
Advances in Machine Learning & Artificial Intelligence

Adv Mach Lear Art Inte, 2022

Straight Forward Constructive Deep Learning Neural Network (SFC-DLNN)
Algorithm

Research Article

Ndom Francis Rollin1*, Mveh-Abia Chantal3, Ayissi Raoul2, Etoua Remy1 and Emvudu Yves2

1*Department of Mathematics and Physical Sciences, National
Advanced School of Engineering of the University of Yaounde I,
Melen, Yaoundé, 8390, Cameroon.

2Department of Mathematics, Faculty of Sciences of the University
of Yaounde I, Ngoa-Ekelle, Yaoundé, 812, Cameroon.

3Department of Computer Engineering, National Advanced School
of Engineering of the University of Yaounde I, Melen, Yaoundé,
8390, Cameroon.

*Corresponding author
Ndom Francis Rollin, Department of Mathematics and Physical Sciences,
National Advanced School of Engineering of the University of Yaounde I,
Melen, Yaoundé, 8390, Cameroon

Submitted: 19 Aug 2022; Accepted: 24 Aug 2022; Published: 27 Aug 2022

 Volume 3 | Issue 2 | 80

Citation: Rollin NF*, Chantal MA, Raoul A, Remy E and Yves E. (2022). Straight Forward Constructive Deep Learning Neural Network
(Sfc-Dlnn) Algorithm. Adv Mach Lear Art Inte, 3(2): 80 -91.

Abstract
Straight Forward Constructive Deep Learning Neural Network (SFC-DLNN) algorithm is a new architecture-
based algorithm for artificial neural networks. Rather than simply adjusting the weights in a fixed topology
network, SFC-DLNN starts with a minimal topology (perceptron), then builds up their network by gradually
trains and adds new nodes one by one, creating multiple layers’ network. Once a unit has been added to the
network, the weights of the new architecture are generated. This unit then stands as a permanent detector of
features in the network, and a more complex feature space is then created where the data is likely to be linearly
separable. The SFC-DLNN algorithm has many advantages over existing ones: it has good learning speed, the
network determines its topology size, and the structures it has built is retained after the training stage.

We obtain from our built model (SFC-DLNN) an accuracy and specificity of 83:5% from a simulated data set
using the uniform distribution. This is not the best but is enough to approve the model prediction capacity.

ISSN: 2769-545X

Keywords: Neural Networks, Feed-Forward Algorithm, Cascade-Correlation Growing, Deep Learning, Neural Network Algorithm

Introduction
Deep learning is generally considered a breakthrough technology
in the last decade. It is a growing trend in general data analysis
and relies on artificial neural networks, which are computational
models composed of several layers programmed “neuron” (single
programmed “neuron” is known as Perceptron and multiply
programmed “neuron” as Multi-Layer Perceptron (MLP)).

Indeed, MLP is a Deep Neural Network (DNN) that uses the
feedforward mode of information now very popular in many
applications because of its stable and strong architecture used in
several available training algorithms.

These networks however encounter some problems when their
depth rises with a lot of hidden layers and several links between
them. Irregular initialization has an impact on the convergence
process because it can slow down or even completely stall the

convergence process. Therefore, network initialization is one of
the major problems faced by DNNs [1-4]. The following problem
is the difficulty of discovering a suitable network architecture
that can give good accuracy and better success in generalization.
Although many reasons can push for under fitting or overfitting
neural network models, one of these is the unsuitable architecture
of the network. Thus, network architecture sizing is required for
better performance in generalization and fast convergence of the
training algorithm.

The lack of knowledge on some problems bearing a huge amount
of data has made a neural network with a fixed architecture less
preferable than a constructive one that performs dynamically the
neural network architecture. So, the network architecture is self-
built during the training process although requiring some external
parameters like the maximum number of neurons per layer.

Adv Mach Lear Art Inte, 2022 Volume 3 | Issue 2 | 81

By definition, a constructive algorithm starts a neural network
with a limited number of hidden layers, neurons, and links, then
gradually attaches hidden nodes and weight until an optimal
structure is identified. There are usually used for classification
problems and have been shown to result in good architecture
shaping and faster learning [5].

In this class of constructive algorithms, we find Cascade-
Correlation Neural Network (CCNN) known to be fast, as the new
candidate neuron is learned just before connecting to the network,
and the weight of the hidden input nodes is frozen during the
learning. So, the weight is frequently trained at the output nodes
after each new hidden neuron has been added.

Cascade-Correlation Growing Deep Learning Neural Network
(CCG-DLNN) is a method proposed by, which uses the growing
phase at the “Growing Pruning Deep Neural Network Algorithm”
proposed by, however by training the latest hidden unit (a candidate
unit) when connecting to an existing model, and after that, the
weight of the hidden inputs are frozen [1, 6].

We proposed a method called “straight forward constructive deep
learning neural network algorithm (SFC-DLNN)” which uses the
growing phase or feed-forward at “growing pruning deep learning
neural network algorithm (GP-DLNN)”, however, by training
the latest hidden unit (a candidate unit) when connecting to an
existing model, and after that, the weights of the hidden inputs
are not frozen. Consequently, the weights of the output neurons
are constantly trained after adding each new hidden neuron as in
the CCNN algorithm. However, the difference here with the CCG-
DLNN is that firstly, the cascade architecture adds the hidden node
to the neural network each time with a maximum number per layer
and it is not changed after inserting it; secondly, it is a learning
algorithm that creates and adds a new hidden neuron based on the
cost error.

This work aims to find the best and most suitable architecture of
a Neural Network (Multi-Layer Perceptron) for a given data set.
To understand how interesting, it is, we should remind that the
Support Vector Machine’s main limit is finding “a better space”
or the transformation ∅(x) where the data is separable. As the
MLP offers the possibility to find both this transformation ∅(x)
and the parameters for the regression or classification purpose. The
stake of suitable architecture in NNs is to solve the problem of
dimensionality and to approximate a large class of functions with
regularity that the NNs can capture [7].

The remaining document is organized in the following format.
Section 2 presents, on the one-hand side, the architecture of
neural networks from simple perceptron to deep neural networks,
and on the second-hand side, it gives the SFC-DLNN algorithm
syntax and organigram. Moreover, section 2 also describes two
theorems based on the convergence state of the SFC-DLNN

algorithm and their proofs. Section 3 presents the data sets used
in the experimentation phase, gives the simulation results and, the
discussion of our results is the aim of section 4. Finally, section 5
deals with the conclusion and perspectives of the work.

Straight Forward Constructive Deep Learning Neural
Network (SFC-DLNN) algorithm
Deep Neural Network Presentation
The graphs below are the respective representations of a basic
architecture of a neural network with two layers (input and output
layers) called “simple Perceptron” (figure 1) and the deep neural
network with four layers (figure 2), namely: the input layer which
takes large volumes of input data in the form of audio files, texts,
numbers, image pixels, etc; the hidden layers liable to perform
mathematical operations, pattern analysis, feature extraction, etc;
the output layer is responsible for generating through mathematical
operations the desired output.

Figure 1: Basic Architecture of a Neural Network with a Single
Node in the Output Layer

Figure 2: Architecture of a Multi-Layer Neural Network with Two
Hidden Layers and One Output

Straight Forward Constructive Deep Learning Neural
Network ALGORITHM
The SFC-DLNN algorithm takes as input are given data set and
splits it into training and test sets. Then the training set is used to
construct the NN by training and adding new hidden units one by
one, starting with the single perceptron architecture and creating
a multi-layer structure. The test set will be used for the validation
(cross-validation) of the newly constructed model.

used in the experimentation phase, gives the simulation results and, the discussion of our results is the aim of

section 4. Finally, section 5 deals with the conclusion and perspectives of the work.

Straight Forward Constructive Deep Learning Neural Network (SFC-DLNN) algorithm

Deep Neural Network Presentation

The graphs below are the respective representations of a basic architecture of a neural network with two layers

(input and output layers) called “simple Perceptron” (figure 1) and the deep neural network with four layers

(figure 2), namely: the input layer which takes large volumes of input data in the form of audio files, texts,

numbers, image pixels, etc; the hidden layers liable to perform mathematical operations, pattern analysis,

feature extraction, etc; the output layer is responsible for generating through mathematical operations the

desired output.

Figure 1: Basic Architecture of a Neural Network with a Single Node in the Output Layer

Figure 2: Architecture of a Multi-Layer Neural Network with Two Hidden Layers and One Output

Straight Forward Constructive Deep Learning Neural Network ALGORITHM

The SFC-DLNN algorithm takes as input are given data set and splits it into training and test sets. Then the

training set is used to construct the NN by training and adding new hidden units one by one, starting with the

single perceptron architecture and creating a multi-layer structure. The test set will be used for the validation

(cross-validation) of the newly constructed model.

In the SFC-DLNN algorithm, the training and adding of new hidden units is based on the cost function.

Generally, in machine learning, we use loss functions to evaluate how well the model is to the data. The cost

function (mean of the lost function over the sample data) is optimized through the gradient method. According

to [9], we can categorize loss functions into three: regression loss functions; binary classification loss

functions, and multiclass classification loss functions. The entropy cost is a binary classification cost function

and is used for the purpose. So, in detail we can see the following input variables:

X: training data set;

M: the training data set size;

Num_iter: iteration number for the NN training;

T: the index of training step;

L: currently hidden layer index;

Adv Mach Lear Art Inte, 2022 Volume 3 | Issue 2 | 82

In the SFC-DLNN algorithm, the training and adding of new hidden
units is based on the cost function. Generally, in machine learning,
we use loss functions to evaluate how well the model is to the data.
The cost function (mean of the lost function over the sample data)
is optimized through the gradient method. According to [9], we
can categorize loss functions into three: regression loss functions;
binary classification loss functions, and multiclass classification
loss functions. The entropy cost is a binary classification cost
function and is used for the purpose. So, in detail we can see the
following input variables:

X: training data set;
M: the training data set size;
Num_iter: iteration number for the NN training;
T: the index of training step;
L: currently hidden layer index;
Wl : Matrix of the links from layers l to (l -1);
Lt: The cost function at the t step;
Eps: The threshold Error;
lr: The training rate;
ME: maximum error (which is acceptable);
Tau: adding a new hidden layer Threshold;
C: maximum of neurons possible in a layer, after which a new
layer is added.

Algorithm 1: SFC-DLNN (X; y; M; eps; ME; tau; lr)
Input: X,y, M, eps, ME, tau, lr
Output: Deep Neural Network

Begin
1. initlayer size < ------- initializeLayerSize (X; y; hidden layer

= c(1)) // return a list with the training data and lazer sizes
2. init_params < ------ initializeP arameters(X; initlayer size)
3. fwd_prop < ------- fwdPropagation(X; init params; initlayer

size)
4. cost_history = c() // declares an empty vector
5. cost_history[1]=0
6. cost < -------- computeCost(X; y; fwd prop; initlayer size)
7. back_prop < ------ backwdPropagation(X; y; fwd prop; init

params; initlayer size; cost history; i)
8. update_params < ------ updateP aramet(X; y; fwd prop; back

prop; init params; lr; initlayer size)
9. updatelayer _ize < ------ updateLayerSize(initlayer size; cost

history; i)
10. trainModel < ------ function(X; y;num iter; hidden layer;

lr) {
11. init_params < ------ update params
12. initlayer_size < ------ updatelayer size
13. for (i in 1:num iter) {
14. fwd_prop < ------ fwdPropagation(X; init params; initlayer

size)
15. cost < ------ computeCost(X; y; fwd prop; initlayer size)
16. cost history[i + 1] cost
17. back_prop < ------ backwdPropagation(X; y; fwd prop; init

params; initlayer size; cost history; i)
18. update_params < ------ updateP aramet(X; y; fwd prop;

back prop; init params; lr; initlayer size)
19. 19: init_params < ------ update_params
20. updatelayer_size < ------ updateLayerSize(initlayer size;

cost history; i)
21. initlayer_size < ------ updatelayer size }
22. classif < ------ classifun(X; y; updatelayer size; initlayer

size; cost history; fwdPropagation; Init_params; back
prop;num iter)

23. model_out < ------ list("updated params" = update params;
"cost hist" = cost history; "layersize" = updatelayer size; "fwd
prop" = fwd prop; "back prop" = back prop, "classif"=classif)

24. return (model out) }

End

Theorem 1
For neurons within the newly added neurons in the layer l (l > 1)
and the output neurons in the Straight Forward Constructive Deep
Learning Neural Network (SFC-DLNN) algorithm, there exists an
adjustment of weight such that the cost error given by the network,
after this addition of the N neurons to the l layer, is less than the
one before (i.e., Lt < Lt-1).

Adv Mach Lear Art Inte, 2022 Volume 3 | Issue 2 | 83

Proof
Let assume l=2
At iteration t, the entropy cost is defined as:

19. 19: init_params < ------ update_params

20. updatelayer_size < ------ updateLayerSize(initlayer size; cost history; i)

21. initlayer_size < ------ updatelayer size }

22. classif < ------ classifun(X; y; updatelayer size; initlayer size; cost history; fwdPropagation;

Init_params; back prop;num iter)

23. model_out < ------ list("updated params" = update params; "cost hist" = cost history; "layersize" =

updatelayer size; "fwd prop" = fwd prop; "back prop" = back prop, "classif"=classif)

24. return (model out) }

End

Theorem 1

For neurons within the newly added neurons in the layer l (l > 1) and the output neurons in the Straight

Forward Constructive Deep Learning Neural Network (SFC-DLNN) algorithm, there exists an adjustment of

weight such that the cost error given by the network, after this addition of the N neurons to the l layer, is less

than the one before (i.e., Lt < Lt-1).

Proof

Let assume l=2

At iteration t, the entropy cost is defined as:

 ∑ ())))) (())))

Knowing the sigmoid function is defined from to) , we can the following approximation:

 (()))) ()))

and ()))) (()))) ()))

also, if x is near 0, we have:)

 ⁄

 (
 ⁄)

so,

 ∑ ())))) ()))

and

 ∑) ()))

Knowing the sigmoid function σ is defined from R to σ(R)=[0,1], we can the following approximation:

19. 19: init_params < ------ update_params

20. updatelayer_size < ------ updateLayerSize(initlayer size; cost history; i)

21. initlayer_size < ------ updatelayer size }

22. classif < ------ classifun(X; y; updatelayer size; initlayer size; cost history; fwdPropagation;

Init_params; back prop;num iter)

23. model_out < ------ list("updated params" = update params; "cost hist" = cost history; "layersize" =

updatelayer size; "fwd prop" = fwd prop; "back prop" = back prop, "classif"=classif)

24. return (model out) }

End

Theorem 1

For neurons within the newly added neurons in the layer l (l > 1) and the output neurons in the Straight

Forward Constructive Deep Learning Neural Network (SFC-DLNN) algorithm, there exists an adjustment of

weight such that the cost error given by the network, after this addition of the N neurons to the l layer, is less

than the one before (i.e., Lt < Lt-1).

Proof

Let assume l=2

At iteration t, the entropy cost is defined as:

 ∑ ())))) (())))

Knowing the sigmoid function is defined from to) , we can the following approximation:

 (()))) ()))

and ()))) (()))) ()))

also, if x is near 0, we have:)

 ⁄

 (
 ⁄)

so,

 ∑ ())))) ()))

and

 ∑) ()))

Then

 ∑)

 (

))))

 ∑

)(

)))

 ∑)()))

 ∑ ()))

 ∑ ()))

 ̂̅

 ∑ ()))

 ̂̅

As all the individuals are not yet classified at the l-1 layer, we have

 ̂̅

Corollary

The first l-1 layer of the Straight Forward Constructive Deep Learning Neural Network (SFC-DLNN)

algorithm help to find the suitable initial point of convergence.

Theorem 2

There exists a layer number l (l>1) where, from this layer the Straight Forward Constructive Deep Learning

Neural Network (SFC-DLNN) algorithm converges after passing this layer.

Proof

Let the cost error Lt and the layer number l, the Lt Gradient can be defined as

)

)

In terminology, a single mathematical neuron is called perceptron. We can also refer to a Single Layer

Perceptron as “unit”.

For A Single Layer Perceptron

𝑤𝑤)

𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑜𝑜𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

As all the individuals are not yet classified at the l-1 layer, we have

Corollary
The first l-1 layer of the Straight Forward Constructive Deep
Learning Neural Network (SFC-DLNN) algorithm help to find the
suitable initial point of convergence.

Theorem 2
There exists a layer number l (l>1) where, from this layer the
Straight Forward Constructive Deep Learning Neural Network
(SFC-DLNN) algorithm converges after passing this layer.

Proof
Let the cost error Lt and the layer number l, the Lt Gradient can
be defined as

Then

 ∑)

 (

))))

 ∑

)(

)))

 ∑)()))

 ∑ ()))

 ∑ ()))

 ̂̅

 ∑ ()))

 ̂̅

As all the individuals are not yet classified at the l-1 layer, we have

 ̂̅

Corollary

The first l-1 layer of the Straight Forward Constructive Deep Learning Neural Network (SFC-DLNN)

algorithm help to find the suitable initial point of convergence.

Theorem 2

There exists a layer number l (l>1) where, from this layer the Straight Forward Constructive Deep Learning

Neural Network (SFC-DLNN) algorithm converges after passing this layer.

Proof

Let the cost error Lt and the layer number l, the Lt Gradient can be defined as

)

)

In terminology, a single mathematical neuron is called perceptron. We can also refer to a Single Layer

Perceptron as “unit”.

For A Single Layer Perceptron

𝑤𝑤)

𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑜𝑜𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

Then

 ∑)

 (

))))

 ∑

)(

)))

 ∑)()))

 ∑ ()))

 ∑ ()))

 ̂̅

 ∑ ()))

 ̂̅

As all the individuals are not yet classified at the l-1 layer, we have

 ̂̅

Corollary

The first l-1 layer of the Straight Forward Constructive Deep Learning Neural Network (SFC-DLNN)

algorithm help to find the suitable initial point of convergence.

Theorem 2

There exists a layer number l (l>1) where, from this layer the Straight Forward Constructive Deep Learning

Neural Network (SFC-DLNN) algorithm converges after passing this layer.

Proof

Let the cost error Lt and the layer number l, the Lt Gradient can be defined as

)

)

In terminology, a single mathematical neuron is called perceptron. We can also refer to a Single Layer

Perceptron as “unit”.

For A Single Layer Perceptron

𝑤𝑤)

𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑜𝑜𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

Adv Mach Lear Art Inte, 2022 Volume 3 | Issue 2 | 84

In terminology, a single mathematical neuron is called perceptron.
We can also refer to a Single Layer Perceptron as “unit”.

For A Single Layer Perceptron

Figure Architecture of a Single Layer Perceptron

• A vector input X= (X1, X2……X_n) of length N which

models the inputs of units;
• A vector of weight W= (W1, W2, ….,W_n) also of length

N, which models all the synaptic weight of the unit. Each
component Wi gives the weight of corresponding to the i'th
entry of X;

• A bias b that correspond to the activation threshold of the unit.
• For classification purpose, the cost is evaluated in term of

number of misclassified elements:

ASSUMPTION 1

If there exists R∈R and γ∈R, such that for i∈ {1,2,…,M}

Then the algorithm converges within this single neuron. This is
known as the NOVIKOV Theorem.

For A New Neuron Added In the Layer

Figure Architecture of a Neural Network with One Hidden
Neuron

In the case we add a neuron, there will be a hidden layer with
a single neuron, the backpropagation algorithm, merely use
for calculating the parameters gradient stated as dW and db,
is challenging because its depends on the NNs architecture. In
general, we use the chain rule if there is a hidden layer in the NNs
architecture and update the weights using Equation (4):

Where the learning rate is η and l >1.
The cost function of the first layer uses the input vector x and the
activation functionσ.
At iteration t, we calculate the cost

Figure Architecture of a Single Layer Perceptron

 A vector input X= (X1, X2……) of length N which models the inputs of units;

 A vector of weight W= (W1, W2, ….,) also of length N, which models all the synaptic weight of

the unit. Each component Wi gives the weight of corresponding to the entry of X;

 A bias b that correspond to the activation threshold of the unit.

 For classification purpose, the cost is evaluated in term of number of misclassified elements:

K = which((W%*%X + b)*y<0) (3)

 d

 = t(y)[i]*t(X)[i,] ; i (4)

 d = y[i] ; i (5)

 ; i pick arbitrary (6)

ASSUMPTION 1

If there exists and such that for { }
 and))

Then the algorithm converges within this single neuron. This is known as the NOVIKOV Theorem.

For A New Neuron Added In the Layer

𝑤𝑤)

Figure Architecture of a Single Layer Perceptron

 A vector input X= (X1, X2……) of length N which models the inputs of units;

 A vector of weight W= (W1, W2, ….,) also of length N, which models all the synaptic weight of

the unit. Each component Wi gives the weight of corresponding to the entry of X;

 A bias b that correspond to the activation threshold of the unit.

 For classification purpose, the cost is evaluated in term of number of misclassified elements:

K = which((W%*%X + b)*y<0) (3)

 d

 = t(y)[i]*t(X)[i,] ; i (4)

 d = y[i] ; i (5)

 ; i pick arbitrary (6)

ASSUMPTION 1

If there exists and such that for { }
 and))

Then the algorithm converges within this single neuron. This is known as the NOVIKOV Theorem.

For A New Neuron Added In the Layer

𝑤𝑤)

Figure Architecture of a Neural Network with One Hidden Neuron

In the case we add a neuron, there will be a hidden layer with a single neuron, the backpropagation algorithm,

merely use for calculating the parameters gradient stated as dW and db, is challenging because its depends on

the NNs architecture. In general, we use the chain rule if there is a hidden layer in the NNs architecture and

update the weights using Equation (4):

 = (4)

Where the learning rate is η and l >1.

The cost function of the first layer uses the input vector x and the activation function .

At iteration t, we calculate the cost

 ∑ ())

))) (5)

The gradient is calculated using the chain rule:

 (6)

 =
 ∑

)

)
)

 = ∑))

At iteration t+1, we update the parameters by

 ∑))

𝑤𝑤)

 𝑛𝑛) 𝑛𝑛) 𝑛𝑛)

Figure Architecture of a Neural Network with One Hidden Neuron

In the case we add a neuron, there will be a hidden layer with a single neuron, the backpropagation algorithm,

merely use for calculating the parameters gradient stated as dW and db, is challenging because its depends on

the NNs architecture. In general, we use the chain rule if there is a hidden layer in the NNs architecture and

update the weights using Equation (4):

 = (4)

Where the learning rate is η and l >1.

The cost function of the first layer uses the input vector x and the activation function .

At iteration t, we calculate the cost

 ∑ ())

))) (5)

The gradient is calculated using the chain rule:

 (6)

 =
 ∑

)

)
)

 = ∑))

At iteration t+1, we update the parameters by

 ∑))

𝑤𝑤)

 𝑛𝑛) 𝑛𝑛) 𝑛𝑛)

The gradient is calculated using the chain rule:

Figure Architecture of a Neural Network with One Hidden Neuron

In the case we add a neuron, there will be a hidden layer with a single neuron, the backpropagation algorithm,

merely use for calculating the parameters gradient stated as dW and db, is challenging because its depends on

the NNs architecture. In general, we use the chain rule if there is a hidden layer in the NNs architecture and

update the weights using Equation (4):

 = (4)

Where the learning rate is η and l >1.

The cost function of the first layer uses the input vector x and the activation function .

At iteration t, we calculate the cost

 ∑ ())

))) (5)

The gradient is calculated using the chain rule:

 (6)

 =
 ∑

)

)
)

 = ∑))

At iteration t+1, we update the parameters by

 ∑))

𝑤𝑤)

 𝑛𝑛) 𝑛𝑛) 𝑛𝑛)

Adv Mach Lear Art Inte, 2022 Volume 3 | Issue 2 | 85

At iteration t+1, we update the parameters by

Figure Architecture of a Neural Network with One Hidden Neuron

In the case we add a neuron, there will be a hidden layer with a single neuron, the backpropagation algorithm,

merely use for calculating the parameters gradient stated as dW and db, is challenging because its depends on

the NNs architecture. In general, we use the chain rule if there is a hidden layer in the NNs architecture and

update the weights using Equation (4):

 = (4)

Where the learning rate is η and l >1.

The cost function of the first layer uses the input vector x and the activation function .

At iteration t, we calculate the cost

 ∑ ())

))) (5)

The gradient is calculated using the chain rule:

 (6)

 =
 ∑

)

)
)

 = ∑))

At iteration t+1, we update the parameters by

 ∑))

𝑤𝑤)

 𝑛𝑛) 𝑛𝑛) 𝑛𝑛)

 ∑))

 (5)

 ∑ ())

 ∑)) (6)

By setting) ̂ (7)

We have the following:

 | |
 ∑ ̂)

 ∑ ̂)
 (8)

Let ∑ ̂)
 (9)

Then, we have

 =
 ∑ ̂)

 ∑ ̂)

 (10)

 (11)

ASSUMPTION 2

Recalling assumption 1, we assume that there exists and such that for { }
 . So, (9) gives by using the triangular inequality:

 ∑ ̂)
 ∑

 ̂) (12)

ASSUMPTIONS 3

Assume that there exist some parented vectors such that | | , and also, such that for all

 ̂)) (13)

Then,

∑ ̂))
)

Taking ∑ ̂)

 (15)

ASSUMPTION 2
Recalling assumption 1, we assume that there exists R ∈ R and γ ∈ R, such that for i ∈ {1,2,…,M} ∥ xi∥ ≤ R. So, (9) gives by using the
triangular inequality:

 ∑))

 (5)

 ∑ ())

 ∑)) (6)

By setting) ̂ (7)

We have the following:

 | |
 ∑ ̂)

 ∑ ̂)
 (8)

Let ∑ ̂)
 (9)

Then, we have

 =
 ∑ ̂)

 ∑ ̂)

 (10)

 (11)

ASSUMPTION 2

Recalling assumption 1, we assume that there exists and such that for { }
 . So, (9) gives by using the triangular inequality:

 ∑ ̂)
 ∑

 ̂) (12)

ASSUMPTIONS 3

Assume that there exist some parented vectors such that | | , and also, such that for all

 ̂)) (13)

Then,

∑ ̂))
)

Taking ∑ ̂)

 (15)

ASSUMPTIONS 3
Assume that there exist some parented vectors w* such that ||w* ||=1, and also, γ>0 such that for all t=1,…..,n

 ∑))

 (5)

 ∑ ())

 ∑)) (6)

By setting) ̂ (7)

We have the following:

 | |
 ∑ ̂)

 ∑ ̂)
 (8)

Let ∑ ̂)
 (9)

Then, we have

 =
 ∑ ̂)

 ∑ ̂)

 (10)

 (11)

ASSUMPTION 2

Recalling assumption 1, we assume that there exists and such that for { }
 . So, (9) gives by using the triangular inequality:

 ∑ ̂)
 ∑

 ̂) (12)

ASSUMPTIONS 3

Assume that there exist some parented vectors such that | | , and also, such that for all

 ̂)) (13)

Then,

∑ ̂))
)

Taking ∑ ̂)

 (15)

Adv Mach Lear Art Inte, 2022 Volume 3 | Issue 2 | 86

 (16)

From (14), we have,

By induction, (17)

Knowing that

 | | | |)
Then

 (19)

Because we assumed

Furthermore, from (11) we have :

 (20)

While

 (21)

By induction, we get:
 (22)

By the asumption 2, we obtain

 (23)

(19) and (23) give (24)

Finally gives

 (25)

For the following architecture,

Input

 𝑛𝑛)

 𝑛𝑛)

𝑊𝑊)
𝑊𝑊)

 𝑛𝑛)

output

 𝑛𝑛)

From (14), we have, u∙w*>nγ

By induction,
Knowing that

 (16)

From (14), we have,

By induction, (17)

Knowing that

 | | | |)
Then

 (19)

Because we assumed

Furthermore, from (11) we have :

 (20)

While

 (21)

By induction, we get:
 (22)

By the asumption 2, we obtain

 (23)

(19) and (23) give (24)

Finally gives

 (25)

For the following architecture,

Input

 𝑛𝑛)

 𝑛𝑛)

𝑊𝑊)
𝑊𝑊)

 𝑛𝑛)

output

 𝑛𝑛)

Then

 (16)

From (14), we have,

By induction, (17)

Knowing that

 | | | |)
Then

 (19)

Because we assumed

Furthermore, from (11) we have :

 (20)

While

 (21)

By induction, we get:
 (22)

By the asumption 2, we obtain

 (23)

(19) and (23) give (24)

Finally gives

 (25)

For the following architecture,

Input

 𝑛𝑛)

 𝑛𝑛)

𝑊𝑊)
𝑊𝑊)

 𝑛𝑛)

output

 𝑛𝑛)

Because we assumed ||w* | |2=1
Furthermore, from (11) we have :

 (16)

From (14), we have,

By induction, (17)

Knowing that

 | | | |)
Then

 (19)

Because we assumed

Furthermore, from (11) we have :

 (20)

While

 (21)

By induction, we get:
 (22)

By the asumption 2, we obtain

 (23)

(19) and (23) give (24)

Finally gives

 (25)

For the following architecture,

Input

 𝑛𝑛)

 𝑛𝑛)

𝑊𝑊)
𝑊𝑊)

 𝑛𝑛)

output

 𝑛𝑛)

 (16)

From (14), we have,

By induction, (17)

Knowing that

 | | | |)
Then

 (19)

Because we assumed

Furthermore, from (11) we have :

 (20)

While

 (21)

By induction, we get:
 (22)

By the asumption 2, we obtain

 (23)

(19) and (23) give (24)

Finally gives

 (25)

For the following architecture,

Input

 𝑛𝑛)

 𝑛𝑛)

𝑊𝑊)
𝑊𝑊)

 𝑛𝑛)

output

 𝑛𝑛)

 (16)

From (14), we have,

By induction, (17)

Knowing that

 | | | |)
Then

 (19)

Because we assumed

Furthermore, from (11) we have :

 (20)

While

 (21)

By induction, we get:
 (22)

By the asumption 2, we obtain

 (23)

(19) and (23) give (24)

Finally gives

 (25)

For the following architecture,

Input

 𝑛𝑛)

 𝑛𝑛)

𝑊𝑊)
𝑊𝑊)

 𝑛𝑛)

output

 𝑛𝑛)

Figure Architecture of a Neural Network with One Hidden Neuron

The cost function of the second layer uses as input vector, the output of the previous layer which is the activated vector a(1).

Figure Architecture of a Neural Network with One Hidden Neuron

The cost function of the second layer uses as input vector, the output of the previous layer which is the

activated vector a(1).

 ∑ ((

)))
) (

))) (26)

In fact, the first assumption remains valid because) and the gradient of the cost function can be

calculated with the same previous formulae.

For A Two Neurons Added In the Hidden Layer

Figure Architecture of a Neural Network with One Hidden Layer of Two Neurons

As the final neuron output dimension is (1, n) and the activation elements , the formulae of the cos

function does not change, this is while the first assumption remains valid. Therefore, we have the result by

maintaining the second assumption.

In general, for the straightforward growing algorithm the number of neurons in the current layer when

changing, brings a change in the current weight parameters but the cost is the same.

For

 ∑ ()
)))) (()

))))

We also show, that
) converge as in the first case by writing

𝑤𝑤)

𝑤𝑤 𝐴𝐴)

 𝑛𝑛)
 𝑛𝑛)

 𝑛𝑛)

 𝑛𝑛)

output

In fact, the first assumption remains valid because a(1) ∈[0,1] and the gradient of the cost function ∂L/∂w can be calculated with the
same previous formulae.

Adv Mach Lear Art Inte, 2022 Volume 3 | Issue 2 | 87

For A Two Neurons Added In the Hidden Layer

Figure Architecture of a Neural Network with One Hidden Neuron

The cost function of the second layer uses as input vector, the output of the previous layer which is the

activated vector a(1).

 ∑ ((

)))
) (

))) (26)

In fact, the first assumption remains valid because) and the gradient of the cost function can be

calculated with the same previous formulae.

For A Two Neurons Added In the Hidden Layer

Figure Architecture of a Neural Network with One Hidden Layer of Two Neurons

As the final neuron output dimension is (1, n) and the activation elements , the formulae of the cos

function does not change, this is while the first assumption remains valid. Therefore, we have the result by

maintaining the second assumption.

In general, for the straightforward growing algorithm the number of neurons in the current layer when

changing, brings a change in the current weight parameters but the cost is the same.

For

 ∑ ()
)))) (()

))))

We also show, that
) converge as in the first case by writing

𝑤𝑤)

𝑤𝑤 𝐴𝐴)

 𝑛𝑛)
 𝑛𝑛)

 𝑛𝑛)

 𝑛𝑛)

output

Figure Architecture of a Neural Network with One Hidden Layer of Two Neurons

As the final neuron output dimension is (1, n) and the activation elementsa_i∈[o,1], the formulae of the cos function does not change,
this is while the first assumption remains valid. Therefore, we have the result by maintaining the second assumption.

In general, for the straightforward growing algorithm the number of neurons in the current layer when changing, brings a change in the
current weight parameters but the cost is the same.

For l layer in the NNs,

Figure Architecture of a Neural Network with One Hidden Neuron

The cost function of the second layer uses as input vector, the output of the previous layer which is the

activated vector a(1).

 ∑ ((

)))
) (

))) (26)

In fact, the first assumption remains valid because) and the gradient of the cost function can be

calculated with the same previous formulae.

For A Two Neurons Added In the Hidden Layer

Figure Architecture of a Neural Network with One Hidden Layer of Two Neurons

As the final neuron output dimension is (1, n) and the activation elements , the formulae of the cos

function does not change, this is while the first assumption remains valid. Therefore, we have the result by

maintaining the second assumption.

In general, for the straightforward growing algorithm the number of neurons in the current layer when

changing, brings a change in the current weight parameters but the cost is the same.

For

 ∑ ()
)))) (()

))))

We also show, that
) converge as in the first case by writing

𝑤𝑤)

𝑤𝑤 𝐴𝐴)

 𝑛𝑛)
 𝑛𝑛)

 𝑛𝑛)

 𝑛𝑛)

output

We also show, that wk
(l) converge as in the first case by writing

)

)

Where ∑
) ̂)

Theorem 3

The SFC-DLNN construct a sequence of vector space (Hi) , such that and there exists
{ } in which SFC-DLNN gives the minimum risk or the best learning rate.

Proof

The Task Now Is to Calculate the VC-dimension of the SFC-DLNN Algorithm

We start from the Mirchandani and Cao (1989) who calculate the VC dimension of a PMC with one hidden

layer and generalize. Knowing that, MLP’s output can be expressed as product of matrices because the

activation function does’nt change the weight matrices structure [10].

Let us consider))) where is the number of

row and d the number of column, which is also the input vector space dimension. By taking the product

respectful to the rule of matrices product:

)

Where k is the number of layer within the neural network.

Then we apply the Mirchandani and Cao (1989) [10] theorem on the W matrix and the result gives the VC-

dimension of the SFC-DLNN algorithm:

) ∑
)

) is the maximum number of linearly separable regions in by the SFC-DLNN

algorithm.

Experimental Results

In this part, we first present the data set used and the simulation results we obtain from the data set while using

the Straight Forward Constructive Deep Learning Neural Network.

)

)

Where ∑
) ̂)

Theorem 3

The SFC-DLNN construct a sequence of vector space (Hi) , such that and there exists
{ } in which SFC-DLNN gives the minimum risk or the best learning rate.

Proof

The Task Now Is to Calculate the VC-dimension of the SFC-DLNN Algorithm

We start from the Mirchandani and Cao (1989) who calculate the VC dimension of a PMC with one hidden

layer and generalize. Knowing that, MLP’s output can be expressed as product of matrices because the

activation function does’nt change the weight matrices structure [10].

Let us consider))) where is the number of

row and d the number of column, which is also the input vector space dimension. By taking the product

respectful to the rule of matrices product:

)

Where k is the number of layer within the neural network.

Then we apply the Mirchandani and Cao (1989) [10] theorem on the W matrix and the result gives the VC-

dimension of the SFC-DLNN algorithm:

) ∑
)

) is the maximum number of linearly separable regions in by the SFC-DLNN

algorithm.

Experimental Results

In this part, we first present the data set used and the simulation results we obtain from the data set while using

the Straight Forward Constructive Deep Learning Neural Network.

Theorem 3
The SFC-DLNN construct a sequence of vector space (Hi)1≤i≤n,
such that Hi+1 ⊂ Hi and there exists l ∈{1,…,n} in which SFC-
DLNN gives the minimum risk or the best learning rate.

Proof
The Task Now Is to Calculate the VC-dimension of the SFC-
DLNN Algorithm
We start from the Mirchandani and Cao (1989) who calculate the
VC dimension of a PMC with one hidden layer and generalize.
Knowing that, MLP’s output can be expressed as product of
matrices because the activation function does’nt change the weight
matrices structure [10].

Let us consider W1 ∈ MR (m1,d),W2 ∈ MR (m2,m1),…,Wk ∈ MR
(mk,mk-1) where m1 is the number of row and d the number of
column, which is also the input vector space dimension. By taking
the product respectful to the rule of matrices product:

Where k is the number of layer within the neural network.

Then we apply the Mirchandani and Cao (1989) [10] theorem on
the W matrix and the result gives the VC-dimension of the SFC-
DLNN algorithm:

R(m1,m2,…,mk,d) is the maximum number of linearly separable
regions in R^d by the SFC-DLNN algorithm.

Experimental Results
In this part, we first present the data set used and the simulation
results we obtain from the data set while using the Straight Forward
Constructive Deep Learning Neural Network.

)

)

Where ∑
) ̂)

Theorem 3

The SFC-DLNN construct a sequence of vector space (Hi) , such that and there exists
{ } in which SFC-DLNN gives the minimum risk or the best learning rate.

Proof

The Task Now Is to Calculate the VC-dimension of the SFC-DLNN Algorithm

We start from the Mirchandani and Cao (1989) who calculate the VC dimension of a PMC with one hidden

layer and generalize. Knowing that, MLP’s output can be expressed as product of matrices because the

activation function does’nt change the weight matrices structure [10].

Let us consider))) where is the number of

row and d the number of column, which is also the input vector space dimension. By taking the product

respectful to the rule of matrices product:

)

Where k is the number of layer within the neural network.

Then we apply the Mirchandani and Cao (1989) [10] theorem on the W matrix and the result gives the VC-

dimension of the SFC-DLNN algorithm:

) ∑
)

) is the maximum number of linearly separable regions in by the SFC-DLNN

algorithm.

Experimental Results

In this part, we first present the data set used and the simulation results we obtain from the data set while using

the Straight Forward Constructive Deep Learning Neural Network.

)

)

Where ∑
) ̂)

Theorem 3

The SFC-DLNN construct a sequence of vector space (Hi) , such that and there exists
{ } in which SFC-DLNN gives the minimum risk or the best learning rate.

Proof

The Task Now Is to Calculate the VC-dimension of the SFC-DLNN Algorithm

We start from the Mirchandani and Cao (1989) who calculate the VC dimension of a PMC with one hidden

layer and generalize. Knowing that, MLP’s output can be expressed as product of matrices because the

activation function does’nt change the weight matrices structure [10].

Let us consider))) where is the number of

row and d the number of column, which is also the input vector space dimension. By taking the product

respectful to the rule of matrices product:

)

Where k is the number of layer within the neural network.

Then we apply the Mirchandani and Cao (1989) [10] theorem on the W matrix and the result gives the VC-

dimension of the SFC-DLNN algorithm:

) ∑
)

) is the maximum number of linearly separable regions in by the SFC-DLNN

algorithm.

Experimental Results

In this part, we first present the data set used and the simulation results we obtain from the data set while using

the Straight Forward Constructive Deep Learning Neural Network.

Adv Mach Lear Art Inte, 2022 Volume 3 | Issue 2 | 88www.opastonline.com

Data Presentation
The data set used in this work is the sample of 1000 points (two
dimension vectors) from the uniform distribution and to which we

associate their label (1 or -1). In this set, we use 80 percent of the
data to train the model and 20 percent as the test set.

Data Presentation

The data set used in this work is the sample of 1000 points (two dimension vectors) from the uniform

distribution and to which we associate their label (1 or -1). In this set, we use 80 percent of the data to train the

model and 20 percent as the test set.

Simulatio

n Results

To train the deep neural network, we generate a sample points from uniform distribution probability and we

use the following parameters: learning_rate = 0.09 and Eps = 10E-8

Number

Iteration

Minimum

cost

Mean cost Maximum

cost

Number of

Hidden Layer

Number of Neuron

in the last Layer

5 -32.67334 -23.5387 0 2 1

10 -44.1937 -15.08176 1.052235 3 2

15 -52.87325 -10.9766 1.07426 4 3

20 -41.2456 -7.211606 1.124532 5 4

25 -51.86505 -6.390297 1.04339 7 1

30 -41.01809 -4.254701 1.10818 8 2

35 -50.48194 -4.111634 1.51614 9 3

40 -41.7909 -3.332859 1.330655 10 4

45 -40.8602 -2.677842 1.494754 12 1

50 -40.35381 -2.434314 1.420828 13 2

Simulation Results
To train the deep neural network, we generate a sample points from uniform distribution probability and we use the following parameters:
learning_rate = 0.09 and Eps = 10E-8

Number Iteration Minimum cost Mean cost Maximum cost Number of Hidden Layer Number of Neuron in the last
Layer

5 -32.67334 -23.5387 0 2 1
10 -44.1937 -15.08176 1.052235 3 2
15 -52.87325 -10.9766 1.07426 4 3
20 -41.2456 -7.211606 1.124532 5 4
25 -51.86505 -6.390297 1.04339 7 1
30 -41.01809 -4.254701 1.10818 8 2
35 -50.48194 -4.111634 1.51614 9 3
40 -41.7909 -3.332859 1.330655 10 4
45 -40.8602 -2.677842 1.494754 12 1
50 -40.35381 -2.434314 1.420828 13 2

https://www.opastonline.com/

Adv Mach Lear Art Inte, 2022 Volume 3 | Issue 2 | 89

Stati

stics

Mea

sure

s of Learning Model Prediction

Stati

stics

Mea

sure

s of Learning Model Prediction

Stati

stics

Mea

sure

s of Learning Model Prediction

Statistics Measures of Learning Model Prediction

Table 3: Consensus Confusion Matrix

 Predicted

Accuracy

True False

Positif TP = 0 FP = 33

Negatif FN = 0 TN = 167

The performance, over all the available models ignoring applicability domain considerations gives 0 True

Positive (TP), 0 False Negative (FN), 33 False Positive (FP) and 167 True Negative (TN) individuals in the

data set.

Table 4: Indicators Performance Matrix

Number of records precision recall F1 Accuracy specificity

1000

Training

800

0 0 0 0.835 0.835

Test

200

The AUC (Area under the Roc Curve) is the function giving the sensitivity (Y-axis) by using 1-specificity (X-

axis).

TP : True positive

TN : True negative

FN : False Negative

FP : False positive

Table 3: Consensus Confusion Matrix

Predicted Accuracy True False
Positif TP = 0 FP = 33
Negatif FN = 0 TN = 167

The performance, over all the available models ignoring applicability domain considerations gives 0 True Positive (TP), 0 False Negative
(FN), 33 False Positive (FP) and 167 True Negative (TN) individuals in the data set.

Adv Mach Lear Art Inte, 2022 Volume 3 | Issue 2 | 90

Table 4: Indicators Performance Matrix

Number of records precision recall F1 Accuracy specificity
1000 Training

 800
0 0 0 0.835 0.835

Test
200

The AUC (Area under the Roc Curve) is the function giving the
sensitivity (Y-axis) by using 1-specificity (X-axis).

Conclusion
The aim of this work is to find the best and suitable architecture
of a Neural Network (Multi-Layer Perceptron) for a given data
set. To understand how interesting, it is, we should remind that
the Support Vector Machine main limit is finding “a better space”
or the transformation ∅(x) where the data is separable. As the
MLP offers the possibility to find both this transformation ∅(x)
and the parameters for the regression or classification purpose. The
stake of suitable architecture in NNs is to solve the problem of
dimensionality and to approximate a large class of function with
regularity that the NNs can capture [7-10].

We show in the first theorem that there exists an adjustment of
weight such that the cost error given by the network, after this
addition of the N neurons to the l layer, is less than the one before.
In the second theorem, we show that there exists a layer number
l (l>1) where, from this layer the Straight Forward Constructive
Deep Learning Neural Network (SFC-DLNN) algorithm converges
after passing this layer. We give Vapnik- Chervonenkys property
of the SFC-DLNN by applying the [11-16].

We draw the cost function graphs (minimum cost, mean cost,
maximum cost) using the number of iteration (5, 10, 15, 20, 25,
30, 35, 40, 45, 50) and observe that the all have the “square root
form’’. We also find that these curves decrease before the fifth
iteration and increase after.

We obtain from our builded model (SFC-DLNN) an accuracy and
precision of 83.5% from a simulated data set using the uniform
distribution. This is not the best but is enough to approve the
model prediction capacity.

However extension can be done on this work by replacing the
sigmoid function with another activation because as we can see,
this sigmoid activation function gives very closed value after a
certain number of iteration. This has an influence on the precision,
F1 and recall statistics, which are equal to 0.

References
1. Mohamed, S. A. E. M., Mohamed, M. H., & Farghally, M. F.

(2021). A New Cascade-Correlation Growing Deep Learning
Neural Network Algorithm. Algorithms, 14(5), 158.

2. Katanforoosh & Kunin,. (2019). "Initializing neural
networks", deeplearning.ai

3. Ananthram, A. (2018). Random initialization for neural
networks: a thing of the past. Towards Data Science.

4. Glorot, X., & Bengio, Y. (2010, March). Understanding the
difficulty of training deep feedforward neural networks. In
Proceedings of the thirteenth international conference on
artificial intelligence and statistics (pp. 249-256). JMLR
Workshop and Conference Proceedings.

5. Huemer, A., Elizondo, D., & Gongora, M. (2009). A
Constructive Neural Network for Evolving a Machine
Controller in Real-Time. In Constructive Neural Networks
(pp. 225-242). Springer, Berlin, Heidelberg.

6. Zemouri, R., Omri, N., Fnaiech, F., Zerhouni, N., & Fnaiech,
N. (2020). A new growing pruning deep learning neural
network algorithm (GP-DLNN). Neural Computing and
Applications, 32(24), 18143-18159.

7. J.E Campagne,. (2020). l’apprentissage face à la malédiction
de la grande dimension, Notes et commentaires au sujet des
conférences de S. Mallat du Collège de France.

8. Novikov A. On convergence proofs for perceptrons,
Symposium on Mathematical Theory of Automata,
Polytechnic Institute of Brooklyn, april 1962.

9. Khyati Mahendru, A Detailed Guide to 7 Loss Functions for
Machine Learning Algorithms with Python Code.

10. Mirchandani, G., & Cao, W. (1989). On hidden nodes for
neural nets. IEEE Transactions on Circuits and systems,
36(5), 661-664.

11. Nie, F., Hu, Z., & Li, X. (2018). An investigation for loss
functions widely used in machine learning. Communications
in Information and Systems, 18(1), 37-52.

12. Sheela, K. G., & Deepa, S. N. (2013). Review on methods to fix
number of hidden neurons in neural networks. Mathematical
problems in engineering, 2013.

13. Li, J. Y., Chow, T. W., & Yu, Y. L. (1995, December). The
estimation theory and optimization algorithm for the number
of hidden units in the higher-order feedforward neural network.
In Proceedings of ICNN'95-International Conference on
Neural Networks (Vol. 3, pp. 1229-1233). IEEE.

14. Xu, S., & Chen, L. (2008). A novel approach for determining
the optimal number of hidden layer neurons for FNN’s and its
application in data mining.

15. Hunter, D., Yu, H., Pukish III, M. S., Kolbusz, J., &
Wilamowski, B. M. (2012). Selection of proper neural
network sizes and architectures—A comparative study. IEEE

https://www.mdpi.com/1999-4893/14/5/158
https://www.mdpi.com/1999-4893/14/5/158
https://www.mdpi.com/1999-4893/14/5/158
https://www.deeplearning.ai/ai-notes/initialization/
https://www.deeplearning.ai/ai-notes/initialization/
https://towardsdatascience.com/random-initialization-for-neural-networks-a-thing-of-the-past-bfcdd806bf9e
https://towardsdatascience.com/random-initialization-for-neural-networks-a-thing-of-the-past-bfcdd806bf9e
https://proceedings.mlr.press/v9/glorot10a/glorot10a.pdf
https://proceedings.mlr.press/v9/glorot10a/glorot10a.pdf
https://proceedings.mlr.press/v9/glorot10a/glorot10a.pdf
https://proceedings.mlr.press/v9/glorot10a/glorot10a.pdf
https://proceedings.mlr.press/v9/glorot10a/glorot10a.pdf
https://link.springer.com/chapter/10.1007/978-3-642-04512-7_12
https://link.springer.com/chapter/10.1007/978-3-642-04512-7_12
https://link.springer.com/chapter/10.1007/978-3-642-04512-7_12
https://link.springer.com/chapter/10.1007/978-3-642-04512-7_12
https://www.researchgate.net/profile/Ryad-Zemouri/publication/333367179_A_new_growing_pruning_deep_learning_neural_network_algorithm_GP-DLNN/links/5ce8af6492851c4eabbc4f76/A-new-growing-pruning-deep-learning-neural-network-algorithm-GP-DLNN.pdf
https://www.researchgate.net/profile/Ryad-Zemouri/publication/333367179_A_new_growing_pruning_deep_learning_neural_network_algorithm_GP-DLNN/links/5ce8af6492851c4eabbc4f76/A-new-growing-pruning-deep-learning-neural-network-algorithm-GP-DLNN.pdf
https://www.researchgate.net/profile/Ryad-Zemouri/publication/333367179_A_new_growing_pruning_deep_learning_neural_network_algorithm_GP-DLNN/links/5ce8af6492851c4eabbc4f76/A-new-growing-pruning-deep-learning-neural-network-algorithm-GP-DLNN.pdf
https://www.researchgate.net/profile/Ryad-Zemouri/publication/333367179_A_new_growing_pruning_deep_learning_neural_network_algorithm_GP-DLNN/links/5ce8af6492851c4eabbc4f76/A-new-growing-pruning-deep-learning-neural-network-algorithm-GP-DLNN.pdf
https://www.college-de-france.fr/site/stephane-mallat/course-2017-2018.htm
https://www.college-de-france.fr/site/stephane-mallat/course-2017-2018.htm
https://www.college-de-france.fr/site/stephane-mallat/course-2017-2018.htm
https://cs.uwaterloo.ca/~y328yu/classics/novikoff.pdf
https://cs.uwaterloo.ca/~y328yu/classics/novikoff.pdf
https://cs.uwaterloo.ca/~y328yu/classics/novikoff.pdf
https://www.analyticsvidhya.com/blog/2019/08/detailed-guide-7-loss-functions-machine-learning-python-code/
https://www.analyticsvidhya.com/blog/2019/08/detailed-guide-7-loss-functions-machine-learning-python-code/
https://ieeexplore.ieee.org/document/31313
https://ieeexplore.ieee.org/document/31313
https://ieeexplore.ieee.org/document/31313
https://www.intlpress.com/site/pub/files/_fulltext/journals/cis/2018/0018/0001/CIS-2018-0018-0001-a002.pdf
https://www.intlpress.com/site/pub/files/_fulltext/journals/cis/2018/0018/0001/CIS-2018-0018-0001-a002.pdf
https://www.intlpress.com/site/pub/files/_fulltext/journals/cis/2018/0018/0001/CIS-2018-0018-0001-a002.pdf
https://www.hindawi.com/journals/mpe/2013/425740/
https://www.hindawi.com/journals/mpe/2013/425740/
https://www.hindawi.com/journals/mpe/2013/425740/
https://ieeexplore.ieee.org/document/487330
https://ieeexplore.ieee.org/document/487330
https://ieeexplore.ieee.org/document/487330
https://ieeexplore.ieee.org/document/487330
https://ieeexplore.ieee.org/document/487330
https://eprints.utas.edu.au/6995/1/02-au-xu.pdf
https://eprints.utas.edu.au/6995/1/02-au-xu.pdf
https://eprints.utas.edu.au/6995/1/02-au-xu.pdf
http://Hunter, D., Yu, H., Pukish III, M. S., Kolbusz, J., & Wilamowski, B. M. (2012). Selection of proper
http://Hunter, D., Yu, H., Pukish III, M. S., Kolbusz, J., & Wilamowski, B. M. (2012). Selection of proper
http://Hunter, D., Yu, H., Pukish III, M. S., Kolbusz, J., & Wilamowski, B. M. (2012). Selection of proper

Adv Mach Lear Art Inte, 2022 Volume 3 | Issue 2 | 91

Copyright: ©2022 Ndom Francis Rollin. This is an open-access article
distributed under the terms of the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are credited.

Transactions on Industrial Informatics, 8(2), 228-240.
16. Kostadin Yotov, Emil Hadzhikolev, Stanka Hadzhikoleva.

Determining the Number of Neurons in Arti_cial Neural
Networks for Approximation, Trained with Algorithms Using
the Jacobi Matrix. TEM Journal.

https://opastpublishers.com

http://Hunter, D., Yu, H., Pukish III, M. S., Kolbusz, J., & Wilamowski, B. M. (2012). Selection of proper
https://www.researchgate.net/publication/347287055_Determining_the_Number_of_Neurons_in_Artificial_Neural_Networks_for_Approximation_Trained_with_Algorithms_Using_the_Jacobi_Matrix
https://www.researchgate.net/publication/347287055_Determining_the_Number_of_Neurons_in_Artificial_Neural_Networks_for_Approximation_Trained_with_Algorithms_Using_the_Jacobi_Matrix
https://www.researchgate.net/publication/347287055_Determining_the_Number_of_Neurons_in_Artificial_Neural_Networks_for_Approximation_Trained_with_Algorithms_Using_the_Jacobi_Matrix
https://www.researchgate.net/publication/347287055_Determining_the_Number_of_Neurons_in_Artificial_Neural_Networks_for_Approximation_Trained_with_Algorithms_Using_the_Jacobi_Matrix

