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1. Introduction 
In the given context, a mathematical model called PSFFA is 
normally used to simulatively, to solve the state variable’s a non-
linear differential equation in a queue. The PSFFA method utilizes 
steady state queueing relationships to determine the structure 
of the fluid flow differential equation. This approach is accurate 
and offers advantages such as versatility, simplicity in simulating 
queueing systems, and computational efficiency. Additionally, 
these techniques have the potential to serve as a fundamental 
mathematical framework for developing the dynamic network’s 
controlability [1-6].

Let μ(t) reads as the time-dependent mean service rate and λ(t) 
denotes the time-dependent mean arrival rate. 

As the system's ensemble average number at time t, we define x(t) 
as the state variable, with temporal change denoted by, 
Let fin (t) and fout (t) stand for, respectively, the time-dependent the 
system’s flow in and out. fin (t), fout (t)  and x(t) are equationally 
related as:

For an infinite queue waiting space, we have

Thus, (1.1) rewrites to:

In (1.4), approaching a steady state zone, implies 𝑥.(𝑡) = 0, that is

Additonally, supposing the numerical invertibility of 𝐺1(𝜌),

Consequently,

The associated 𝐺1 functional for 𝑀/𝐸𝑘 /1 queue (c.f., [1]) reads:

Therefore, the PSFFA model of the time varying 𝑀/𝐸𝑘 /1 system 
with 𝑘 set of phases is determined
by:

with 𝜆(𝑡) = 𝐴 + 𝐵𝑠𝑖𝑛(𝑤𝑡 + 𝐶)

The 𝑀/𝐸𝑘 /1 queue based on a model where patients arrive at 
a service facility following a Poisson process and are served in 
phases with '𝑘' services available at a rate of 𝑘𝛼 each. The system 
operates on a first-come-first-served basis, with a server that 
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can handle a specific range of patients at a time, following an 
exponential service time distribution with rate 𝜇. 

Additionally, an ambulance in the system has a random idle policy 

based on the number of patients in the queue, and limited seats 
are available for transporting patients to the hospital in case of 
accidents, as in Fig.1(c.f., [7]).
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2. Preliminary Theorem (PT) [3]
Let f be a function that is defined and differentiable on an open interval (c,d).
If 𝑓′(𝑥) > 0 (< 0) for all 𝑥 ∈ (𝑐, 𝑑) ,then f is increasing (decreasing)on (𝑐, 𝑑) (1.10)

3. Upper and lower bounds of 𝒙(𝒕) (c.f., (1.9))
Theorem 1 𝑥(𝑡) of the non-stationary 𝑀/𝐸𝑘/1 queueing system satisfies the following
inequality:

Proof
We have

2 Upper and lower  bounds of 𝒙𝒙(𝒕𝒕) (c.f., (1.9)) 

Theorem 1 𝑥𝑥(𝑡𝑡) of the non-stationary 𝑀𝑀/𝐸𝐸𝑘𝑘/1  queueing system  satisfies the following 
inequality:  

(1 + 1
𝑘𝑘) 𝜌𝜌(𝑡𝑡)

2 < 𝑥𝑥(𝑡𝑡) < 𝑘𝑘𝜌𝜌(𝑡𝑡)
1−𝑘𝑘𝜌𝜌(𝑡𝑡),  𝜌𝜌(𝑡𝑡) ∈  (0,1)    (2.1)                                                                                  

Proof  

We have 

𝑥𝑥.(𝑡𝑡) =   −𝜇𝜇(𝑘𝑘(𝑥𝑥+1)
𝑘𝑘−1 − √(𝑘𝑘2+2𝑘𝑘𝑥𝑥+𝑘𝑘2𝑥𝑥2)

𝑘𝑘−1 ) +  𝜆𝜆(𝑡𝑡)                                                                          (c. f.,    (1.9)) 

By PT,  𝑥𝑥(𝑡𝑡) is increasing ⟺ 𝑥𝑥.(𝑡𝑡) >  0. Consequently 

−𝜇𝜇(𝑘𝑘(𝑥𝑥+1)
𝑘𝑘−1 − √(𝑘𝑘2+2𝑘𝑘𝑥𝑥+𝑘𝑘2𝑥𝑥2)

𝑘𝑘−1 ) +  𝜆𝜆(𝑡𝑡)   >  0                                                                           (2.2) 

Hence, it follows that: 

 𝜌𝜌(𝑡𝑡) = 𝜆𝜆(𝑡𝑡)
𝜇𝜇   >  (𝑘𝑘(𝑥𝑥+1)

𝑘𝑘−1 − √(𝑘𝑘2+2𝑘𝑘𝑥𝑥+𝑘𝑘2𝑥𝑥2)
𝑘𝑘−1 ) =  2(𝑘𝑘−1)𝑥𝑥

(𝑘𝑘−1)(𝑘𝑘(𝑥𝑥+1)+√(𝑘𝑘2+2𝑘𝑘𝑥𝑥+𝑘𝑘2𝑥𝑥2) =
2𝑥𝑥

(𝑘𝑘(𝑥𝑥+1)+√(𝑘𝑘2+2𝑘𝑘𝑥𝑥+𝑘𝑘2𝑥𝑥2)  > 𝑥𝑥
𝑘𝑘(𝑥𝑥+1)        (2.3)                                                             

Therefore,  

𝑘𝑘𝜌𝜌(𝑡𝑡)[1 + 𝑥𝑥(𝑡𝑡)]  >  𝑥𝑥(𝑡𝑡)                                                                                                     (2.4) 

𝑘𝑘𝜌𝜌(𝑡𝑡)  > (1 − 𝑘𝑘𝜌𝜌(𝑡𝑡)) 𝑥𝑥(𝑡𝑡)                                                                                                     (2.5) 

(2.5) implies: 

𝑥𝑥(𝑡𝑡) < 𝑘𝑘𝜌𝜌(𝑡𝑡)
1−𝑘𝑘𝜌𝜌(𝑡𝑡)                                                           (c.f., (2.1)) 

By the Preliminary Theorem (PT),  𝑥𝑥(𝑡𝑡) is decreasing if and only if 𝑥𝑥.(𝑡𝑡) >  0. Consequently 

 

−𝜇𝜇(𝑘𝑘(𝑥𝑥+1)
𝑘𝑘−1 − √(𝑘𝑘2+2𝑘𝑘𝑥𝑥+𝑘𝑘2𝑥𝑥2)

𝑘𝑘−1 ) +  𝜆𝜆(𝑡𝑡)   <  0                                                                           (2.6) 

Hence, it follows that: 

 𝜌𝜌(𝑡𝑡) = 𝜆𝜆(𝑡𝑡)
𝜇𝜇   < ( 𝑘𝑘(𝑥𝑥+1)

𝑘𝑘−1 − √(𝑘𝑘2+2𝑘𝑘𝑥𝑥+𝑘𝑘2𝑥𝑥2)
𝑘𝑘−1 ) =  2(𝑘𝑘−1)𝑥𝑥

(𝑘𝑘−1)(𝑘𝑘(𝑥𝑥+1)+√(𝑘𝑘2+2𝑘𝑘𝑥𝑥+𝑘𝑘2𝑥𝑥2) < 2𝑘𝑘𝑥𝑥
𝑘𝑘+1        

(2.7)                     

Therefore,  

 (1 + 1
𝑘𝑘) 𝜌𝜌(𝑡𝑡)

2 <  𝑥𝑥(𝑡𝑡)                                                                                                     (c.f., (2.1)) 

 

Hence, the proof follows. 

It is noted by (2.1), that at the instability phase (𝜌𝜌(𝑡𝑡) → 1) 

2 Upper and lower  bounds of 𝒙𝒙(𝒕𝒕) (c.f., (1.9)) 

Theorem 1 𝑥𝑥(𝑡𝑡) of the non-stationary 𝑀𝑀/𝐸𝐸𝑘𝑘/1  queueing system  satisfies the following 
inequality:  

(1 + 1
𝑘𝑘) 𝜌𝜌(𝑡𝑡)

2 < 𝑥𝑥(𝑡𝑡) < 𝑘𝑘𝜌𝜌(𝑡𝑡)
1−𝑘𝑘𝜌𝜌(𝑡𝑡),  𝜌𝜌(𝑡𝑡) ∈  (0,1)    (2.1)                                                                                  

Proof  

We have 

𝑥𝑥.(𝑡𝑡) =   −𝜇𝜇(𝑘𝑘(𝑥𝑥+1)
𝑘𝑘−1 − √(𝑘𝑘2+2𝑘𝑘𝑥𝑥+𝑘𝑘2𝑥𝑥2)

𝑘𝑘−1 ) +  𝜆𝜆(𝑡𝑡)                                                                          (c. f.,    (1.9)) 

By PT,  𝑥𝑥(𝑡𝑡) is increasing ⟺ 𝑥𝑥.(𝑡𝑡) >  0. Consequently 

−𝜇𝜇(𝑘𝑘(𝑥𝑥+1)
𝑘𝑘−1 − √(𝑘𝑘2+2𝑘𝑘𝑥𝑥+𝑘𝑘2𝑥𝑥2)

𝑘𝑘−1 ) +  𝜆𝜆(𝑡𝑡)   >  0                                                                           (2.2) 

Hence, it follows that: 

 𝜌𝜌(𝑡𝑡) = 𝜆𝜆(𝑡𝑡)
𝜇𝜇   >  (𝑘𝑘(𝑥𝑥+1)

𝑘𝑘−1 − √(𝑘𝑘2+2𝑘𝑘𝑥𝑥+𝑘𝑘2𝑥𝑥2)
𝑘𝑘−1 ) =  2(𝑘𝑘−1)𝑥𝑥

(𝑘𝑘−1)(𝑘𝑘(𝑥𝑥+1)+√(𝑘𝑘2+2𝑘𝑘𝑥𝑥+𝑘𝑘2𝑥𝑥2) =
2𝑥𝑥

(𝑘𝑘(𝑥𝑥+1)+√(𝑘𝑘2+2𝑘𝑘𝑥𝑥+𝑘𝑘2𝑥𝑥2)  > 𝑥𝑥
𝑘𝑘(𝑥𝑥+1)        (2.3)                                                             

Therefore,  

𝑘𝑘𝜌𝜌(𝑡𝑡)[1 + 𝑥𝑥(𝑡𝑡)]  >  𝑥𝑥(𝑡𝑡)                                                                                                     (2.4) 

𝑘𝑘𝜌𝜌(𝑡𝑡)  > (1 − 𝑘𝑘𝜌𝜌(𝑡𝑡)) 𝑥𝑥(𝑡𝑡)                                                                                                     (2.5) 

(2.5) implies: 

𝑥𝑥(𝑡𝑡) < 𝑘𝑘𝜌𝜌(𝑡𝑡)
1−𝑘𝑘𝜌𝜌(𝑡𝑡)                                                           (c.f., (2.1)) 

By the Preliminary Theorem (PT),  𝑥𝑥(𝑡𝑡) is decreasing if and only if 𝑥𝑥.(𝑡𝑡) >  0. Consequently 

 

−𝜇𝜇(𝑘𝑘(𝑥𝑥+1)
𝑘𝑘−1 − √(𝑘𝑘2+2𝑘𝑘𝑥𝑥+𝑘𝑘2𝑥𝑥2)

𝑘𝑘−1 ) +  𝜆𝜆(𝑡𝑡)   <  0                                                                           (2.6) 

Hence, it follows that: 

 𝜌𝜌(𝑡𝑡) = 𝜆𝜆(𝑡𝑡)
𝜇𝜇   < ( 𝑘𝑘(𝑥𝑥+1)

𝑘𝑘−1 − √(𝑘𝑘2+2𝑘𝑘𝑥𝑥+𝑘𝑘2𝑥𝑥2)
𝑘𝑘−1 ) =  2(𝑘𝑘−1)𝑥𝑥

(𝑘𝑘−1)(𝑘𝑘(𝑥𝑥+1)+√(𝑘𝑘2+2𝑘𝑘𝑥𝑥+𝑘𝑘2𝑥𝑥2) < 2𝑘𝑘𝑥𝑥
𝑘𝑘+1        

(2.7)                     

Therefore,  

 (1 + 1
𝑘𝑘) 𝜌𝜌(𝑡𝑡)

2 <  𝑥𝑥(𝑡𝑡)                                                                                                     (c.f., (2.1)) 

 

Hence, the proof follows. 

It is noted by (2.1), that at the instability phase (𝜌𝜌(𝑡𝑡) → 1) 

2 Upper and lower  bounds of 𝒙𝒙(𝒕𝒕) (c.f., (1.9)) 

Theorem 1 𝑥𝑥(𝑡𝑡) of the non-stationary 𝑀𝑀/𝐸𝐸𝑘𝑘/1  queueing system  satisfies the following 
inequality:  

(1 + 1
𝑘𝑘) 𝜌𝜌(𝑡𝑡)

2 < 𝑥𝑥(𝑡𝑡) < 𝑘𝑘𝜌𝜌(𝑡𝑡)
1−𝑘𝑘𝜌𝜌(𝑡𝑡),  𝜌𝜌(𝑡𝑡) ∈  (0,1)    (2.1)                                                                                  

Proof  

We have 

𝑥𝑥.(𝑡𝑡) =   −𝜇𝜇(𝑘𝑘(𝑥𝑥+1)
𝑘𝑘−1 − √(𝑘𝑘2+2𝑘𝑘𝑥𝑥+𝑘𝑘2𝑥𝑥2)

𝑘𝑘−1 ) +  𝜆𝜆(𝑡𝑡)                                                                          (c. f.,    (1.9)) 

By PT,  𝑥𝑥(𝑡𝑡) is increasing ⟺ 𝑥𝑥.(𝑡𝑡) >  0. Consequently 

−𝜇𝜇(𝑘𝑘(𝑥𝑥+1)
𝑘𝑘−1 − √(𝑘𝑘2+2𝑘𝑘𝑥𝑥+𝑘𝑘2𝑥𝑥2)

𝑘𝑘−1 ) +  𝜆𝜆(𝑡𝑡)   >  0                                                                           (2.2) 

Hence, it follows that: 

 𝜌𝜌(𝑡𝑡) = 𝜆𝜆(𝑡𝑡)
𝜇𝜇   >  (𝑘𝑘(𝑥𝑥+1)

𝑘𝑘−1 − √(𝑘𝑘2+2𝑘𝑘𝑥𝑥+𝑘𝑘2𝑥𝑥2)
𝑘𝑘−1 ) =  2(𝑘𝑘−1)𝑥𝑥

(𝑘𝑘−1)(𝑘𝑘(𝑥𝑥+1)+√(𝑘𝑘2+2𝑘𝑘𝑥𝑥+𝑘𝑘2𝑥𝑥2) =
2𝑥𝑥

(𝑘𝑘(𝑥𝑥+1)+√(𝑘𝑘2+2𝑘𝑘𝑥𝑥+𝑘𝑘2𝑥𝑥2)  > 𝑥𝑥
𝑘𝑘(𝑥𝑥+1)        (2.3)                                                             

Therefore,  

𝑘𝑘𝜌𝜌(𝑡𝑡)[1 + 𝑥𝑥(𝑡𝑡)]  >  𝑥𝑥(𝑡𝑡)                                                                                                     (2.4) 

𝑘𝑘𝜌𝜌(𝑡𝑡)  > (1 − 𝑘𝑘𝜌𝜌(𝑡𝑡)) 𝑥𝑥(𝑡𝑡)                                                                                                     (2.5) 

(2.5) implies: 

𝑥𝑥(𝑡𝑡) < 𝑘𝑘𝜌𝜌(𝑡𝑡)
1−𝑘𝑘𝜌𝜌(𝑡𝑡)                                                           (c.f., (2.1)) 

By the Preliminary Theorem (PT),  𝑥𝑥(𝑡𝑡) is decreasing if and only if 𝑥𝑥.(𝑡𝑡) >  0. Consequently 

 

−𝜇𝜇(𝑘𝑘(𝑥𝑥+1)
𝑘𝑘−1 − √(𝑘𝑘2+2𝑘𝑘𝑥𝑥+𝑘𝑘2𝑥𝑥2)

𝑘𝑘−1 ) +  𝜆𝜆(𝑡𝑡)   <  0                                                                           (2.6) 

Hence, it follows that: 

 𝜌𝜌(𝑡𝑡) = 𝜆𝜆(𝑡𝑡)
𝜇𝜇   < ( 𝑘𝑘(𝑥𝑥+1)

𝑘𝑘−1 − √(𝑘𝑘2+2𝑘𝑘𝑥𝑥+𝑘𝑘2𝑥𝑥2)
𝑘𝑘−1 ) =  2(𝑘𝑘−1)𝑥𝑥

(𝑘𝑘−1)(𝑘𝑘(𝑥𝑥+1)+√(𝑘𝑘2+2𝑘𝑘𝑥𝑥+𝑘𝑘2𝑥𝑥2) < 2𝑘𝑘𝑥𝑥
𝑘𝑘+1        

(2.7)                     

Therefore,  

 (1 + 1
𝑘𝑘) 𝜌𝜌(𝑡𝑡)

2 <  𝑥𝑥(𝑡𝑡)                                                                                                     (c.f., (2.1)) 

 

Hence, the proof follows. 

It is noted by (2.1), that at the instability phase (𝜌𝜌(𝑡𝑡) → 1) 

2 Upper and lower  bounds of 𝒙𝒙(𝒕𝒕) (c.f., (1.9)) 

Theorem 1 𝑥𝑥(𝑡𝑡) of the non-stationary 𝑀𝑀/𝐸𝐸𝑘𝑘/1  queueing system  satisfies the following 
inequality:  

(1 + 1
𝑘𝑘) 𝜌𝜌(𝑡𝑡)

2 < 𝑥𝑥(𝑡𝑡) < 𝑘𝑘𝜌𝜌(𝑡𝑡)
1−𝑘𝑘𝜌𝜌(𝑡𝑡),  𝜌𝜌(𝑡𝑡) ∈  (0,1)    (2.1)                                                                                  

Proof  

We have 

𝑥𝑥.(𝑡𝑡) =   −𝜇𝜇(𝑘𝑘(𝑥𝑥+1)
𝑘𝑘−1 − √(𝑘𝑘2+2𝑘𝑘𝑥𝑥+𝑘𝑘2𝑥𝑥2)

𝑘𝑘−1 ) +  𝜆𝜆(𝑡𝑡)                                                                          (c. f.,    (1.9)) 

By PT,  𝑥𝑥(𝑡𝑡) is increasing ⟺ 𝑥𝑥.(𝑡𝑡) >  0. Consequently 

−𝜇𝜇(𝑘𝑘(𝑥𝑥+1)
𝑘𝑘−1 − √(𝑘𝑘2+2𝑘𝑘𝑥𝑥+𝑘𝑘2𝑥𝑥2)

𝑘𝑘−1 ) +  𝜆𝜆(𝑡𝑡)   >  0                                                                           (2.2) 

Hence, it follows that: 

 𝜌𝜌(𝑡𝑡) = 𝜆𝜆(𝑡𝑡)
𝜇𝜇   >  (𝑘𝑘(𝑥𝑥+1)

𝑘𝑘−1 − √(𝑘𝑘2+2𝑘𝑘𝑥𝑥+𝑘𝑘2𝑥𝑥2)
𝑘𝑘−1 ) =  2(𝑘𝑘−1)𝑥𝑥

(𝑘𝑘−1)(𝑘𝑘(𝑥𝑥+1)+√(𝑘𝑘2+2𝑘𝑘𝑥𝑥+𝑘𝑘2𝑥𝑥2) =
2𝑥𝑥

(𝑘𝑘(𝑥𝑥+1)+√(𝑘𝑘2+2𝑘𝑘𝑥𝑥+𝑘𝑘2𝑥𝑥2)  > 𝑥𝑥
𝑘𝑘(𝑥𝑥+1)        (2.3)                                                             

Therefore,  

𝑘𝑘𝜌𝜌(𝑡𝑡)[1 + 𝑥𝑥(𝑡𝑡)]  >  𝑥𝑥(𝑡𝑡)                                                                                                     (2.4) 

𝑘𝑘𝜌𝜌(𝑡𝑡)  > (1 − 𝑘𝑘𝜌𝜌(𝑡𝑡)) 𝑥𝑥(𝑡𝑡)                                                                                                     (2.5) 

(2.5) implies: 

𝑥𝑥(𝑡𝑡) < 𝑘𝑘𝜌𝜌(𝑡𝑡)
1−𝑘𝑘𝜌𝜌(𝑡𝑡)                                                           (c.f., (2.1)) 

By the Preliminary Theorem (PT),  𝑥𝑥(𝑡𝑡) is decreasing if and only if 𝑥𝑥.(𝑡𝑡) >  0. Consequently 

 

−𝜇𝜇(𝑘𝑘(𝑥𝑥+1)
𝑘𝑘−1 − √(𝑘𝑘2+2𝑘𝑘𝑥𝑥+𝑘𝑘2𝑥𝑥2)

𝑘𝑘−1 ) +  𝜆𝜆(𝑡𝑡)   <  0                                                                           (2.6) 

Hence, it follows that: 

 𝜌𝜌(𝑡𝑡) = 𝜆𝜆(𝑡𝑡)
𝜇𝜇   < ( 𝑘𝑘(𝑥𝑥+1)

𝑘𝑘−1 − √(𝑘𝑘2+2𝑘𝑘𝑥𝑥+𝑘𝑘2𝑥𝑥2)
𝑘𝑘−1 ) =  2(𝑘𝑘−1)𝑥𝑥

(𝑘𝑘−1)(𝑘𝑘(𝑥𝑥+1)+√(𝑘𝑘2+2𝑘𝑘𝑥𝑥+𝑘𝑘2𝑥𝑥2) < 2𝑘𝑘𝑥𝑥
𝑘𝑘+1        

(2.7)                     

Therefore,  

 (1 + 1
𝑘𝑘) 𝜌𝜌(𝑡𝑡)

2 <  𝑥𝑥(𝑡𝑡)                                                                                                     (c.f., (2.1)) 

 

Hence, the proof follows. 

It is noted by (2.1), that at the instability phase (𝜌𝜌(𝑡𝑡) → 1) 

By PT, 𝑥(𝑡) is increasing ⟺ 𝑥.(𝑡) > 0. Consequently

Hence, it follows that:

2 Upper and lower  bounds of 𝒙𝒙(𝒕𝒕) (c.f., (1.9)) 

Theorem 1 𝑥𝑥(𝑡𝑡) of the non-stationary 𝑀𝑀/𝐸𝐸𝑘𝑘/1  queueing system  satisfies the following 
inequality:  

(1 + 1
𝑘𝑘) 𝜌𝜌(𝑡𝑡)

2 < 𝑥𝑥(𝑡𝑡) < 𝑘𝑘𝜌𝜌(𝑡𝑡)
1−𝑘𝑘𝜌𝜌(𝑡𝑡),  𝜌𝜌(𝑡𝑡) ∈  (0,1)    (2.1)                                                                                  

Proof  

We have 

𝑥𝑥.(𝑡𝑡) =   −𝜇𝜇(𝑘𝑘(𝑥𝑥+1)
𝑘𝑘−1 − √(𝑘𝑘2+2𝑘𝑘𝑥𝑥+𝑘𝑘2𝑥𝑥2)

𝑘𝑘−1 ) +  𝜆𝜆(𝑡𝑡)                                                                          (c. f.,    (1.9)) 

By PT,  𝑥𝑥(𝑡𝑡) is increasing ⟺ 𝑥𝑥.(𝑡𝑡) >  0. Consequently 

−𝜇𝜇(𝑘𝑘(𝑥𝑥+1)
𝑘𝑘−1 − √(𝑘𝑘2+2𝑘𝑘𝑥𝑥+𝑘𝑘2𝑥𝑥2)

𝑘𝑘−1 ) +  𝜆𝜆(𝑡𝑡)   >  0                                                                           (2.2) 

Hence, it follows that: 

 𝜌𝜌(𝑡𝑡) = 𝜆𝜆(𝑡𝑡)
𝜇𝜇   >  (𝑘𝑘(𝑥𝑥+1)

𝑘𝑘−1 − √(𝑘𝑘2+2𝑘𝑘𝑥𝑥+𝑘𝑘2𝑥𝑥2)
𝑘𝑘−1 ) =  2(𝑘𝑘−1)𝑥𝑥

(𝑘𝑘−1)(𝑘𝑘(𝑥𝑥+1)+√(𝑘𝑘2+2𝑘𝑘𝑥𝑥+𝑘𝑘2𝑥𝑥2) =
2𝑥𝑥

(𝑘𝑘(𝑥𝑥+1)+√(𝑘𝑘2+2𝑘𝑘𝑥𝑥+𝑘𝑘2𝑥𝑥2)  > 𝑥𝑥
𝑘𝑘(𝑥𝑥+1)        (2.3)                                                             

Therefore,  

𝑘𝑘𝜌𝜌(𝑡𝑡)[1 + 𝑥𝑥(𝑡𝑡)]  >  𝑥𝑥(𝑡𝑡)                                                                                                     (2.4) 

𝑘𝑘𝜌𝜌(𝑡𝑡)  > (1 − 𝑘𝑘𝜌𝜌(𝑡𝑡)) 𝑥𝑥(𝑡𝑡)                                                                                                     (2.5) 

(2.5) implies: 

𝑥𝑥(𝑡𝑡) < 𝑘𝑘𝜌𝜌(𝑡𝑡)
1−𝑘𝑘𝜌𝜌(𝑡𝑡)                                                           (c.f., (2.1)) 

By the Preliminary Theorem (PT),  𝑥𝑥(𝑡𝑡) is decreasing if and only if 𝑥𝑥.(𝑡𝑡) >  0. Consequently 

 

−𝜇𝜇(𝑘𝑘(𝑥𝑥+1)
𝑘𝑘−1 − √(𝑘𝑘2+2𝑘𝑘𝑥𝑥+𝑘𝑘2𝑥𝑥2)

𝑘𝑘−1 ) +  𝜆𝜆(𝑡𝑡)   <  0                                                                           (2.6) 

Hence, it follows that: 

 𝜌𝜌(𝑡𝑡) = 𝜆𝜆(𝑡𝑡)
𝜇𝜇   < ( 𝑘𝑘(𝑥𝑥+1)

𝑘𝑘−1 − √(𝑘𝑘2+2𝑘𝑘𝑥𝑥+𝑘𝑘2𝑥𝑥2)
𝑘𝑘−1 ) =  2(𝑘𝑘−1)𝑥𝑥

(𝑘𝑘−1)(𝑘𝑘(𝑥𝑥+1)+√(𝑘𝑘2+2𝑘𝑘𝑥𝑥+𝑘𝑘2𝑥𝑥2) < 2𝑘𝑘𝑥𝑥
𝑘𝑘+1        

(2.7)                     

Therefore,  

 (1 + 1
𝑘𝑘) 𝜌𝜌(𝑡𝑡)

2 <  𝑥𝑥(𝑡𝑡)                                                                                                     (c.f., (2.1)) 

 

Hence, the proof follows. 

It is noted by (2.1), that at the instability phase (𝜌𝜌(𝑡𝑡) → 1) 

2 Upper and lower  bounds of 𝒙𝒙(𝒕𝒕) (c.f., (1.9)) 

Theorem 1 𝑥𝑥(𝑡𝑡) of the non-stationary 𝑀𝑀/𝐸𝐸𝑘𝑘/1  queueing system  satisfies the following 
inequality:  

(1 + 1
𝑘𝑘) 𝜌𝜌(𝑡𝑡)

2 < 𝑥𝑥(𝑡𝑡) < 𝑘𝑘𝜌𝜌(𝑡𝑡)
1−𝑘𝑘𝜌𝜌(𝑡𝑡),  𝜌𝜌(𝑡𝑡) ∈  (0,1)    (2.1)                                                                                  

Proof  

We have 

𝑥𝑥.(𝑡𝑡) =   −𝜇𝜇(𝑘𝑘(𝑥𝑥+1)
𝑘𝑘−1 − √(𝑘𝑘2+2𝑘𝑘𝑥𝑥+𝑘𝑘2𝑥𝑥2)

𝑘𝑘−1 ) +  𝜆𝜆(𝑡𝑡)                                                                          (c. f.,    (1.9)) 

By PT,  𝑥𝑥(𝑡𝑡) is increasing ⟺ 𝑥𝑥.(𝑡𝑡) >  0. Consequently 

−𝜇𝜇(𝑘𝑘(𝑥𝑥+1)
𝑘𝑘−1 − √(𝑘𝑘2+2𝑘𝑘𝑥𝑥+𝑘𝑘2𝑥𝑥2)

𝑘𝑘−1 ) +  𝜆𝜆(𝑡𝑡)   >  0                                                                           (2.2) 

Hence, it follows that: 

 𝜌𝜌(𝑡𝑡) = 𝜆𝜆(𝑡𝑡)
𝜇𝜇   >  (𝑘𝑘(𝑥𝑥+1)

𝑘𝑘−1 − √(𝑘𝑘2+2𝑘𝑘𝑥𝑥+𝑘𝑘2𝑥𝑥2)
𝑘𝑘−1 ) =  2(𝑘𝑘−1)𝑥𝑥

(𝑘𝑘−1)(𝑘𝑘(𝑥𝑥+1)+√(𝑘𝑘2+2𝑘𝑘𝑥𝑥+𝑘𝑘2𝑥𝑥2) =
2𝑥𝑥

(𝑘𝑘(𝑥𝑥+1)+√(𝑘𝑘2+2𝑘𝑘𝑥𝑥+𝑘𝑘2𝑥𝑥2)  > 𝑥𝑥
𝑘𝑘(𝑥𝑥+1)        (2.3)                                                             

Therefore,  

𝑘𝑘𝜌𝜌(𝑡𝑡)[1 + 𝑥𝑥(𝑡𝑡)]  >  𝑥𝑥(𝑡𝑡)                                                                                                     (2.4) 

𝑘𝑘𝜌𝜌(𝑡𝑡)  > (1 − 𝑘𝑘𝜌𝜌(𝑡𝑡)) 𝑥𝑥(𝑡𝑡)                                                                                                     (2.5) 

(2.5) implies: 

𝑥𝑥(𝑡𝑡) < 𝑘𝑘𝜌𝜌(𝑡𝑡)
1−𝑘𝑘𝜌𝜌(𝑡𝑡)                                                           (c.f., (2.1)) 

By the Preliminary Theorem (PT),  𝑥𝑥(𝑡𝑡) is decreasing if and only if 𝑥𝑥.(𝑡𝑡) >  0. Consequently 

 

−𝜇𝜇(𝑘𝑘(𝑥𝑥+1)
𝑘𝑘−1 − √(𝑘𝑘2+2𝑘𝑘𝑥𝑥+𝑘𝑘2𝑥𝑥2)

𝑘𝑘−1 ) +  𝜆𝜆(𝑡𝑡)   <  0                                                                           (2.6) 

Hence, it follows that: 

 𝜌𝜌(𝑡𝑡) = 𝜆𝜆(𝑡𝑡)
𝜇𝜇   < ( 𝑘𝑘(𝑥𝑥+1)

𝑘𝑘−1 − √(𝑘𝑘2+2𝑘𝑘𝑥𝑥+𝑘𝑘2𝑥𝑥2)
𝑘𝑘−1 ) =  2(𝑘𝑘−1)𝑥𝑥

(𝑘𝑘−1)(𝑘𝑘(𝑥𝑥+1)+√(𝑘𝑘2+2𝑘𝑘𝑥𝑥+𝑘𝑘2𝑥𝑥2) < 2𝑘𝑘𝑥𝑥
𝑘𝑘+1        

(2.7)                     

Therefore,  

 (1 + 1
𝑘𝑘) 𝜌𝜌(𝑡𝑡)

2 <  𝑥𝑥(𝑡𝑡)                                                                                                     (c.f., (2.1)) 

 

Hence, the proof follows. 

It is noted by (2.1), that at the instability phase (𝜌𝜌(𝑡𝑡) → 1) 

2 Upper and lower  bounds of 𝒙𝒙(𝒕𝒕) (c.f., (1.9)) 

Theorem 1 𝑥𝑥(𝑡𝑡) of the non-stationary 𝑀𝑀/𝐸𝐸𝑘𝑘/1  queueing system  satisfies the following 
inequality:  

(1 + 1
𝑘𝑘) 𝜌𝜌(𝑡𝑡)

2 < 𝑥𝑥(𝑡𝑡) < 𝑘𝑘𝜌𝜌(𝑡𝑡)
1−𝑘𝑘𝜌𝜌(𝑡𝑡),  𝜌𝜌(𝑡𝑡) ∈  (0,1)    (2.1)                                                                                  

Proof  

We have 

𝑥𝑥.(𝑡𝑡) =   −𝜇𝜇(𝑘𝑘(𝑥𝑥+1)
𝑘𝑘−1 − √(𝑘𝑘2+2𝑘𝑘𝑥𝑥+𝑘𝑘2𝑥𝑥2)

𝑘𝑘−1 ) +  𝜆𝜆(𝑡𝑡)                                                                          (c. f.,    (1.9)) 

By PT,  𝑥𝑥(𝑡𝑡) is increasing ⟺ 𝑥𝑥.(𝑡𝑡) >  0. Consequently 

−𝜇𝜇(𝑘𝑘(𝑥𝑥+1)
𝑘𝑘−1 − √(𝑘𝑘2+2𝑘𝑘𝑥𝑥+𝑘𝑘2𝑥𝑥2)

𝑘𝑘−1 ) +  𝜆𝜆(𝑡𝑡)   >  0                                                                           (2.2) 

Hence, it follows that: 

 𝜌𝜌(𝑡𝑡) = 𝜆𝜆(𝑡𝑡)
𝜇𝜇   >  (𝑘𝑘(𝑥𝑥+1)

𝑘𝑘−1 − √(𝑘𝑘2+2𝑘𝑘𝑥𝑥+𝑘𝑘2𝑥𝑥2)
𝑘𝑘−1 ) =  2(𝑘𝑘−1)𝑥𝑥

(𝑘𝑘−1)(𝑘𝑘(𝑥𝑥+1)+√(𝑘𝑘2+2𝑘𝑘𝑥𝑥+𝑘𝑘2𝑥𝑥2) =
2𝑥𝑥

(𝑘𝑘(𝑥𝑥+1)+√(𝑘𝑘2+2𝑘𝑘𝑥𝑥+𝑘𝑘2𝑥𝑥2)  > 𝑥𝑥
𝑘𝑘(𝑥𝑥+1)        (2.3)                                                             

Therefore,  

𝑘𝑘𝜌𝜌(𝑡𝑡)[1 + 𝑥𝑥(𝑡𝑡)]  >  𝑥𝑥(𝑡𝑡)                                                                                                     (2.4) 

𝑘𝑘𝜌𝜌(𝑡𝑡)  > (1 − 𝑘𝑘𝜌𝜌(𝑡𝑡)) 𝑥𝑥(𝑡𝑡)                                                                                                     (2.5) 

(2.5) implies: 

𝑥𝑥(𝑡𝑡) < 𝑘𝑘𝜌𝜌(𝑡𝑡)
1−𝑘𝑘𝜌𝜌(𝑡𝑡)                                                           (c.f., (2.1)) 

By the Preliminary Theorem (PT),  𝑥𝑥(𝑡𝑡) is decreasing if and only if 𝑥𝑥.(𝑡𝑡) >  0. Consequently 

 

−𝜇𝜇(𝑘𝑘(𝑥𝑥+1)
𝑘𝑘−1 − √(𝑘𝑘2+2𝑘𝑘𝑥𝑥+𝑘𝑘2𝑥𝑥2)

𝑘𝑘−1 ) +  𝜆𝜆(𝑡𝑡)   <  0                                                                           (2.6) 

Hence, it follows that: 

 𝜌𝜌(𝑡𝑡) = 𝜆𝜆(𝑡𝑡)
𝜇𝜇   < ( 𝑘𝑘(𝑥𝑥+1)

𝑘𝑘−1 − √(𝑘𝑘2+2𝑘𝑘𝑥𝑥+𝑘𝑘2𝑥𝑥2)
𝑘𝑘−1 ) =  2(𝑘𝑘−1)𝑥𝑥

(𝑘𝑘−1)(𝑘𝑘(𝑥𝑥+1)+√(𝑘𝑘2+2𝑘𝑘𝑥𝑥+𝑘𝑘2𝑥𝑥2) < 2𝑘𝑘𝑥𝑥
𝑘𝑘+1        

(2.7)                     

Therefore,  

 (1 + 1
𝑘𝑘) 𝜌𝜌(𝑡𝑡)

2 <  𝑥𝑥(𝑡𝑡)                                                                                                     (c.f., (2.1)) 

 

Hence, the proof follows. 

It is noted by (2.1), that at the instability phase (𝜌𝜌(𝑡𝑡) → 1) 

2 Upper and lower  bounds of 𝒙𝒙(𝒕𝒕) (c.f., (1.9)) 

Theorem 1 𝑥𝑥(𝑡𝑡) of the non-stationary 𝑀𝑀/𝐸𝐸𝑘𝑘/1  queueing system  satisfies the following 
inequality:  

(1 + 1
𝑘𝑘) 𝜌𝜌(𝑡𝑡)

2 < 𝑥𝑥(𝑡𝑡) < 𝑘𝑘𝜌𝜌(𝑡𝑡)
1−𝑘𝑘𝜌𝜌(𝑡𝑡),  𝜌𝜌(𝑡𝑡) ∈  (0,1)    (2.1)                                                                                  

Proof  

We have 

𝑥𝑥.(𝑡𝑡) =   −𝜇𝜇(𝑘𝑘(𝑥𝑥+1)
𝑘𝑘−1 − √(𝑘𝑘2+2𝑘𝑘𝑥𝑥+𝑘𝑘2𝑥𝑥2)

𝑘𝑘−1 ) +  𝜆𝜆(𝑡𝑡)                                                                          (c. f.,    (1.9)) 

By PT,  𝑥𝑥(𝑡𝑡) is increasing ⟺ 𝑥𝑥.(𝑡𝑡) >  0. Consequently 

−𝜇𝜇(𝑘𝑘(𝑥𝑥+1)
𝑘𝑘−1 − √(𝑘𝑘2+2𝑘𝑘𝑥𝑥+𝑘𝑘2𝑥𝑥2)

𝑘𝑘−1 ) +  𝜆𝜆(𝑡𝑡)   >  0                                                                           (2.2) 

Hence, it follows that: 

 𝜌𝜌(𝑡𝑡) = 𝜆𝜆(𝑡𝑡)
𝜇𝜇   >  (𝑘𝑘(𝑥𝑥+1)

𝑘𝑘−1 − √(𝑘𝑘2+2𝑘𝑘𝑥𝑥+𝑘𝑘2𝑥𝑥2)
𝑘𝑘−1 ) =  2(𝑘𝑘−1)𝑥𝑥

(𝑘𝑘−1)(𝑘𝑘(𝑥𝑥+1)+√(𝑘𝑘2+2𝑘𝑘𝑥𝑥+𝑘𝑘2𝑥𝑥2) =
2𝑥𝑥

(𝑘𝑘(𝑥𝑥+1)+√(𝑘𝑘2+2𝑘𝑘𝑥𝑥+𝑘𝑘2𝑥𝑥2)  > 𝑥𝑥
𝑘𝑘(𝑥𝑥+1)        (2.3)                                                             

Therefore,  

𝑘𝑘𝜌𝜌(𝑡𝑡)[1 + 𝑥𝑥(𝑡𝑡)]  >  𝑥𝑥(𝑡𝑡)                                                                                                     (2.4) 

𝑘𝑘𝜌𝜌(𝑡𝑡)  > (1 − 𝑘𝑘𝜌𝜌(𝑡𝑡)) 𝑥𝑥(𝑡𝑡)                                                                                                     (2.5) 

(2.5) implies: 

𝑥𝑥(𝑡𝑡) < 𝑘𝑘𝜌𝜌(𝑡𝑡)
1−𝑘𝑘𝜌𝜌(𝑡𝑡)                                                           (c.f., (2.1)) 

By the Preliminary Theorem (PT),  𝑥𝑥(𝑡𝑡) is decreasing if and only if 𝑥𝑥.(𝑡𝑡) >  0. Consequently 

 

−𝜇𝜇(𝑘𝑘(𝑥𝑥+1)
𝑘𝑘−1 − √(𝑘𝑘2+2𝑘𝑘𝑥𝑥+𝑘𝑘2𝑥𝑥2)

𝑘𝑘−1 ) +  𝜆𝜆(𝑡𝑡)   <  0                                                                           (2.6) 

Hence, it follows that: 

 𝜌𝜌(𝑡𝑡) = 𝜆𝜆(𝑡𝑡)
𝜇𝜇   < ( 𝑘𝑘(𝑥𝑥+1)

𝑘𝑘−1 − √(𝑘𝑘2+2𝑘𝑘𝑥𝑥+𝑘𝑘2𝑥𝑥2)
𝑘𝑘−1 ) =  2(𝑘𝑘−1)𝑥𝑥

(𝑘𝑘−1)(𝑘𝑘(𝑥𝑥+1)+√(𝑘𝑘2+2𝑘𝑘𝑥𝑥+𝑘𝑘2𝑥𝑥2) < 2𝑘𝑘𝑥𝑥
𝑘𝑘+1        

(2.7)                     

Therefore,  

 (1 + 1
𝑘𝑘) 𝜌𝜌(𝑡𝑡)

2 <  𝑥𝑥(𝑡𝑡)                                                                                                     (c.f., (2.1)) 

 

Hence, the proof follows. 

It is noted by (2.1), that at the instability phase (𝜌𝜌(𝑡𝑡) → 1) 

2 Upper and lower  bounds of 𝒙𝒙(𝒕𝒕) (c.f., (1.9)) 

Theorem 1 𝑥𝑥(𝑡𝑡) of the non-stationary 𝑀𝑀/𝐸𝐸𝑘𝑘/1  queueing system  satisfies the following 
inequality:  

(1 + 1
𝑘𝑘) 𝜌𝜌(𝑡𝑡)

2 < 𝑥𝑥(𝑡𝑡) < 𝑘𝑘𝜌𝜌(𝑡𝑡)
1−𝑘𝑘𝜌𝜌(𝑡𝑡),  𝜌𝜌(𝑡𝑡) ∈  (0,1)    (2.1)                                                                                  

Proof  

We have 

𝑥𝑥.(𝑡𝑡) =   −𝜇𝜇(𝑘𝑘(𝑥𝑥+1)
𝑘𝑘−1 − √(𝑘𝑘2+2𝑘𝑘𝑥𝑥+𝑘𝑘2𝑥𝑥2)

𝑘𝑘−1 ) +  𝜆𝜆(𝑡𝑡)                                                                          (c. f.,    (1.9)) 

By PT,  𝑥𝑥(𝑡𝑡) is increasing ⟺ 𝑥𝑥.(𝑡𝑡) >  0. Consequently 

−𝜇𝜇(𝑘𝑘(𝑥𝑥+1)
𝑘𝑘−1 − √(𝑘𝑘2+2𝑘𝑘𝑥𝑥+𝑘𝑘2𝑥𝑥2)

𝑘𝑘−1 ) +  𝜆𝜆(𝑡𝑡)   >  0                                                                           (2.2) 

Hence, it follows that: 

 𝜌𝜌(𝑡𝑡) = 𝜆𝜆(𝑡𝑡)
𝜇𝜇   >  (𝑘𝑘(𝑥𝑥+1)

𝑘𝑘−1 − √(𝑘𝑘2+2𝑘𝑘𝑥𝑥+𝑘𝑘2𝑥𝑥2)
𝑘𝑘−1 ) =  2(𝑘𝑘−1)𝑥𝑥

(𝑘𝑘−1)(𝑘𝑘(𝑥𝑥+1)+√(𝑘𝑘2+2𝑘𝑘𝑥𝑥+𝑘𝑘2𝑥𝑥2) =
2𝑥𝑥

(𝑘𝑘(𝑥𝑥+1)+√(𝑘𝑘2+2𝑘𝑘𝑥𝑥+𝑘𝑘2𝑥𝑥2)  > 𝑥𝑥
𝑘𝑘(𝑥𝑥+1)        (2.3)                                                             

Therefore,  

𝑘𝑘𝜌𝜌(𝑡𝑡)[1 + 𝑥𝑥(𝑡𝑡)]  >  𝑥𝑥(𝑡𝑡)                                                                                                     (2.4) 

𝑘𝑘𝜌𝜌(𝑡𝑡)  > (1 − 𝑘𝑘𝜌𝜌(𝑡𝑡)) 𝑥𝑥(𝑡𝑡)                                                                                                     (2.5) 

(2.5) implies: 

𝑥𝑥(𝑡𝑡) < 𝑘𝑘𝜌𝜌(𝑡𝑡)
1−𝑘𝑘𝜌𝜌(𝑡𝑡)                                                           (c.f., (2.1)) 

By the Preliminary Theorem (PT),  𝑥𝑥(𝑡𝑡) is decreasing if and only if 𝑥𝑥.(𝑡𝑡) >  0. Consequently 

 

−𝜇𝜇(𝑘𝑘(𝑥𝑥+1)
𝑘𝑘−1 − √(𝑘𝑘2+2𝑘𝑘𝑥𝑥+𝑘𝑘2𝑥𝑥2)

𝑘𝑘−1 ) +  𝜆𝜆(𝑡𝑡)   <  0                                                                           (2.6) 

Hence, it follows that: 

 𝜌𝜌(𝑡𝑡) = 𝜆𝜆(𝑡𝑡)
𝜇𝜇   < ( 𝑘𝑘(𝑥𝑥+1)

𝑘𝑘−1 − √(𝑘𝑘2+2𝑘𝑘𝑥𝑥+𝑘𝑘2𝑥𝑥2)
𝑘𝑘−1 ) =  2(𝑘𝑘−1)𝑥𝑥

(𝑘𝑘−1)(𝑘𝑘(𝑥𝑥+1)+√(𝑘𝑘2+2𝑘𝑘𝑥𝑥+𝑘𝑘2𝑥𝑥2) < 2𝑘𝑘𝑥𝑥
𝑘𝑘+1        

(2.7)                     

Therefore,  

 (1 + 1
𝑘𝑘) 𝜌𝜌(𝑡𝑡)

2 <  𝑥𝑥(𝑡𝑡)                                                                                                     (c.f., (2.1)) 

 

Hence, the proof follows. 

It is noted by (2.1), that at the instability phase (𝜌𝜌(𝑡𝑡) → 1) 
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(2.5) implies:

By the Preliminary Theorem (PT), 𝑥(𝑡) is decreasing if and only if 𝑥.(𝑡) > 0. Consequently

Hence, it follows that:

Therefore,

Hence, the proof follows.
It is noted by (2.1), that at the instability phase (𝜌(𝑡) → 1)

(2.8) interprets as the limit as (𝜌(𝑡) → 1) has an upper bound which is 𝑘 dependent. As (k→ 1),

Moreover, assuming 𝑘 → ∞, (2.1) reduces to

Clearly, (2.10) shows that the derived bounds inequality of the underlying 𝑥(𝑡) model generalizes of the non-stationary 𝑀/𝐷/1 queue.

2 Upper and lower  bounds of 𝒙𝒙(𝒕𝒕) (c.f., (1.9)) 

Theorem 1 𝑥𝑥(𝑡𝑡) of the non-stationary 𝑀𝑀/𝐸𝐸𝑘𝑘/1  queueing system  satisfies the following 
inequality:  

(1 + 1
𝑘𝑘) 𝜌𝜌(𝑡𝑡)

2 < 𝑥𝑥(𝑡𝑡) < 𝑘𝑘𝜌𝜌(𝑡𝑡)
1−𝑘𝑘𝜌𝜌(𝑡𝑡),  𝜌𝜌(𝑡𝑡) ∈  (0,1)    (2.1)                                                                                  

Proof  

We have 

𝑥𝑥.(𝑡𝑡) =   −𝜇𝜇(𝑘𝑘(𝑥𝑥+1)
𝑘𝑘−1 − √(𝑘𝑘2+2𝑘𝑘𝑥𝑥+𝑘𝑘2𝑥𝑥2)

𝑘𝑘−1 ) +  𝜆𝜆(𝑡𝑡)                                                                          (c. f.,    (1.9)) 

By PT,  𝑥𝑥(𝑡𝑡) is increasing ⟺ 𝑥𝑥.(𝑡𝑡) >  0. Consequently 

−𝜇𝜇(𝑘𝑘(𝑥𝑥+1)
𝑘𝑘−1 − √(𝑘𝑘2+2𝑘𝑘𝑥𝑥+𝑘𝑘2𝑥𝑥2)

𝑘𝑘−1 ) +  𝜆𝜆(𝑡𝑡)   >  0                                                                           (2.2) 

Hence, it follows that: 

 𝜌𝜌(𝑡𝑡) = 𝜆𝜆(𝑡𝑡)
𝜇𝜇   >  (𝑘𝑘(𝑥𝑥+1)

𝑘𝑘−1 − √(𝑘𝑘2+2𝑘𝑘𝑥𝑥+𝑘𝑘2𝑥𝑥2)
𝑘𝑘−1 ) =  2(𝑘𝑘−1)𝑥𝑥

(𝑘𝑘−1)(𝑘𝑘(𝑥𝑥+1)+√(𝑘𝑘2+2𝑘𝑘𝑥𝑥+𝑘𝑘2𝑥𝑥2) =
2𝑥𝑥

(𝑘𝑘(𝑥𝑥+1)+√(𝑘𝑘2+2𝑘𝑘𝑥𝑥+𝑘𝑘2𝑥𝑥2)  > 𝑥𝑥
𝑘𝑘(𝑥𝑥+1)        (2.3)                                                             

Therefore,  

𝑘𝑘𝜌𝜌(𝑡𝑡)[1 + 𝑥𝑥(𝑡𝑡)]  >  𝑥𝑥(𝑡𝑡)                                                                                                     (2.4) 

𝑘𝑘𝜌𝜌(𝑡𝑡)  > (1 − 𝑘𝑘𝜌𝜌(𝑡𝑡)) 𝑥𝑥(𝑡𝑡)                                                                                                     (2.5) 

(2.5) implies: 

𝑥𝑥(𝑡𝑡) < 𝑘𝑘𝜌𝜌(𝑡𝑡)
1−𝑘𝑘𝜌𝜌(𝑡𝑡)                                                           (c.f., (2.1)) 

By the Preliminary Theorem (PT),  𝑥𝑥(𝑡𝑡) is decreasing if and only if 𝑥𝑥.(𝑡𝑡) >  0. Consequently 

 

−𝜇𝜇(𝑘𝑘(𝑥𝑥+1)
𝑘𝑘−1 − √(𝑘𝑘2+2𝑘𝑘𝑥𝑥+𝑘𝑘2𝑥𝑥2)

𝑘𝑘−1 ) +  𝜆𝜆(𝑡𝑡)   <  0                                                                           (2.6) 

Hence, it follows that: 

 𝜌𝜌(𝑡𝑡) = 𝜆𝜆(𝑡𝑡)
𝜇𝜇   < ( 𝑘𝑘(𝑥𝑥+1)

𝑘𝑘−1 − √(𝑘𝑘2+2𝑘𝑘𝑥𝑥+𝑘𝑘2𝑥𝑥2)
𝑘𝑘−1 ) =  2(𝑘𝑘−1)𝑥𝑥

(𝑘𝑘−1)(𝑘𝑘(𝑥𝑥+1)+√(𝑘𝑘2+2𝑘𝑘𝑥𝑥+𝑘𝑘2𝑥𝑥2) < 2𝑘𝑘𝑥𝑥
𝑘𝑘+1        

(2.7)                     

Therefore,  

 (1 + 1
𝑘𝑘) 𝜌𝜌(𝑡𝑡)

2 <  𝑥𝑥(𝑡𝑡)                                                                                                     (c.f., (2.1)) 

 

Hence, the proof follows. 

It is noted by (2.1), that at the instability phase (𝜌𝜌(𝑡𝑡) → 1) 

2 Upper and lower  bounds of 𝒙𝒙(𝒕𝒕) (c.f., (1.9)) 

Theorem 1 𝑥𝑥(𝑡𝑡) of the non-stationary 𝑀𝑀/𝐸𝐸𝑘𝑘/1  queueing system  satisfies the following 
inequality:  

(1 + 1
𝑘𝑘) 𝜌𝜌(𝑡𝑡)

2 < 𝑥𝑥(𝑡𝑡) < 𝑘𝑘𝜌𝜌(𝑡𝑡)
1−𝑘𝑘𝜌𝜌(𝑡𝑡),  𝜌𝜌(𝑡𝑡) ∈  (0,1)    (2.1)                                                                                  

Proof  

We have 

𝑥𝑥.(𝑡𝑡) =   −𝜇𝜇(𝑘𝑘(𝑥𝑥+1)
𝑘𝑘−1 − √(𝑘𝑘2+2𝑘𝑘𝑥𝑥+𝑘𝑘2𝑥𝑥2)

𝑘𝑘−1 ) +  𝜆𝜆(𝑡𝑡)                                                                          (c. f.,    (1.9)) 

By PT,  𝑥𝑥(𝑡𝑡) is increasing ⟺ 𝑥𝑥.(𝑡𝑡) >  0. Consequently 

−𝜇𝜇(𝑘𝑘(𝑥𝑥+1)
𝑘𝑘−1 − √(𝑘𝑘2+2𝑘𝑘𝑥𝑥+𝑘𝑘2𝑥𝑥2)

𝑘𝑘−1 ) +  𝜆𝜆(𝑡𝑡)   >  0                                                                           (2.2) 

Hence, it follows that: 

 𝜌𝜌(𝑡𝑡) = 𝜆𝜆(𝑡𝑡)
𝜇𝜇   >  (𝑘𝑘(𝑥𝑥+1)

𝑘𝑘−1 − √(𝑘𝑘2+2𝑘𝑘𝑥𝑥+𝑘𝑘2𝑥𝑥2)
𝑘𝑘−1 ) =  2(𝑘𝑘−1)𝑥𝑥

(𝑘𝑘−1)(𝑘𝑘(𝑥𝑥+1)+√(𝑘𝑘2+2𝑘𝑘𝑥𝑥+𝑘𝑘2𝑥𝑥2) =
2𝑥𝑥

(𝑘𝑘(𝑥𝑥+1)+√(𝑘𝑘2+2𝑘𝑘𝑥𝑥+𝑘𝑘2𝑥𝑥2)  > 𝑥𝑥
𝑘𝑘(𝑥𝑥+1)        (2.3)                                                             

Therefore,  

𝑘𝑘𝜌𝜌(𝑡𝑡)[1 + 𝑥𝑥(𝑡𝑡)]  >  𝑥𝑥(𝑡𝑡)                                                                                                     (2.4) 

𝑘𝑘𝜌𝜌(𝑡𝑡)  > (1 − 𝑘𝑘𝜌𝜌(𝑡𝑡)) 𝑥𝑥(𝑡𝑡)                                                                                                     (2.5) 

(2.5) implies: 

𝑥𝑥(𝑡𝑡) < 𝑘𝑘𝜌𝜌(𝑡𝑡)
1−𝑘𝑘𝜌𝜌(𝑡𝑡)                                                           (c.f., (2.1)) 

By the Preliminary Theorem (PT),  𝑥𝑥(𝑡𝑡) is decreasing if and only if 𝑥𝑥.(𝑡𝑡) >  0. Consequently 

 

−𝜇𝜇(𝑘𝑘(𝑥𝑥+1)
𝑘𝑘−1 − √(𝑘𝑘2+2𝑘𝑘𝑥𝑥+𝑘𝑘2𝑥𝑥2)

𝑘𝑘−1 ) +  𝜆𝜆(𝑡𝑡)   <  0                                                                           (2.6) 

Hence, it follows that: 

 𝜌𝜌(𝑡𝑡) = 𝜆𝜆(𝑡𝑡)
𝜇𝜇   < ( 𝑘𝑘(𝑥𝑥+1)

𝑘𝑘−1 − √(𝑘𝑘2+2𝑘𝑘𝑥𝑥+𝑘𝑘2𝑥𝑥2)
𝑘𝑘−1 ) =  2(𝑘𝑘−1)𝑥𝑥

(𝑘𝑘−1)(𝑘𝑘(𝑥𝑥+1)+√(𝑘𝑘2+2𝑘𝑘𝑥𝑥+𝑘𝑘2𝑥𝑥2) < 2𝑘𝑘𝑥𝑥
𝑘𝑘+1        

(2.7)                     

Therefore,  

 (1 + 1
𝑘𝑘) 𝜌𝜌(𝑡𝑡)

2 <  𝑥𝑥(𝑡𝑡)                                                                                                     (c.f., (2.1)) 

 

Hence, the proof follows. 

It is noted by (2.1), that at the instability phase (𝜌𝜌(𝑡𝑡) → 1) 

2 Upper and lower  bounds of 𝒙𝒙(𝒕𝒕) (c.f., (1.9)) 

Theorem 1 𝑥𝑥(𝑡𝑡) of the non-stationary 𝑀𝑀/𝐸𝐸𝑘𝑘/1  queueing system  satisfies the following 
inequality:  

(1 + 1
𝑘𝑘) 𝜌𝜌(𝑡𝑡)

2 < 𝑥𝑥(𝑡𝑡) < 𝑘𝑘𝜌𝜌(𝑡𝑡)
1−𝑘𝑘𝜌𝜌(𝑡𝑡),  𝜌𝜌(𝑡𝑡) ∈  (0,1)    (2.1)                                                                                  

Proof  

We have 

𝑥𝑥.(𝑡𝑡) =   −𝜇𝜇(𝑘𝑘(𝑥𝑥+1)
𝑘𝑘−1 − √(𝑘𝑘2+2𝑘𝑘𝑥𝑥+𝑘𝑘2𝑥𝑥2)

𝑘𝑘−1 ) +  𝜆𝜆(𝑡𝑡)                                                                          (c. f.,    (1.9)) 

By PT,  𝑥𝑥(𝑡𝑡) is increasing ⟺ 𝑥𝑥.(𝑡𝑡) >  0. Consequently 

−𝜇𝜇(𝑘𝑘(𝑥𝑥+1)
𝑘𝑘−1 − √(𝑘𝑘2+2𝑘𝑘𝑥𝑥+𝑘𝑘2𝑥𝑥2)

𝑘𝑘−1 ) +  𝜆𝜆(𝑡𝑡)   >  0                                                                           (2.2) 

Hence, it follows that: 

 𝜌𝜌(𝑡𝑡) = 𝜆𝜆(𝑡𝑡)
𝜇𝜇   >  (𝑘𝑘(𝑥𝑥+1)

𝑘𝑘−1 − √(𝑘𝑘2+2𝑘𝑘𝑥𝑥+𝑘𝑘2𝑥𝑥2)
𝑘𝑘−1 ) =  2(𝑘𝑘−1)𝑥𝑥

(𝑘𝑘−1)(𝑘𝑘(𝑥𝑥+1)+√(𝑘𝑘2+2𝑘𝑘𝑥𝑥+𝑘𝑘2𝑥𝑥2) =
2𝑥𝑥

(𝑘𝑘(𝑥𝑥+1)+√(𝑘𝑘2+2𝑘𝑘𝑥𝑥+𝑘𝑘2𝑥𝑥2)  > 𝑥𝑥
𝑘𝑘(𝑥𝑥+1)        (2.3)                                                             

Therefore,  

𝑘𝑘𝜌𝜌(𝑡𝑡)[1 + 𝑥𝑥(𝑡𝑡)]  >  𝑥𝑥(𝑡𝑡)                                                                                                     (2.4) 

𝑘𝑘𝜌𝜌(𝑡𝑡)  > (1 − 𝑘𝑘𝜌𝜌(𝑡𝑡)) 𝑥𝑥(𝑡𝑡)                                                                                                     (2.5) 

(2.5) implies: 

𝑥𝑥(𝑡𝑡) < 𝑘𝑘𝜌𝜌(𝑡𝑡)
1−𝑘𝑘𝜌𝜌(𝑡𝑡)                                                           (c.f., (2.1)) 

By the Preliminary Theorem (PT),  𝑥𝑥(𝑡𝑡) is decreasing if and only if 𝑥𝑥.(𝑡𝑡) >  0. Consequently 

 

−𝜇𝜇(𝑘𝑘(𝑥𝑥+1)
𝑘𝑘−1 − √(𝑘𝑘2+2𝑘𝑘𝑥𝑥+𝑘𝑘2𝑥𝑥2)

𝑘𝑘−1 ) +  𝜆𝜆(𝑡𝑡)   <  0                                                                           (2.6) 

Hence, it follows that: 

 𝜌𝜌(𝑡𝑡) = 𝜆𝜆(𝑡𝑡)
𝜇𝜇   < ( 𝑘𝑘(𝑥𝑥+1)

𝑘𝑘−1 − √(𝑘𝑘2+2𝑘𝑘𝑥𝑥+𝑘𝑘2𝑥𝑥2)
𝑘𝑘−1 ) =  2(𝑘𝑘−1)𝑥𝑥

(𝑘𝑘−1)(𝑘𝑘(𝑥𝑥+1)+√(𝑘𝑘2+2𝑘𝑘𝑥𝑥+𝑘𝑘2𝑥𝑥2) < 2𝑘𝑘𝑥𝑥
𝑘𝑘+1        

(2.7)                     

Therefore,  

 (1 + 1
𝑘𝑘) 𝜌𝜌(𝑡𝑡)

2 <  𝑥𝑥(𝑡𝑡)                                                                                                     (c.f., (2.1)) 

 

Hence, the proof follows. 

It is noted by (2.1), that at the instability phase (𝜌𝜌(𝑡𝑡) → 1) 

2 Upper and lower  bounds of 𝒙𝒙(𝒕𝒕) (c.f., (1.9)) 

Theorem 1 𝑥𝑥(𝑡𝑡) of the non-stationary 𝑀𝑀/𝐸𝐸𝑘𝑘/1  queueing system  satisfies the following 
inequality:  

(1 + 1
𝑘𝑘) 𝜌𝜌(𝑡𝑡)

2 < 𝑥𝑥(𝑡𝑡) < 𝑘𝑘𝜌𝜌(𝑡𝑡)
1−𝑘𝑘𝜌𝜌(𝑡𝑡),  𝜌𝜌(𝑡𝑡) ∈  (0,1)    (2.1)                                                                                  

Proof  

We have 

𝑥𝑥.(𝑡𝑡) =   −𝜇𝜇(𝑘𝑘(𝑥𝑥+1)
𝑘𝑘−1 − √(𝑘𝑘2+2𝑘𝑘𝑥𝑥+𝑘𝑘2𝑥𝑥2)

𝑘𝑘−1 ) +  𝜆𝜆(𝑡𝑡)                                                                          (c. f.,    (1.9)) 

By PT,  𝑥𝑥(𝑡𝑡) is increasing ⟺ 𝑥𝑥.(𝑡𝑡) >  0. Consequently 

−𝜇𝜇(𝑘𝑘(𝑥𝑥+1)
𝑘𝑘−1 − √(𝑘𝑘2+2𝑘𝑘𝑥𝑥+𝑘𝑘2𝑥𝑥2)

𝑘𝑘−1 ) +  𝜆𝜆(𝑡𝑡)   >  0                                                                           (2.2) 

Hence, it follows that: 

 𝜌𝜌(𝑡𝑡) = 𝜆𝜆(𝑡𝑡)
𝜇𝜇   >  (𝑘𝑘(𝑥𝑥+1)

𝑘𝑘−1 − √(𝑘𝑘2+2𝑘𝑘𝑥𝑥+𝑘𝑘2𝑥𝑥2)
𝑘𝑘−1 ) =  2(𝑘𝑘−1)𝑥𝑥

(𝑘𝑘−1)(𝑘𝑘(𝑥𝑥+1)+√(𝑘𝑘2+2𝑘𝑘𝑥𝑥+𝑘𝑘2𝑥𝑥2) =
2𝑥𝑥

(𝑘𝑘(𝑥𝑥+1)+√(𝑘𝑘2+2𝑘𝑘𝑥𝑥+𝑘𝑘2𝑥𝑥2)  > 𝑥𝑥
𝑘𝑘(𝑥𝑥+1)        (2.3)                                                             

Therefore,  

𝑘𝑘𝜌𝜌(𝑡𝑡)[1 + 𝑥𝑥(𝑡𝑡)]  >  𝑥𝑥(𝑡𝑡)                                                                                                     (2.4) 

𝑘𝑘𝜌𝜌(𝑡𝑡)  > (1 − 𝑘𝑘𝜌𝜌(𝑡𝑡)) 𝑥𝑥(𝑡𝑡)                                                                                                     (2.5) 

(2.5) implies: 

𝑥𝑥(𝑡𝑡) < 𝑘𝑘𝜌𝜌(𝑡𝑡)
1−𝑘𝑘𝜌𝜌(𝑡𝑡)                                                           (c.f., (2.1)) 

By the Preliminary Theorem (PT),  𝑥𝑥(𝑡𝑡) is decreasing if and only if 𝑥𝑥.(𝑡𝑡) >  0. Consequently 

 

−𝜇𝜇(𝑘𝑘(𝑥𝑥+1)
𝑘𝑘−1 − √(𝑘𝑘2+2𝑘𝑘𝑥𝑥+𝑘𝑘2𝑥𝑥2)

𝑘𝑘−1 ) +  𝜆𝜆(𝑡𝑡)   <  0                                                                           (2.6) 

Hence, it follows that: 

 𝜌𝜌(𝑡𝑡) = 𝜆𝜆(𝑡𝑡)
𝜇𝜇   < ( 𝑘𝑘(𝑥𝑥+1)

𝑘𝑘−1 − √(𝑘𝑘2+2𝑘𝑘𝑥𝑥+𝑘𝑘2𝑥𝑥2)
𝑘𝑘−1 ) =  2(𝑘𝑘−1)𝑥𝑥

(𝑘𝑘−1)(𝑘𝑘(𝑥𝑥+1)+√(𝑘𝑘2+2𝑘𝑘𝑥𝑥+𝑘𝑘2𝑥𝑥2) < 2𝑘𝑘𝑥𝑥
𝑘𝑘+1        

(2.7)                     

Therefore,  

 (1 + 1
𝑘𝑘) 𝜌𝜌(𝑡𝑡)

2 <  𝑥𝑥(𝑡𝑡)                                                                                                     (c.f., (2.1)) 

 

Hence, the proof follows. 

It is noted by (2.1), that at the instability phase (𝜌𝜌(𝑡𝑡) → 1) 

2 Upper and lower  bounds of 𝒙𝒙(𝒕𝒕) (c.f., (1.9)) 

Theorem 1 𝑥𝑥(𝑡𝑡) of the non-stationary 𝑀𝑀/𝐸𝐸𝑘𝑘/1  queueing system  satisfies the following 
inequality:  

(1 + 1
𝑘𝑘) 𝜌𝜌(𝑡𝑡)

2 < 𝑥𝑥(𝑡𝑡) < 𝑘𝑘𝜌𝜌(𝑡𝑡)
1−𝑘𝑘𝜌𝜌(𝑡𝑡),  𝜌𝜌(𝑡𝑡) ∈  (0,1)    (2.1)                                                                                  

Proof  

We have 

𝑥𝑥.(𝑡𝑡) =   −𝜇𝜇(𝑘𝑘(𝑥𝑥+1)
𝑘𝑘−1 − √(𝑘𝑘2+2𝑘𝑘𝑥𝑥+𝑘𝑘2𝑥𝑥2)

𝑘𝑘−1 ) +  𝜆𝜆(𝑡𝑡)                                                                          (c. f.,    (1.9)) 

By PT,  𝑥𝑥(𝑡𝑡) is increasing ⟺ 𝑥𝑥.(𝑡𝑡) >  0. Consequently 

−𝜇𝜇(𝑘𝑘(𝑥𝑥+1)
𝑘𝑘−1 − √(𝑘𝑘2+2𝑘𝑘𝑥𝑥+𝑘𝑘2𝑥𝑥2)

𝑘𝑘−1 ) +  𝜆𝜆(𝑡𝑡)   >  0                                                                           (2.2) 

Hence, it follows that: 

 𝜌𝜌(𝑡𝑡) = 𝜆𝜆(𝑡𝑡)
𝜇𝜇   >  (𝑘𝑘(𝑥𝑥+1)

𝑘𝑘−1 − √(𝑘𝑘2+2𝑘𝑘𝑥𝑥+𝑘𝑘2𝑥𝑥2)
𝑘𝑘−1 ) =  2(𝑘𝑘−1)𝑥𝑥

(𝑘𝑘−1)(𝑘𝑘(𝑥𝑥+1)+√(𝑘𝑘2+2𝑘𝑘𝑥𝑥+𝑘𝑘2𝑥𝑥2) =
2𝑥𝑥

(𝑘𝑘(𝑥𝑥+1)+√(𝑘𝑘2+2𝑘𝑘𝑥𝑥+𝑘𝑘2𝑥𝑥2)  > 𝑥𝑥
𝑘𝑘(𝑥𝑥+1)        (2.3)                                                             

Therefore,  

𝑘𝑘𝜌𝜌(𝑡𝑡)[1 + 𝑥𝑥(𝑡𝑡)]  >  𝑥𝑥(𝑡𝑡)                                                                                                     (2.4) 

𝑘𝑘𝜌𝜌(𝑡𝑡)  > (1 − 𝑘𝑘𝜌𝜌(𝑡𝑡)) 𝑥𝑥(𝑡𝑡)                                                                                                     (2.5) 

(2.5) implies: 

𝑥𝑥(𝑡𝑡) < 𝑘𝑘𝜌𝜌(𝑡𝑡)
1−𝑘𝑘𝜌𝜌(𝑡𝑡)                                                           (c.f., (2.1)) 

By the Preliminary Theorem (PT),  𝑥𝑥(𝑡𝑡) is decreasing if and only if 𝑥𝑥.(𝑡𝑡) >  0. Consequently 

 

−𝜇𝜇(𝑘𝑘(𝑥𝑥+1)
𝑘𝑘−1 − √(𝑘𝑘2+2𝑘𝑘𝑥𝑥+𝑘𝑘2𝑥𝑥2)

𝑘𝑘−1 ) +  𝜆𝜆(𝑡𝑡)   <  0                                                                           (2.6) 

Hence, it follows that: 

 𝜌𝜌(𝑡𝑡) = 𝜆𝜆(𝑡𝑡)
𝜇𝜇   < ( 𝑘𝑘(𝑥𝑥+1)

𝑘𝑘−1 − √(𝑘𝑘2+2𝑘𝑘𝑥𝑥+𝑘𝑘2𝑥𝑥2)
𝑘𝑘−1 ) =  2(𝑘𝑘−1)𝑥𝑥

(𝑘𝑘−1)(𝑘𝑘(𝑥𝑥+1)+√(𝑘𝑘2+2𝑘𝑘𝑥𝑥+𝑘𝑘2𝑥𝑥2) < 2𝑘𝑘𝑥𝑥
𝑘𝑘+1        

(2.7)                     

Therefore,  

 (1 + 1
𝑘𝑘) 𝜌𝜌(𝑡𝑡)

2 <  𝑥𝑥(𝑡𝑡)                                                                                                     (c.f., (2.1)) 

 

Hence, the proof follows. 

It is noted by (2.1), that at the instability phase (𝜌𝜌(𝑡𝑡) → 1) 

2 Upper and lower  bounds of 𝒙𝒙(𝒕𝒕) (c.f., (1.9)) 

Theorem 1 𝑥𝑥(𝑡𝑡) of the non-stationary 𝑀𝑀/𝐸𝐸𝑘𝑘/1  queueing system  satisfies the following 
inequality:  

(1 + 1
𝑘𝑘) 𝜌𝜌(𝑡𝑡)

2 < 𝑥𝑥(𝑡𝑡) < 𝑘𝑘𝜌𝜌(𝑡𝑡)
1−𝑘𝑘𝜌𝜌(𝑡𝑡),  𝜌𝜌(𝑡𝑡) ∈  (0,1)    (2.1)                                                                                  

Proof  

We have 

𝑥𝑥.(𝑡𝑡) =   −𝜇𝜇(𝑘𝑘(𝑥𝑥+1)
𝑘𝑘−1 − √(𝑘𝑘2+2𝑘𝑘𝑥𝑥+𝑘𝑘2𝑥𝑥2)

𝑘𝑘−1 ) +  𝜆𝜆(𝑡𝑡)                                                                          (c. f.,    (1.9)) 

By PT,  𝑥𝑥(𝑡𝑡) is increasing ⟺ 𝑥𝑥.(𝑡𝑡) >  0. Consequently 

−𝜇𝜇(𝑘𝑘(𝑥𝑥+1)
𝑘𝑘−1 − √(𝑘𝑘2+2𝑘𝑘𝑥𝑥+𝑘𝑘2𝑥𝑥2)

𝑘𝑘−1 ) +  𝜆𝜆(𝑡𝑡)   >  0                                                                           (2.2) 

Hence, it follows that: 

 𝜌𝜌(𝑡𝑡) = 𝜆𝜆(𝑡𝑡)
𝜇𝜇   >  (𝑘𝑘(𝑥𝑥+1)

𝑘𝑘−1 − √(𝑘𝑘2+2𝑘𝑘𝑥𝑥+𝑘𝑘2𝑥𝑥2)
𝑘𝑘−1 ) =  2(𝑘𝑘−1)𝑥𝑥

(𝑘𝑘−1)(𝑘𝑘(𝑥𝑥+1)+√(𝑘𝑘2+2𝑘𝑘𝑥𝑥+𝑘𝑘2𝑥𝑥2) =
2𝑥𝑥

(𝑘𝑘(𝑥𝑥+1)+√(𝑘𝑘2+2𝑘𝑘𝑥𝑥+𝑘𝑘2𝑥𝑥2)  > 𝑥𝑥
𝑘𝑘(𝑥𝑥+1)        (2.3)                                                             

Therefore,  

𝑘𝑘𝜌𝜌(𝑡𝑡)[1 + 𝑥𝑥(𝑡𝑡)]  >  𝑥𝑥(𝑡𝑡)                                                                                                     (2.4) 

𝑘𝑘𝜌𝜌(𝑡𝑡)  > (1 − 𝑘𝑘𝜌𝜌(𝑡𝑡)) 𝑥𝑥(𝑡𝑡)                                                                                                     (2.5) 

(2.5) implies: 

𝑥𝑥(𝑡𝑡) < 𝑘𝑘𝜌𝜌(𝑡𝑡)
1−𝑘𝑘𝜌𝜌(𝑡𝑡)                                                           (c.f., (2.1)) 

By the Preliminary Theorem (PT),  𝑥𝑥(𝑡𝑡) is decreasing if and only if 𝑥𝑥.(𝑡𝑡) >  0. Consequently 

 

−𝜇𝜇(𝑘𝑘(𝑥𝑥+1)
𝑘𝑘−1 − √(𝑘𝑘2+2𝑘𝑘𝑥𝑥+𝑘𝑘2𝑥𝑥2)

𝑘𝑘−1 ) +  𝜆𝜆(𝑡𝑡)   <  0                                                                           (2.6) 

Hence, it follows that: 

 𝜌𝜌(𝑡𝑡) = 𝜆𝜆(𝑡𝑡)
𝜇𝜇   < ( 𝑘𝑘(𝑥𝑥+1)

𝑘𝑘−1 − √(𝑘𝑘2+2𝑘𝑘𝑥𝑥+𝑘𝑘2𝑥𝑥2)
𝑘𝑘−1 ) =  2(𝑘𝑘−1)𝑥𝑥

(𝑘𝑘−1)(𝑘𝑘(𝑥𝑥+1)+√(𝑘𝑘2+2𝑘𝑘𝑥𝑥+𝑘𝑘2𝑥𝑥2) < 2𝑘𝑘𝑥𝑥
𝑘𝑘+1        

(2.7)                     

Therefore,  

 (1 + 1
𝑘𝑘) 𝜌𝜌(𝑡𝑡)

2 <  𝑥𝑥(𝑡𝑡)                                                                                                     (c.f., (2.1)) 

 

Hence, the proof follows. 

It is noted by (2.1), that at the instability phase (𝜌𝜌(𝑡𝑡) → 1) 

2 Upper and lower  bounds of 𝒙𝒙(𝒕𝒕) (c.f., (1.9)) 

Theorem 1 𝑥𝑥(𝑡𝑡) of the non-stationary 𝑀𝑀/𝐸𝐸𝑘𝑘/1  queueing system  satisfies the following 
inequality:  

(1 + 1
𝑘𝑘) 𝜌𝜌(𝑡𝑡)

2 < 𝑥𝑥(𝑡𝑡) < 𝑘𝑘𝜌𝜌(𝑡𝑡)
1−𝑘𝑘𝜌𝜌(𝑡𝑡),  𝜌𝜌(𝑡𝑡) ∈  (0,1)    (2.1)                                                                                  

Proof  

We have 

𝑥𝑥.(𝑡𝑡) =   −𝜇𝜇(𝑘𝑘(𝑥𝑥+1)
𝑘𝑘−1 − √(𝑘𝑘2+2𝑘𝑘𝑥𝑥+𝑘𝑘2𝑥𝑥2)

𝑘𝑘−1 ) +  𝜆𝜆(𝑡𝑡)                                                                          (c. f.,    (1.9)) 

By PT,  𝑥𝑥(𝑡𝑡) is increasing ⟺ 𝑥𝑥.(𝑡𝑡) >  0. Consequently 

−𝜇𝜇(𝑘𝑘(𝑥𝑥+1)
𝑘𝑘−1 − √(𝑘𝑘2+2𝑘𝑘𝑥𝑥+𝑘𝑘2𝑥𝑥2)

𝑘𝑘−1 ) +  𝜆𝜆(𝑡𝑡)   >  0                                                                           (2.2) 

Hence, it follows that: 

 𝜌𝜌(𝑡𝑡) = 𝜆𝜆(𝑡𝑡)
𝜇𝜇   >  (𝑘𝑘(𝑥𝑥+1)

𝑘𝑘−1 − √(𝑘𝑘2+2𝑘𝑘𝑥𝑥+𝑘𝑘2𝑥𝑥2)
𝑘𝑘−1 ) =  2(𝑘𝑘−1)𝑥𝑥

(𝑘𝑘−1)(𝑘𝑘(𝑥𝑥+1)+√(𝑘𝑘2+2𝑘𝑘𝑥𝑥+𝑘𝑘2𝑥𝑥2) =
2𝑥𝑥

(𝑘𝑘(𝑥𝑥+1)+√(𝑘𝑘2+2𝑘𝑘𝑥𝑥+𝑘𝑘2𝑥𝑥2)  > 𝑥𝑥
𝑘𝑘(𝑥𝑥+1)        (2.3)                                                             

Therefore,  

𝑘𝑘𝜌𝜌(𝑡𝑡)[1 + 𝑥𝑥(𝑡𝑡)]  >  𝑥𝑥(𝑡𝑡)                                                                                                     (2.4) 

𝑘𝑘𝜌𝜌(𝑡𝑡)  > (1 − 𝑘𝑘𝜌𝜌(𝑡𝑡)) 𝑥𝑥(𝑡𝑡)                                                                                                     (2.5) 

(2.5) implies: 

𝑥𝑥(𝑡𝑡) < 𝑘𝑘𝜌𝜌(𝑡𝑡)
1−𝑘𝑘𝜌𝜌(𝑡𝑡)                                                           (c.f., (2.1)) 

By the Preliminary Theorem (PT),  𝑥𝑥(𝑡𝑡) is decreasing if and only if 𝑥𝑥.(𝑡𝑡) >  0. Consequently 

 

−𝜇𝜇(𝑘𝑘(𝑥𝑥+1)
𝑘𝑘−1 − √(𝑘𝑘2+2𝑘𝑘𝑥𝑥+𝑘𝑘2𝑥𝑥2)

𝑘𝑘−1 ) +  𝜆𝜆(𝑡𝑡)   <  0                                                                           (2.6) 

Hence, it follows that: 

 𝜌𝜌(𝑡𝑡) = 𝜆𝜆(𝑡𝑡)
𝜇𝜇   < ( 𝑘𝑘(𝑥𝑥+1)

𝑘𝑘−1 − √(𝑘𝑘2+2𝑘𝑘𝑥𝑥+𝑘𝑘2𝑥𝑥2)
𝑘𝑘−1 ) =  2(𝑘𝑘−1)𝑥𝑥

(𝑘𝑘−1)(𝑘𝑘(𝑥𝑥+1)+√(𝑘𝑘2+2𝑘𝑘𝑥𝑥+𝑘𝑘2𝑥𝑥2) < 2𝑘𝑘𝑥𝑥
𝑘𝑘+1        

(2.7)                     

Therefore,  

 (1 + 1
𝑘𝑘) 𝜌𝜌(𝑡𝑡)

2 <  𝑥𝑥(𝑡𝑡)                                                                                                     (c.f., (2.1)) 

 

Hence, the proof follows. 

It is noted by (2.1), that at the instability phase (𝜌𝜌(𝑡𝑡) → 1) 

2 Upper and lower  bounds of 𝒙𝒙(𝒕𝒕) (c.f., (1.9)) 

Theorem 1 𝑥𝑥(𝑡𝑡) of the non-stationary 𝑀𝑀/𝐸𝐸𝑘𝑘/1  queueing system  satisfies the following 
inequality:  

(1 + 1
𝑘𝑘) 𝜌𝜌(𝑡𝑡)

2 < 𝑥𝑥(𝑡𝑡) < 𝑘𝑘𝜌𝜌(𝑡𝑡)
1−𝑘𝑘𝜌𝜌(𝑡𝑡),  𝜌𝜌(𝑡𝑡) ∈  (0,1)    (2.1)                                                                                  

Proof  

We have 

𝑥𝑥.(𝑡𝑡) =   −𝜇𝜇(𝑘𝑘(𝑥𝑥+1)
𝑘𝑘−1 − √(𝑘𝑘2+2𝑘𝑘𝑥𝑥+𝑘𝑘2𝑥𝑥2)

𝑘𝑘−1 ) +  𝜆𝜆(𝑡𝑡)                                                                          (c. f.,    (1.9)) 

By PT,  𝑥𝑥(𝑡𝑡) is increasing ⟺ 𝑥𝑥.(𝑡𝑡) >  0. Consequently 

−𝜇𝜇(𝑘𝑘(𝑥𝑥+1)
𝑘𝑘−1 − √(𝑘𝑘2+2𝑘𝑘𝑥𝑥+𝑘𝑘2𝑥𝑥2)

𝑘𝑘−1 ) +  𝜆𝜆(𝑡𝑡)   >  0                                                                           (2.2) 

Hence, it follows that: 

 𝜌𝜌(𝑡𝑡) = 𝜆𝜆(𝑡𝑡)
𝜇𝜇   >  (𝑘𝑘(𝑥𝑥+1)

𝑘𝑘−1 − √(𝑘𝑘2+2𝑘𝑘𝑥𝑥+𝑘𝑘2𝑥𝑥2)
𝑘𝑘−1 ) =  2(𝑘𝑘−1)𝑥𝑥

(𝑘𝑘−1)(𝑘𝑘(𝑥𝑥+1)+√(𝑘𝑘2+2𝑘𝑘𝑥𝑥+𝑘𝑘2𝑥𝑥2) =
2𝑥𝑥

(𝑘𝑘(𝑥𝑥+1)+√(𝑘𝑘2+2𝑘𝑘𝑥𝑥+𝑘𝑘2𝑥𝑥2)  > 𝑥𝑥
𝑘𝑘(𝑥𝑥+1)        (2.3)                                                             

Therefore,  

𝑘𝑘𝜌𝜌(𝑡𝑡)[1 + 𝑥𝑥(𝑡𝑡)]  >  𝑥𝑥(𝑡𝑡)                                                                                                     (2.4) 

𝑘𝑘𝜌𝜌(𝑡𝑡)  > (1 − 𝑘𝑘𝜌𝜌(𝑡𝑡)) 𝑥𝑥(𝑡𝑡)                                                                                                     (2.5) 

(2.5) implies: 

𝑥𝑥(𝑡𝑡) < 𝑘𝑘𝜌𝜌(𝑡𝑡)
1−𝑘𝑘𝜌𝜌(𝑡𝑡)                                                           (c.f., (2.1)) 

By the Preliminary Theorem (PT),  𝑥𝑥(𝑡𝑡) is decreasing if and only if 𝑥𝑥.(𝑡𝑡) >  0. Consequently 

 

−𝜇𝜇(𝑘𝑘(𝑥𝑥+1)
𝑘𝑘−1 − √(𝑘𝑘2+2𝑘𝑘𝑥𝑥+𝑘𝑘2𝑥𝑥2)
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4. Conclusion and Future Work
For the first time ever, the current study reports the upper bound 
of the state variable of the M/G/1 PSFFA model of the non-
stationary M/Ek/1 queueing system. Furthermore, it is discovered 
that the state variable of the derived bounds inequality of the state 
variable of the M/G/1 PSFFA model of the non-stationary M/D/1 
queueing system is a special case of the state variable of the M/G/1 
PSFFA model of the non-stationary M/E∞/1 queueing system. 
Future research will define the state variable bounds for other non-
stationary M/G/1 PSFFA models.
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(𝑘𝑘−1)(𝑘𝑘(𝑥𝑥+1)+√(𝑘𝑘2+2𝑘𝑘𝑥𝑥+𝑘𝑘2𝑥𝑥2) < 2𝑘𝑘𝑥𝑥
𝑘𝑘+1        
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