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Abstract
Straight Forward Constructive Deep Learning Neural Network (SFC-DLNN) algorithm is a new architecture-
based algorithm for artificial neural networks. Rather than simply adjusting the weights in a fixed topology 
network, SFC-DLNN starts with a minimal topology (perceptron), then builds up their network by gradually 
trains and adds new nodes one by one, creating multiple layers’ network. Once a unit has been added to the 
network, the weights of the new architecture are generated. This unit then stands as a permanent detector of 
features in the network, and a more complex feature space is then created where the data is likely to be linearly 
separable. The SFC-DLNN algorithm has many advantages over existing ones: it has good learning speed, the 
network determines its topology size, and the structures it has built is retained after the training stage.

We obtain from our built model (SFC-DLNN) an accuracy and specificity of 83:5% from a simulated data set 
using the uniform distribution. This is not the best but is enough to approve the model prediction capacity.
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Introduction
Deep learning is generally considered a breakthrough technology 
in the last decade. It is a growing trend in general data analysis 
and relies on artificial neural networks, which are computational 
models composed of several layers programmed “neuron” (single 
programmed “neuron” is known as Perceptron and multiply 
programmed “neuron” as Multi-Layer Perceptron (MLP)). 

Indeed, MLP is a Deep Neural Network (DNN) that uses the 
feedforward mode of information now very popular in many 
applications because of its stable and strong architecture used in 
several available training algorithms.

These networks however encounter some problems when their 
depth rises with a lot of hidden layers and several links between 
them. Irregular initialization has an impact on the convergence 
process because it can slow down or even completely stall the 

convergence process. Therefore, network initialization is one of 
the major problems faced by DNNs [1-4]. The following problem 
is the difficulty of discovering a suitable network architecture 
that can give good accuracy and better success in generalization. 
Although many reasons can push for under fitting or overfitting 
neural network models, one of these is the unsuitable architecture 
of the network. Thus, network architecture sizing is required for 
better performance in generalization and fast convergence of the 
training algorithm.  

The lack of knowledge on some problems bearing a huge amount 
of data has made a neural network with a fixed architecture less 
preferable than a constructive one that performs dynamically the 
neural network architecture. So, the network architecture is self-
built during the training process although requiring some external 
parameters like the maximum number of neurons per layer.
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By definition, a constructive algorithm starts a neural network 
with a limited number of hidden layers, neurons, and links, then 
gradually attaches hidden nodes and weight until an optimal 
structure is identified. There are usually used for classification 
problems and have been shown to result in good architecture 
shaping and faster learning [5].

In this class of constructive algorithms, we find Cascade-
Correlation Neural Network (CCNN) known to be fast, as the new 
candidate neuron is learned just before connecting to the network, 
and the weight of the hidden input nodes is frozen during the 
learning. So, the weight is frequently trained at the output nodes 
after each new hidden neuron has been added. 

Cascade-Correlation Growing Deep Learning Neural Network 
(CCG-DLNN) is a method proposed by, which uses the growing 
phase at the “Growing Pruning Deep Neural Network Algorithm” 
proposed by, however by training the latest hidden unit (a candidate 
unit) when connecting to an existing model, and after that, the 
weight of the hidden inputs are frozen [1, 6].

We proposed a method called “straight forward constructive deep 
learning neural network algorithm (SFC-DLNN)” which uses the 
growing phase or feed-forward at “growing pruning deep learning 
neural network algorithm (GP-DLNN)”, however, by training 
the latest hidden unit (a candidate unit) when connecting to an 
existing model, and after that, the weights of the hidden inputs 
are not frozen. Consequently, the weights of the output neurons 
are constantly trained after adding each new hidden neuron as in 
the CCNN algorithm. However, the difference here with the CCG-
DLNN is that firstly, the cascade architecture adds the hidden node 
to the neural network each time with a maximum number per layer 
and it is not changed after inserting it; secondly, it is a learning 
algorithm that creates and adds a new hidden neuron based on the 
cost error. 

This work aims to find the best and most suitable architecture of 
a Neural Network (Multi-Layer Perceptron) for a given data set. 
To understand how interesting, it is, we should remind that the 
Support Vector Machine’s main limit is finding “a better space” 
or the transformation ∅(x) where the data is separable. As the 
MLP offers the possibility to find both this transformation ∅(x) 
and the parameters for the regression or classification purpose. The 
stake of suitable architecture in NNs is to solve the problem of 
dimensionality and to approximate a large class of functions with 
regularity that the NNs can capture [7].

The remaining document is organized in the following format. 
Section 2 presents, on the one-hand side, the architecture of 
neural networks from simple perceptron to deep neural networks, 
and on the second-hand side, it gives the SFC-DLNN algorithm 
syntax and organigram. Moreover, section 2 also describes two 
theorems based on the convergence state of the SFC-DLNN 

algorithm and their proofs. Section 3 presents the data sets used 
in the experimentation phase, gives the simulation results and, the 
discussion of our results is the aim of section 4. Finally, section 5 
deals with the conclusion and perspectives of the work.

Straight Forward Constructive Deep Learning Neural 
Network (SFC-DLNN) algorithm
Deep Neural Network Presentation
The graphs below are the respective representations of a basic 
architecture of a neural network with two layers (input and output 
layers) called “simple Perceptron” (figure 1) and the deep neural 
network with four layers (figure 2), namely: the input layer which 
takes large volumes of input data in the form of audio files, texts, 
numbers, image pixels, etc; the hidden layers liable to perform 
mathematical operations, pattern analysis, feature extraction, etc; 
the output layer is responsible for generating through mathematical 
operations the desired output.

Figure 1: Basic Architecture of a Neural Network with a Single 
Node in the Output Layer

Figure 2: Architecture of a Multi-Layer Neural Network with Two 
Hidden Layers and One Output

Straight Forward Constructive Deep Learning Neural 
Network ALGORITHM
The SFC-DLNN algorithm takes as input are given data set and 
splits it into training and test sets. Then the training set is used to 
construct the NN by training and adding new hidden units one by 
one, starting with the single perceptron architecture and creating 
a multi-layer structure. The test set will be used for the validation 
(cross-validation) of the newly constructed model.

used in the experimentation phase, gives the simulation results and, the discussion of our results is the aim of 
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Straight Forward Constructive Deep Learning Neural Network ALGORITHM 

The SFC-DLNN algorithm takes as input are given data set and splits it into training and test sets. Then the 

training set is used to construct the NN by training and adding new hidden units one by one, starting with the 

single perceptron architecture and creating a multi-layer structure. The test set will be used for the validation 

(cross-validation) of the newly constructed model. 

 

In the SFC-DLNN algorithm, the training and adding of new hidden units is based on the cost function. 

Generally, in machine learning, we use loss functions to evaluate how well the model is to the data. The cost 

function (mean of the lost function over the sample data) is optimized through the gradient method. According 

to [9], we can categorize loss functions into three: regression loss functions; binary classification loss 

functions, and multiclass classification loss functions. The entropy cost is a binary classification cost function 

and is used for the purpose. So, in detail we can see the following input variables: 

 

X: training data set; 

M: the training data set size; 

Num_iter: iteration number for the NN training; 

T: the index of training step; 

L: currently hidden layer index; 
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In the SFC-DLNN algorithm, the training and adding of new hidden 
units is based on the cost function. Generally, in machine learning, 
we use loss functions to evaluate how well the model is to the data. 
The cost function (mean of the lost function over the sample data) 
is optimized through the gradient method. According to [9], we 
can categorize loss functions into three: regression loss functions; 
binary classification loss functions, and multiclass classification 
loss functions. The entropy cost is a binary classification cost 
function and is used for the purpose. So, in detail we can see the 
following input variables:

X: training data set;
M: the training data set size;
Num_iter: iteration number for the NN training;
T: the index of training step;
L: currently hidden layer index;
Wl : Matrix of the links from layers l to (l -1);
Lt: The cost function at the t step;
Eps: The threshold Error;
lr: The training rate;
ME: maximum error (which is acceptable);
Tau: adding a new hidden layer Threshold;
C: maximum of neurons possible in a layer, after which a new 
layer is added.

Algorithm 1: SFC-DLNN (X; y; M; eps; ME; tau; lr)
Input: X,y, M, eps, ME, tau, lr
Output: Deep Neural Network

Begin
1.	 initlayer size < -------  initializeLayerSize (X; y; hidden layer 

= c(1)) // return a list with the training data and lazer sizes
2.	 init_params     < ------ initializeP arameters(X; initlayer size)
3.	 fwd_prop  < -------    fwdPropagation(X; init params; initlayer 

size)
4.	 cost_history = c() // declares an empty vector
5.	 cost_history[1]=0
6.	 cost   < --------    computeCost(X; y; fwd prop; initlayer size) 
7.	 back_prop  < ------   backwdPropagation(X; y; fwd prop; init 

params; initlayer size; cost history; i)
8.	 update_params  < ------  updateP aramet(X; y; fwd prop; back 

prop; init params; lr; initlayer size)
9.	 updatelayer _ize < ------   updateLayerSize(initlayer size; cost 

history; i)
10.	 trainModel  < ------    function(X; y;num iter; hidden layer; 

lr) {
11.	 init_params  < ------    update params
12.	 initlayer_size  < ------    updatelayer size
13.	 for (i in 1:num iter) {
14.	 fwd_prop  < ------     fwdPropagation(X; init params; initlayer 

size)
15.	 cost   < ------    computeCost(X; y; fwd prop; initlayer size)
16.	 cost history[i + 1]   cost
17.	 back_prop  < ------     backwdPropagation(X; y; fwd prop; init 

params; initlayer size; cost history; i)
18.	 update_params   < ------    updateP aramet(X; y; fwd prop; 

back prop; init params; lr; initlayer size)
19.	 19: init_params   < ------    update_params
20.	 updatelayer_size < ------      updateLayerSize(initlayer size; 

cost history; i)
21.	 initlayer_size   < ------    updatelayer size }
22.	 classif  < ------     classifun(X; y; updatelayer size; initlayer 

size; cost history; fwdPropagation; Init_params; back 
prop;num iter)

23.	 model_out  < ------     list("updated params" = update params; 
"cost hist" = cost history; "layersize" = updatelayer size; "fwd 
prop" = fwd prop; "back prop" = back prop, "classif"=classif)

24.	 return (model out) }

End

Theorem 1
For neurons within the newly added neurons in the layer l (l > 1) 
and the output neurons in the Straight Forward Constructive Deep 
Learning Neural Network (SFC-DLNN) algorithm, there exists an 
adjustment of weight such that the cost error given by the network, 
after this addition of the N neurons to the l layer, is less than the 
one before (i.e., Lt < Lt-1).
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Proof
Let assume l=2
At iteration t, the entropy cost is defined as:
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In terminology, a single mathematical neuron is called perceptron. 
We can also refer to a Single Layer Perceptron as “unit”.

For A Single Layer Perceptron

Figure Architecture of a Single Layer Perceptron
					   
•	 A vector input X= (X1, X2……X_n) of length N which 

models the inputs of units;
•	 A vector of weight W= (W1, W2, ….,W_n) also of length 

N, which models all the synaptic weight of the unit. Each 
component Wi gives the weight of corresponding to the i'th 
entry of X;

•	 A bias b that correspond to the activation threshold of the unit. 
•	 For classification purpose, the cost is evaluated in term of 

number of misclassified elements:

ASSUMPTION 1

If there exists R∈R and γ∈R, such that for i∈ {1,2,…,M}

Then the algorithm converges within this single neuron. This is 
known as the NOVIKOV Theorem.

For A New Neuron Added In the Layer

Figure Architecture of a Neural Network with One Hidden 
Neuron								      
		
In the case we add a neuron, there will be a hidden layer with 
a single neuron, the backpropagation algorithm, merely use 
for calculating the parameters gradient stated as dW and db, 
is challenging because its depends on the NNs architecture. In 
general, we use the chain rule if there is a hidden layer in the NNs 
architecture and update the weights using Equation (4):

Where the learning rate is η and l >1.
The cost function of the first layer uses the input vector x and the 
activation functionσ. 
At iteration t, we calculate the cost
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The cost function of the second layer uses as input vector, the output of the previous layer which is the activated vector a(1).
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Data Presentation
The data set used in this work is the sample of 1000 points (two 
dimension vectors) from the uniform distribution and to which we 

associate their label (1 or -1). In this set, we use 80 percent of the 
data to train the model and 20 percent as the test set.

Data Presentation 

The data set used in this work is the sample of 1000 points (two dimension vectors) from the uniform 

distribution and to which we associate their label (1 or -1). In this set, we use 80 percent of the data to train the 

model and 20 percent as the test set. 

Simulatio

n Results 

To train the deep neural network, we generate a sample points from uniform distribution probability and we 

use the following parameters: learning_rate = 0.09   and Eps = 10E-8 

 

 

Number 

Iteration 

Minimum 

cost 

Mean cost Maximum 

cost 

Number of 

Hidden Layer  

Number of  Neuron 

in the last Layer 

5 -32.67334 -23.5387 0 2 1 

10 -44.1937 -15.08176 1.052235 3 2 

15 -52.87325 -10.9766 1.07426 4 3 

20 -41.2456 -7.211606 1.124532 5 4 

25 -51.86505 -6.390297 1.04339 7 1 

30 -41.01809 -4.254701 1.10818 8 2 

35 -50.48194 -4.111634 1.51614 9 3 

40 -41.7909 -3.332859 1.330655 10 4 

45 -40.8602 -2.677842 1.494754 12 1 

50 -40.35381 -2.434314 1.420828 13 2 

 

 
Simulation Results
To train the deep neural network, we generate a sample points from uniform distribution probability and we use the following parameters: 
learning_rate = 0.09   and Eps = 10E-8

Number Iteration Minimum cost Mean cost Maximum cost Number of Hidden Layer Number of  Neuron in the last 
Layer

5 -32.67334 -23.5387 0 2 1
10 -44.1937 -15.08176 1.052235 3 2
15 -52.87325 -10.9766 1.07426 4 3
20 -41.2456 -7.211606 1.124532 5 4
25 -51.86505 -6.390297 1.04339 7 1
30 -41.01809 -4.254701 1.10818 8 2
35 -50.48194 -4.111634 1.51614 9 3
40 -41.7909 -3.332859 1.330655 10 4
45 -40.8602 -2.677842 1.494754 12 1
50 -40.35381 -2.434314 1.420828 13 2

https://www.opastonline.com/
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Table 3: Consensus Confusion Matrix 

 

                                 Predicted 

Accuracy 

True False 

Positif TP = 0 FP = 33 

Negatif  FN = 0 TN = 167 

 

 

The performance, over all the available models ignoring applicability domain considerations gives 0 True 

Positive (TP), 0 False Negative (FN), 33 False Positive (FP) and 167 True Negative (TN) individuals in the 

data set.  

 

Table 4: Indicators Performance Matrix 

Number of records precision recall F1 Accuracy specificity 

 

1000 

Training 

800  

0 0 0 0.835 0.835 

Test 

200 

 

The AUC (Area under the Roc Curve) is the function giving the sensitivity (Y-axis) by using 1-specificity (X-

axis). 

 

 

 

TP : True positive 

TN : True negative 

FN : False Negative 

FP :  False positive 

Table 3: Consensus Confusion Matrix

Predicted Accuracy True False
Positif TP = 0 FP = 33
Negatif FN = 0 TN = 167

The performance, over all the available models ignoring applicability domain considerations gives 0 True Positive (TP), 0 False Negative 
(FN), 33 False Positive (FP) and 167 True Negative (TN) individuals in the data set.
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Table 4: Indicators Performance Matrix

Number of records precision recall F1 Accuracy specificity
1000 Training

 800 
0 0 0 0.835 0.835

Test
200

The AUC (Area under the Roc Curve) is the function giving the 
sensitivity (Y-axis) by using 1-specificity (X-axis).

Conclusion
The aim of this work is to find the best and suitable architecture 
of a Neural Network (Multi-Layer Perceptron) for a given data 
set. To understand how interesting, it is, we should remind that 
the Support Vector Machine main limit is finding “a better space” 
or the transformation ∅(x) where the data is separable. As the 
MLP offers the possibility to find both this transformation ∅(x) 
and the parameters for the regression or classification purpose. The 
stake of suitable architecture in NNs is to solve the problem of 
dimensionality and to approximate a large class of function with 
regularity that the NNs can capture [7-10].

We show in the first theorem that there exists an adjustment of 
weight such that the cost error given by the network, after this 
addition of the N neurons to the l layer, is less than the one before. 
In the second theorem, we show that there exists a layer number 
l (l>1) where, from this layer the Straight Forward Constructive 
Deep Learning Neural Network (SFC-DLNN) algorithm converges 
after passing this layer. We give Vapnik- Chervonenkys property 
of the SFC-DLNN by applying the [11-16].

We draw the cost function graphs (minimum cost, mean cost, 
maximum cost) using the number of iteration (5, 10, 15, 20, 25, 
30, 35, 40, 45, 50) and observe that the all have the “square root 
form’’. We also find that these curves decrease before the fifth 
iteration and increase after.

We obtain from our builded model (SFC-DLNN) an accuracy and 
precision of 83.5% from a simulated data set using the uniform 
distribution. This is not the best but is enough to approve the 
model prediction capacity.

However extension can be done on this work by replacing the 
sigmoid function with another activation because as we can see, 
this sigmoid activation function gives very closed value after a 
certain number of iteration. This has an influence on the precision, 
F1 and recall statistics, which are equal to 0.
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