χi for 
each i and every z F. Let x,y ∈ C and α ∈ [0,1]. For F = {x,y,αx + 
(1 − α)y} we have:

So, f is o-convex.
Now, let f1,f2,...,fn are o-convex functions on a convex set C into a 
Banach lattice E. For all x ∈ C, we ask f(x) =          fk(x). It is easy 
to see that:

So, f is o-convex, what completes the proof. 
Proposition 1.3 Let f : C ! E be an o-convex function, where C is a
convex subset of a vector space and E is a Banach lattice. Let x 
belong to C and suppose z satises x + z ∈ C and x ∈ z C. Let α ∈ 
[0; 1]: Then

 

Proof.  				           	    	 because the 
hypothesis and the equality: x + αz = (1 − α)x + α(x + z). Rear-
ranging terms yields

	

Replacing z by −z in (1.1) gives
 

Since 

we have  

Multiplying by two and rearranging terms we obtain
	

(1.3) implies

With definition of the absolute value in mind, (1.2) in conjunction 
with (1.5) yields the conclusion of the proposition. 

Recall that a subset A of a Riesz space X is order bounded, from 
above if there is a vector u (called an upper bound of A) that dom-
inates each element of A, that is, satisfying a < u for each a ∈ A. 
Sets order bounded from below are defined similarly. A box or an 
order interval, is any set of the form

Definition 1.2 A mapping f : X → E between Riesz spaces is 
o-bounded above (respectively, o-bounded ) on a subset V of X, if 
f(V ) is order bounded from above (respectively, if f(V ) ⊂ [a,b] for 
some box [a,b] of E).

We would have liked an o-convex function f : X → E to be order 
continuous, but this is not true even in the trivial case when E = R. 
Indeed, let X = C [0,1], we emphasize: There is no nonzero σ−order 
continuous linear functional on the Riesz space X. However for the 
topological continuity we have the following, which generalizes a 
similar result previously proved for the convex (real) functions.

Theorem 1.1 Let f : C → E be an o-convex function, where C is a 
convex subset of a normed space X, and E is a Banach lattice. If f 
is,o-bounded above on a neighborhood of an interior point of C, 
then f is continuous at that point.

Proof. We may assume that for some x ∈ C there exist an open ball 
V of radius η at 0 and some χ ∈ E satisfying x + V ⊂ C and f(y) < 
f(x) + χ for each y ∈ x+V . Fix ε > 0 and choose some 0 < α < 1 
so that α||χ|| < ε. From Proposition1.3, it follows that for each y ∈ 
x+αV we have |f (y)−f(x)| < αχ.

Now, the norm of E is lattice, then ||f (y) − f(x)|| < α||χ|| < ε.
	
Remark 1.1 We shall say that a vector e ∈ E is an order unit, if for 
each x ∈ E there exists λ > 0 such that x < λe. It is well known that, 
in an ordered topological vector space E, a positive vector e is an 
interior point of the cone E+ if and only if, the order interval [−e,e] 
is a neighborhood of zero [2, Lemma 2.5]. From the fact that every 

3. The (finite) pointwise supremum of a family of o-convex functions is
o-convex.

Proof. The first statement is trivial. For the second assertion, consider a
net {fi} of o-convex functions (finite) pointwise order convergent to f , that
is, for any finite part F of C, there is a net {χi} (with the same directed
set) satisfying χi ↓ 0 and |fi(z)− f(z)| � χi for each i and every z ∈ F . Let
x, y ∈ C and α ∈ [0, 1]. For F = {x, y, αx+ (1− α)y} we have:

f (αx+ (1− α)y) � χi + fi (αx+ (1− α)y)

� χi + αfi (x) + (1− α)fi (y)

� χi + α [f (x) + fi (x)− f (x)] + (1− α) [f (y) + fi (y)− f (y)]

� χi + αf(x) + (1− α)f(y) + χi

� [2χi + αf(x) + (1− α)f(y)] ↓ αf(x) + (1− α)f(y)

So, f is o-convex.
Now, let f1, f2, ..., fn are o-convex functions on a convex set C into a Banach

lattice E. For all x ∈ C, we ask f(x) =
∨

1�k�n

fk(x). It is easy to see that:

f (αx+ (1− α)y) =
∨

1�k�n

fk (αx+ (1− α)y)

�
∨

1�k�n

[αfk(x) + (1− α)fk(y)]

�
∨

1�k�n

[αfk(x)] +
∨

1�k�n

[(1− α)fk(y)]

� α
∨

1�k�n

fk(x) + (1− α)
∨

1�k�n

fk(y)

� αf(x) + (1− α)f(y).

So, f is o-convex, what completes the proof. �

Proposition 1.3 Let f : C → E be an o-convex function, where C is a
convex subset of a vector space and E is a Banach lattice. Let x belong to C
and suppose z satisfies x+ z ∈ C and x− z ∈ C. Let α ∈ [0, 1]. Then

|f (x+ αz)− f(x)| � α ([f (x+ z)− f(x)] ∨ [f (x− z)− f(x)])

3
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neighborhood of zero is absorbing set, it follows that the interior 
points of E+ are order units.

Provided that the interior Int(E+) of the cone E+ is non-empty, 
semicontinuity can be generalized to vector functions as follows.

Definition 1.3 A mapping f : X → E from a topological space X 
into a Banach lattice E is:

∗ Lower o-semicontinuous if for each c ∈ E the set
	 {x ∈ X : f(x) − c ∈ Int(E+)}
is open.
∗ Upper o-semicontinuous if for each c ∈ E the set
	 {X ∈ X: c − f(x) ∈ Int (E+)}
is open.

Obviously, a mapping f is lower o-semi continuous if and only −f 
is upper
O-semi continuous, and vice versa.
The classic example of a lower (resp. upper) o-semi continuous 
mapping is given by the lower (resp. upper) semi continuous real 
functions. Now assume that E is a Banach lattice with an order 
unit e. It is well known that the principal ideal Ee generated by e 
coincides with E which when provided with the norm ||x||∞ = inf 
{λ > 0: |x| < λe} becomes an AMspace with unit. Let f: R → R be 
a continuous real function. Then the mapping f: E → E defined by 
fe(x) = f (||x||∞) e is a lower and upper o-semi continuous mapping.

The E-valued mapping on a Banach lattice is a useful device, but 
it needs to be handled with care. For example, the complement of 
the set {x ∈ X: f(x) > c} in X is not at all the set {x ∈ X: f(x) < c}. 
However, the following lemma reduces this difficulty by reducing 
us to functions with real values.

Proposition 1.4 If E+ (respectively, E’+ ) is the positive cone of a 
Banach lattice E (respectively, of E0), then x /∈ E+ if and only if it 
exists ‘∈ E’+ such that ϕ(x) < 0.

Proof. The definition of the positive cone E’+ gives a sense of lem-
ma. Conversely, if x /∈ E+, since E+ is closed and convex, it fol-
lows from the HahnBanach theorem that there is a ϕ ∈ E’ with ϕ(x) 
< ϕ(y) for all y ∈ E+.

Thus ϕ(x) < 0 = f (0) and ϕ(x) < ϕ (ny) for all non-negative integer 
number n. So ϕ(x) < 0 ϕ(y) for all y ∈ E+. 

As a first application of the above definitions, we have the follow-
ing result.

Theorem 1.2 For an o-convex mapping f: C → E on an open con-
vex subset of a topological vector space X into a Banach lattice E, 
the following statements are equivalent.
1. f is continuous on C.
2. f is upper o-semicontinuous on C.

3. f is o-bounded above on a neighborhood of each point in C.
4. f is o-bounded above on a neighborhood of some point in C.
5. f is continuous at some point in C.

Proof. (1) ⇒ (2) is obvious.
(2) ⇒ (3); Assume that f is upper o-semicontinuous. Let x ∈ C and 
a ∈ Int(E+) − {0}. Then the set {y ∈ E: f (x) + a − f(y) ∈ Int(E+)} is 
an open neighborhood of x on which f is o-bounded above.
(3) ⇒ (4) Obvious.
(4) ⇒ (5) This is Theorem 1.1.
(5) ⇒ (1) Suppose f is continuous at the point x, and let y be any 
other point in C. Since C is open and convex, therefore C does not 
contain extreme points. This implies that there exist z ∈ C and 0 < 
λ < 1 such that y = λx+(1−λ)z. Fix ε > 0 and choose some circled 
neighborhood V of zero so that  for all v ∈ V . We claim that, ||f(y) 
−f(y+v)|| < ε for all v ∈ λV . Indeed, let v ∈ V , Then y + λv = λ(x + 
v) + (1 − λ)z ∈ C and the o-convexity of f implies

and
	

Thus

and

This shows that

Then

So, f is continuous at y.

2. Order Lipschitzian Vector-Valued Functions
Lipchitzian and contractive real functions have important prop-
erties that we want to extend to infinite dimensional analysis. For 
this purpose, we adopt the following definition.

Definition 2.1 A mapping f from a subset B of a normed tvs (X,||||) 
to a Banach lattice E is order Lipschitz continuous on B if there 
exists e ∈ E+ such that for every y,z ∈ B

		  |f(y) − f (z)| 6 ||y − z||e

If moreover ||e|| < 1 then f is called an order contraction.

(3) ⇒ (4) Obvious.
(4) ⇒ (5) This is Theorem 1.1.
(5) ⇒ (1) Suppose f is continuous at the point x, and let y be any other
point in C. Since C is open and convex, therefore C does not contain extreme
points. This implies that there exist z ∈ C and 0 < λ < 1 such that y =
λx+ (1− λ)z. Fix ε > 0 and choose some circled neighborhood V of zero so
that ||f(x)−f(x+v)|| < ε

λ
for all v ∈ V . We claim that, ||f(y)−f(y+v)|| < ε

for all v ∈ λV . Indeed, let v ∈ V , Then y + λv = λ (x+ v) + (1 − λ)z ∈ C
and the o-convexity of f implies

f (y + λv) = f (λ (x+ v) + (1− λ)z)

� λf (x+ v) + (1− λ)f(z)

and

f (y) = f (λx+ (1− λ)z)

� λf (x) + (1− λ)f(z)

Thus

f (y + λv)− f (y) � λ (f ((x+ v)− f(x)))

� λ|f ((x+ v)− f(x)) | (1.6)

and

f (y)− f (y + λv) � λ (f(x)− f ((x+ v)))

� λ|f ((x+ v)− f(x)) | (1.7)

This shows that

|f (y)− f (y + λv) | � λ|f ((x+ v)− f(x)) | (1.8)

Then

||f (y)− f (y + λv) || � λ||f ((x+ v)− f(x)) ||
< ε

So, f is continuous at y. �

7
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The following gives examples of order Lipschitz continuous map-
pings.

Theorem 2.1 Let f: C → E be o-convex positive mapping from a 
convex subset C of a normed tvs (X, ||||) to a Banach lattice E. If f 
is continuous at the interior point x of C, then f is order Lipschitz 
continuous on a neighborhood of x. That is, there exists δ > 0 and 
e ∈ E+, such that Bδ(x) ⊂ C and for y,z ∈ Bδ(x), we have

Proof. Since f is continuous at x, it follows from Theorem1.3 that 
there exists e ∈ E+ and δ > 0 satisfying B2δ(x) ⊂ C and f(y)     e. So, 
w,z ∈ B2δ(x) implies 0     f(w)      e and −e     −f(z)     0. By addition, 
we achieve |f (w) −f (z)|    e, for all w,z B2δ. Let y,z ∈ B2δ(x) and α = 
||y−z||. Then		              belongs to B2δ and we have 
 

Therefore
 

Subtracting f (z) from each side gives
 

Switching the roles of y and z allows us to conclude

		  |f(y) − f (z)|     ||y − z||e

A net {xα} in a Riesz space E is order convergent to some x ∈ E, 
written {xα} →o x , if there is a net {qα} (with the same directed 
set) satisfying {Qα} ↓ 0 and |xα − x| 6 qα for each α. A function f: 
E → F between two Riesz spaces is order uniformly continuous if 
{yα− zα} →o 0 in E implies {f(yα) − f(zα)} →o 0 in F.

Proposition 2.1 Let f;X → E be an order Lipschitz continuous 
mapping between banach latties. If the lattice norm on X is order 
continuous then f is order uniformly continuous.

Proof. Obvious.	
Now we will generalize, to convex order applications, one of the 
important themes of the analysis, namely the extreme points of 
a convex functions on a compact convex set. Let C be a convex 
subset of a vector space X. Recall that an extreme subset of C, is a 
nonempty subset F of C with the property that if x belongs to F it 
cannot be written as a convex combination of points of C outside 
F. A point x is an extreme point of C if the singleton {x} is an 
extreme set.

Proposition 2.2 Let f : C → E be o-convex mapping from a convex 
subset C of a normed tvs (X,||||) to a Banach lattice E. The set of 
maximizers of f is either an extreme set or is empty.

Proof. Suppose f achieves a maximum on C; that is, f satisfies the 
identitie sup{f(x) : x ∈ C} = f(e) for some e ∈ C. Put M = {x ∈ C 
: f(x) = f(e)}. Suppose that x = αy + (1 − α)z ∈ M,0 < α < 1 and y,z 
∈ C. If y /∈ M then f(y) < f(e), so

a contradiction. Hence y,z ∈ M, so M is an extreme subset of C.
	
Recall that the order     of a Banach lattice E is continuous if      is 
a closed subset of E×E. Let us say that      is upper semicontinuous 
if {x ∈ E : y     x} is closed for each y.

Theorem 2.2 Let f : K → E be a continuous vector-valued func-
tion from a compact space into a Banach lattice with a continuous 
order. Suppose that f(K) satisfies the condition (C): c ∨ d belongs 
to f(K) for all c,d ∈ f(K), then f attains a minimum value, and the 
nonempty set of minimizers is compact. Similarly, a continuous 
vector-valued function on a compact set attains a maximum value, 
provided that f(K) satisfies the condition (C’): c∧d belongs to f(K) 
for all c,d ∈ f(K) and the nonempty set of maximizers is compact.

Proof. Let K be a compact of a normed vector space X and let f 
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Switching the roles of y and z allows us to conclude

|f(y)− f(z)| � ||y − z||e

�
A net {xα} in a Riesz space E is order convergent to some x ∈ E, written

{xα}
o−→ x , if there is a net {qα} (with the same directed set) satisfying

{qα} ↓ 0 and |xα − x| � qα for each α. A function f : E → F between two
Riesz spaces is order uniformly continuous if {yα − zα}

o−→ 0 in E implies
{f(yα)− f(zα)}

o−→ 0 in F .

Proposition 2.1 Let f ;X → E be an order Lipschitz continuous mapping
between banach latties. If the lattice norm on X is order continuous then f
is order uniformly continuous.

Proof. Obvious. �
Now we will generalize, to convex order applications, one of the important

themes of the analysis, namely the extreme points of a convex functions on
a compact convex set. Let C be a convex subset of a vector space X. Recall
that an extreme subset of C, is a nonempty subset F of C with the property
that if x belongs to F it cannot be written as a convex combination of points
of C outside F . A point x is an extreme point of C if the singleton {x} is an
extreme set.

Proposition 2.2 Let f : C → E be o-convex mapping from a convex subset
C of a normed tvs (X, || ||) to a Banach lattice E. The set of maximizers of
f is either an extreme set or is empty.

Proof. Suppose f achieves a maximum on C; that is, f satisfies the identitie
sup {f(x) : x ∈ C} = f(e) for some e ∈ C. Put M = {x ∈ C : f(x) = f(e)}.
Suppose that x = αy + (1 − α)z ∈ M, 0 < α < 1 and y, z ∈ C. If y /∈ M
then f(y) < f(e), so

f(e) = f(x) = f (αy + (1− α)z)

� αf(y) + (1− α)f(z)

< αf(e) + (1− α)f(e) = f(e)

a contradiction. Hence y, z ∈ M, so M is an extreme subset of C. �
Recall that the order � of a Banach lattice E is continuous if � is a closed

subset of E×E. Let us say that � is upper semicontinuous if {x ∈ E : y � x}
is closed for each y.
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Theorem 2.2 Let f : K → E be a continuous vector-valued function from
a compact space into a Banach lattice with a continuous order. Suppose that
f(K) satisfies the condition (C): c ∨ d belongs to f(K) for all c, d ∈ f(K),
then f attains a minimum value, and the nonempty set of minimizers is
compact. Similarly, a continuous vector-valued function on a compact set
attains a maximum value, provided that f(K) satisfies the condition (C’):
c∧d belongs to f(K) for all c, d ∈ f(K) and the nonempty set of maximizers
is compact.

Proof. Let K be a compact of a normed vector space X and let f : K → E
be a continuous mapping from K to a Banach lattice E. For each c ∈ f(K),
put Fc = {x ∈ K : f(x) � c}. It follows from the continuity of f and of the
order that the nonempty set Fc is closed ( c = f(x) implis x ∈ Fc). Moreover,
the family F = {Fc : c ∈ f(K)} has the finite intersection property. In deed,
let Fc1 , Fc2 , ... Fcn be a finite familly in F . Since F (K) satisfies condition (C)

so, c0 =
i=n∨
i=1

ci ∈ f(K). For all x ∈ Fc0 and 1 � i � n we have

0 � f(x)− c0 � f(x)− ci

so, x ∈
⋂

1�i�n

Fci and Fc0 ⊂
⋂

1�i�n

Fci . Since K is compact, [Aliprantis,

Theorem.2.31] implies that the set of minimizers
⋂

c∈f(K)

Fc is compact and

nonempty. �
We realize that, in its real context, the assumptions (C) and (C ′) in The-

orem 2.2 are ensured from the fact that the order in R is total.

A complete lattice is a lattice in which every nonempty subset that is or-
der bounded from above has a supremum. (Equivalently, if every nonempty
subset that is bounded from below has an infimum).

Now consider a vector form of the Contraction Mapping Theorem.

Theorem 2.3 Let B be a closed subset of a Banach Lattice E and let f :
B → B be an order contraction mapping. Then f has a unique fixed point
x. Moreover, for any choice x0 in X, the sequence defined recursively by
xn+1 = f(xn), n = 0, 1, 2, ..., converges to the fixed point and ||xn − x|| �
||e||n||x0 − x|| for each n.
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let f : B → B be an order contraction mapping. Then f has a unique 
fixed point x. Moreover, for any choice x0 in X, the sequence de-
fined recursively by xn+1 = f(xn), n = 0,1,2,..., converges to the 
fixed point and ||xn − x|| < ||e||n||x0 − x|| for each n.

Proof. Let e ∈ E+ such that ||e|| < 1 and |f(y)−f(z)|      ||y −z||e, for all 
y, z ∈ B. If f (x) = x and f (y) = y then |x−y| = |f (x)−f (x)||      ||x−
y||e. Since the norm of E is lattice, we have ||x − y||     ||x − y||||e|| 
and hence ||x − y|| = 0. Thus f can have at most one fixed point.

Now, if x0 is chosen in B then the formula xn+1 = f (xn), n = 0,1,2,... 
defines inductively the sequence (xn) which satisfies: |xn+1 − xn|                        	
      ||xn − xn−1||e, for every n > 1. The lattice property verified by 
the norm of E implies that ||xn+1 − xn||     ||xn − xn−1||||e|| and by 
induction, we see that for all n > 1, ||xn+1 − xn||    ||x1 − x0||||e||n. 
Hence, for n > m the triangle inequality yields.
 

This implies that (xn) is a Cauchy sequence.	

Since B is closed in the complete space E then, (xn) → x ∈ B. 
obviously, f is continuous, and: 

so x is the fixed point of f. 
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2 Order Lipschitzian vector-valued functions.

Lipchitzian and contractive real functions have important properties that we
want to extend to infinite dimensional analysis. For this purpose, we adopt
the following definition.

Definition 2.1 A mapping f from a subset B of a normed tvs (X, || ||) to a
Banach lattice E is order Lipschitz continuous on B if there exists e ∈ E+

such that for every y, z ∈ B

|f(y)− f(z)| � ||y − z||e

If moreover ||e|| < 1 then f is called an order contraction.

The following gives examples of order Lipschitz continuous mappings.

Theorem 2.1 Let f : C → E be o-convex positive mapping from a convex
subset C of a normed tvs (X, || ||) to a Banach lattice E. If f is continuous
at the interior point x of C, then f is order Lipschitz continuous on a neigh-
borhood of x. That is, there exists δ > 0 and e ∈ E+, such that Bδ(x) ⊂ C
and for y, z ∈ Bδ(x), we have

|f(y)− f(z)| � ||y − z||e

Proof. Since f is continuous at x, it follows from Theorem1.3 that there
exists e ∈ E+ and δ > 0 satisfying B2δ(x) ⊂ C and f(y) � e. So, w, z ∈
B2δ(x) implies 0 � f(w) � e and −e � −f(z) � 0. By addition, we achieve
|f(w)−f(z)| � e, for all w, z ∈ B2δ. Let y, z ∈ B2δ(x) and α = ||y−z||. Then
w = y + δ

α
(y + z) belongs to B2δ and we have y = α

α+δ
w + δ

α+δ
z. Therefore

f (y) �
α

α + δ
f (w) +

δ

α + δ
f (z)

Subtracting f(z) from each side gives

f (y)− f(z) �
α

α + δ
[f (w)− f (z)]

�
α

α + δ
e

� αe
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α + δ
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� αe
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Proof. Let e ∈ E+ such that ||e|| < 1 and |f(y)− f(z)| � ||y− z||e, for all
y, z ∈ B. If f (x) = x and f (y) = y then |x−y| = |f (x)−f (x) || � ||x−y||e.
Since the norm of E is lattice, we have ||x − y|| � ||x − y|| ||e|| and hence
||x− y|| = 0. Thus f can have at most one fixed point.
Now, if x0 is chosen in B then the formula xn+1 = f (xn), n = 0, 1, 2, ... defines
inductively the sequence (xn) which satisfies: |xn+1 − xn| � ||xn − xn−1||e,
for every n � 1. The lattice property verified by the norm of E implies that
||xn+1 − xn|| � ||xn − xn−1||||e|| and by induction, we see that for all n � 1,
||xn+1 − xn|| � ||x1 − x0||||e||n. Hence, for n > m the triangle inequality
yields

||xm − xn|| �
n∑

k=m+1

||xk − xk−1||

� ||x1 − x0||
n∑

k=m+1

||e||k

� ||x1 − x0||
||e||m

1− ||e||

This implies that (xn) is a Cauchy sequence. Since B is closed in the
complete space E then, (xn) → x ∈ B. Obviously, f is continuous, and:
x = lim

n→∞
xn+1 = lim

n→∞
f (xn) = f (x), so x is the fixed point of f .
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