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Abstract
Our primary objective in this paper is to discuss the Hm-Regularity for second order elliptic equations over Sobolev 
Spaces. We here consider the cases m = 1 and m≥ 2 separately. We revisit some elementary concepts in Functional 
Analysis and Abstract Harmonic Analysis before providing a proper definiton to the notion of weak solution of a Dirichlet 
Problem. While towards the later stages, we shall classify different types of regularity conditions, the main focus lies 
upon deducing appropriate ellipticity conditions in support of commenting about the existence and uniqueness of the 
weak solutions to a given problem. Appropriate references are provided in the bibliography section to facilitate further 
reading for ardent readers and researchers in this field.
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1. Introduction
1.1 Notations
We shall use the following notations throughout the article. They are as follows:
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1 Introduction

1.1 Notations

We shall use the following notations throughout the article. They are as follows:

� Rn
+ := {(x1, x2, ...., xn) ∈ Rn | xn > 0}.

� A priori given integers, αi ≥ 0 ∀ i = 1, 2, ..., n, we denote,

α := (α1, α2, ...., αn)

α′ := (α1, α2, ...., αn−1, 0).

� For a multi-index α, we define,
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|α| := α1 + α2 + ....+ αn

Dα = 1
i|α| .

∂|α|

∂x
α1
1 ....∂xαn

n

Where, i =
√
−1.

� For every 1 ≤ k ≤ n, and j ∈ N,

Dj
k := 1

ij
. ∂j

∂xj
k

It is assumed for simplicity that, for j = 1, we just write Dk.

� C∞
0 (R+

n
) := Set of all C∞ functions upto the boundary of Rn

+ and having compact

support in R+
n
.

1.2 Important results in Fourier Analysis

We recall the definition of Fourier transform and shall discuss about some of its important

properties pertinent to our topic. For further details, one can refer to [2].

Definition 1.2.1. (Fourier Transform) For any u ∈ L1(Rn), v ∈ L1(Rn
+), we define the fourier

transforms of u and v as,

û(ξ) :=

∫

Rn

e−ix.ξu(x)dx , ξ ∈ Rn

and,

v̂(ξ′, xn) :=

∫

Rn−1

e−ix′.ξ′u(x′, xn)dx
′ , ξ′ ∈ Rn−1 , x = (x′, xn)

Furthermore, for u ∈ L2(Rn) ∩ L1(Rn), we have the Parseval Relation,

∫

Rn

|u(x)|2dx =
1

(2π)n

∫

Rn

|û(ξ)|2dx (1.1)

And,

∫

Rn

|Dαu(x)|2dx =
1

(2π)n

∫

Rn

|ξα|2|û(ξ)|2dx (1.2)
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|ξα|2|û(ξ)|2dx (1.2)

Subham De 3 IIT Delhi, India

1 INTRODUCTION

|α| := α1 + α2 + ....+ αn

Dα = 1
i|α| .

∂|α|

∂x
α1
1 ....∂xαn

n

Where, i =
√
−1.

� For every 1 ≤ k ≤ n, and j ∈ N,

Dj
k := 1

ij
. ∂j

∂xj
k

It is assumed for simplicity that, for j = 1, we just write Dk.

� C∞
0 (R+

n
) := Set of all C∞ functions upto the boundary of Rn

+ and having compact

support in R+
n
.

1.2 Important results in Fourier Analysis

We recall the definition of Fourier transform and shall discuss about some of its important

properties pertinent to our topic. For further details, one can refer to [2].

Definition 1.2.1. (Fourier Transform) For any u ∈ L1(Rn), v ∈ L1(Rn
+), we define the fourier

transforms of u and v as,
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û(ξ) :=

∫

Rn

e−ix.ξu(x)dx , ξ ∈ Rn

and,

v̂(ξ′, xn) :=

∫

Rn−1

e−ix′.ξ′u(x′, xn)dx
′ , ξ′ ∈ Rn−1 , x = (x′, xn)

Furthermore, for u ∈ L2(Rn) ∩ L1(Rn), we have the Parseval Relation,

∫

Rn

|u(x)|2dx =
1

(2π)n

∫

Rn
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properties pertinent to our topic. For further details, one can refer to [2].

Definition 1.2.1. (Fourier Transform) For any u ∈ L1(Rn), v ∈ L1(Rn
+), we define the fourier

transforms of u and v as,
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Rn

e−ix.ξu(x)dx , ξ ∈ Rn
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Rn−1

e−ix′.ξ′u(x′, xn)dx
′ , ξ′ ∈ Rn−1 , x = (x′, xn)

Furthermore, for u ∈ L2(Rn) ∩ L1(Rn), we have the Parseval Relation,

∫

Rn

|u(x)|2dx =
1

(2π)n

∫

Rn

|û(ξ)|2dx (1.1)

And,

∫

Rn

|Dαu(x)|2dx =
1

(2π)n

∫

Rn

|ξα|2|û(ξ)|2dx (1.2)
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The relations (1.1) and (1.2) yields,

∞

0



Rn−1

|v(x′, xn)|2dx′dxn =
1

(2π)n−1

∞

0



Rn−1

|v̂(ξ′, xn)|2dξ′dxn

∞

0



Rn−1

|Dα′
v(x′, xn)|2dx′dxn =

1

(2π)n−1

∞

0



Rn−1

|ξα′ |2|v̂(ξ′, xn)|2dξ′dxn

A priori given a Schwartz Space S of rapidly decreasing functions in Rn with its dual as S ′, we

can deduce the following,

û(ϕ) = u(ϕ̂) , u ∈ S ′ , ϕ ∈ S

Remark 1.2.1. An important observation is that, û ∈ S ′ as well for every u ∈ S ′, by properties

of Fourier Transform on Schwartz Spaces.

Using the above results, we provide a formal definition of the Sobolev Space as follows :

Definition 1.2.2. (Sobolev Space) For every s ∈ R, we define the Sobolev Space Hs(Rn) as,

Hs(Rn) :=


u ∈ S ′ :



Rn

(1 + |ξ|2)s|û(ξ)|2dξ < ∞


 (1.3)

It can be verified that, Hs(Rn) is indeed a Hilbert Space with respect to the following

inner product defined on it,

< u, v > :=



Rn

(1 + |ξ|2)sû(ξ)v̂(ξ)dξ

Remark 1.2.2. For s ∈ N ∪ {0}, we can interpret the above as following,

Hs(Rn) :=

u ∈ L2(Rn) : Dαu ∈ L2(Rn) , for |α| ≤ s



Where, Dαu denotes the weak (distributional) derivative of u with an equivalent norm

defined on Hs(Rn) as,

||u||2s =

|α|≤s



Rn

|Dαu|2 (1.4)

Important to note that, the above definition has a valid extension to Rn
+ as,

Hs(Rn
+) :=


u ∈ L2(Rn

+) : Dαu ∈ L2(Rn
+) , for |α| ≤ s



which in turn forms a Hilbert Space with respect to the inner product,

< u, v >:=

|α|≤s



Rn
+

Dαu.Dαv
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Spaces.

Using the above results, we provide a formal definition of the Sobolev Space as follows :

Definition 1.2.2. (Sobolev Space) For every s ∈ ℝ, we define the Sobolev Space Hs (ℝn) as,

It can be verified that, Hs (ℝn) is indeed a Hilbert Space with respect to the following inner product defined on it,

Remark 1.2.2. For s ∈ ℕ ∪ {0}, we can interpret the above as following,
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(1 + |ξ|2)s|û(ξ)|2dξ < ∞


 (1.3)

It can be verified that, Hs(Rn) is indeed a Hilbert Space with respect to the following

inner product defined on it,

< u, v > :=



Rn

(1 + |ξ|2)sû(ξ)v̂(ξ)dξ
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Hs(Rn
+) :=


u ∈ L2(Rn

+) : Dαu ∈ L2(Rn
+) , for |α| ≤ s



which in turn forms a Hilbert Space with respect to the inner product,

< u, v >:=
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+

Dαu.Dαv
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can deduce the following,
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Where, Dα
u denotes the weak (distributional) derivative of u with an equivalent norm defined on Hs (ℝn) as,

Important to note that, the above definition has a valid extension to       as,

which in turn forms a Hilbert Space with respect to the inner product,

For future reference and for simplicity, since we shall be working in the case when s ∈ ℕ ∪ 0, we take, s = m, and for notational 
purposes, we shall consider the Sobolev Space Hm  (      ) in our future deductions.

1.3 Equivalent Norm on Hm (ℝn )
A priori from the definition of norm as mentioned in (1.4) and using the property that, ∃ constants 1, c2 > 0 such that,
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For future reference and for simplicity, since we shall be working in the case when s ∈ N ∪ 0,

we take, s = m, and for notational purposes, we shall consider the Sobolev Space Hm(Rn
+) in

our future deductions.

1.3 Equivalent Norm on Hm(Rn
+)

A priori from the definition of norm as mentioned in (1.4) and using the property that, ∃
constants c1, c2 > 0 such that,

c1(1 + |ξ′|2)m−j ≤
∑

|α′|≤m−j

|ξα′ |2 ≤ c2(1 + |ξ′|2)m−j , ∀j ∈ 0, 1, 2, ...m

For every u ∈ Hm(Rn
+), it helps us provide the definition of an equivalent norm on Hm(Rn

+),

denoted by |.|m, and defined as,

Definition 1.3.1.

|u|2m :=
m∑
j=0

∞∫

0

∫

Rn−1

(
1 + |ξ′|2

)m−j |Dj
nû(ξ

′, xn)|2dξ′dxn (1.5)

Definition 1.3.2. For every, 0 ≤ j ≤ m− 1, we define, γj : C
∞
0 (R+

n
) −→ C∞

0 (R+
n
) as,

(γju)(x
′) := (Dj

nu)(x
′, 0) (1.6)

1.4 Trace Theorem

Theorem 1.4.1. The map γj ( as defined in (1.6) ) has in fact an extension from Hm(Rn
+)

onto Hm−j−1/2(Rn−1) as an operator which is both bounded and linear.

Proof. Using (1.5), we can interpret the following for every u ∈ C∞
0 (R+

n
),

|Dj
nûn(ξ

′, 0)|2 ≤ 1

A

∞∫

0

|Dj+1
n ûn(ξ

′, xn)|2dt+A

∞∫

0

|Dj
nûn(ξ

′, xn)|2dt

Where, we take, A = (1 + |ξ′|2)1/2 for the purpose of this proof ( in fact any value of A would

work in general ).

Therefore, multiplying both sides by (1 + |ξ′|2)m−j−1/2, we obtain,
∫

Rn−1

(1 + |ξ′|2)m−j−1/2|Dj
nûn(ξ

′, 0)|2dξ′ ≤ |u|2m

i.e., ||γju||m−j−1/2 ≤ ||u||m
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∞
0 (R+

n
) −→ C∞

0 (R+
n
) as,

(γju)(x
′) := (Dj

nu)(x
′, 0) (1.6)

1.4 Trace Theorem

Theorem 1.4.1. The map γj ( as defined in (1.6) ) has in fact an extension from Hm(Rn
+)

onto Hm−j−1/2(Rn−1) as an operator which is both bounded and linear.

Proof. Using (1.5), we can interpret the following for every u ∈ C∞
0 (R+

n
),

|Dj
nûn(ξ

′, 0)|2 ≤ 1

A

∞∫

0

|Dj+1
n ûn(ξ

′, xn)|2dt+A

∞∫

0

|Dj
nûn(ξ

′, xn)|2dt

Where, we take, A = (1 + |ξ′|2)1/2 for the purpose of this proof ( in fact any value of A would

work in general ).

Therefore, multiplying both sides by (1 + |ξ′|2)m−j−1/2, we obtain,
∫

Rn−1

(1 + |ξ′|2)m−j−1/2|Dj
nûn(ξ

′, 0)|2dξ′ ≤ |u|2m

i.e., ||γju||m−j−1/2 ≤ ||u||m
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m−1
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j
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Where, ρ̂j(ξ
′) = Dj

nû(ξ′, 0).

We claim that, u ∈ Hm(Rn
+).

A priori using Leibniz Rule, we can justify that, ∃ constants Ckl satisfying,

Dk
nû(ξ

′, xn) =
k

l=0

CklD
k−l
n


χ

(1 + |ξ′|2)1/2xn





m
j=l

ρ̂j(ξ
′)
j(j − 1)...(j − l)

j!
(ixn)

j−l



 .

Again, on Supp(χ), we have, |xn| ≤ 1
(1+|ξ′|2)1/2 . Thus, we get,

xj−l
n Dk−l

n


χ

(1 + |ξ′|2)1/2xn

 ≤ (1 + |ξ′|2)(k−j)/2
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Rn−1

∞

0

Dk
nû(ξ

′, xn)

2
(1 + |ξ′|2)m−kdxndξ

′ ≤ c



Rn−1

|ρ̂j(ξ′)|2(1 + |ξ′|2)m−j−1/2dξ′

≤ c||ρj ||2m−j−1/2

It helps us conclude that,

|u|m ≤ c sup
0≤j≤m−1

||ρj ||m−j−1/2

Hence our proof is complete.

1.5 Integration by Parts

Theorem 1.5.1. Assume any u, v ∈ H1(Rn
+). Then,



Rn
+

(Dnu)v dx = −


Rn
+

uDnv dx− i



Rn−1

γ0(u)γ0(v)dx
′ (1.7)
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nû(ξ

′, xn) =
k

l=0

CklD
k−l
n


χ

(1 + |ξ′|2)1/2xn





m
j=l

ρ̂j(ξ
′)
j(j − 1)...(j − l)

j!
(ixn)

j−l



 .

Again, on Supp(χ), we have, |xn| ≤ 1
(1+|ξ′|2)1/2 . Thus, we get,

xj−l
n Dk−l

n


χ

(1 + |ξ′|2)1/2xn

 ≤ (1 + |ξ′|2)(k−j)/2

Hence, ∃ a constant c > 0 such that,



Rn−1

∞

0

Dk
nû(ξ
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The relations (1.1) and (1.2) yields,

∞

0



Rn−1

|v(x′, xn)|2dx′dxn =
1

(2π)n−1

∞

0



Rn−1

|v̂(ξ′, xn)|2dξ′dxn

∞

0



Rn−1

|Dα′
v(x′, xn)|2dx′dxn =

1

(2π)n−1

∞

0



Rn−1

|ξα′ |2|v̂(ξ′, xn)|2dξ′dxn

A priori given a Schwartz Space S of rapidly decreasing functions in Rn with its dual as S ′, we

can deduce the following,

û(ϕ) = u(ϕ̂) , u ∈ S ′ , ϕ ∈ S

Remark 1.2.1. An important observation is that, û ∈ S ′ as well for every u ∈ S ′, by properties

of Fourier Transform on Schwartz Spaces.

Using the above results, we provide a formal definition of the Sobolev Space as follows :

Definition 1.2.2. (Sobolev Space) For every s ∈ R, we define the Sobolev Space Hs(Rn) as,

Hs(Rn) :=


u ∈ S ′ :



Rn

(1 + |ξ|2)s|û(ξ)|2dξ < ∞


 (1.3)

It can be verified that, Hs(Rn) is indeed a Hilbert Space with respect to the following

inner product defined on it,

< u, v > :=



Rn

(1 + |ξ|2)sû(ξ)v̂(ξ)dξ

Remark 1.2.2. For s ∈ N ∪ {0}, we can interpret the above as following,

Hs(Rn) :=

u ∈ L2(Rn) : Dαu ∈ L2(Rn) , for |α| ≤ s



Where, Dαu denotes the weak (distributional) derivative of u with an equivalent norm

defined on Hs(Rn) as,

||u||2s =

|α|≤s



Rn

|Dαu|2 (1.4)

Important to note that, the above definition has a valid extension to Rn
+ as,

Hs(Rn
+) :=


u ∈ L2(Rn

+) : Dαu ∈ L2(Rn
+) , for |α| ≤ s



which in turn forms a Hilbert Space with respect to the inner product,

< u, v >:=

|α|≤s



Rn
+

Dαu.Dαv
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We claim that, u ∈ Hm(Rn
+).
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Dk
nû(ξ

′, xn) =
k

l=0

CklD
k−l
n


χ

(1 + |ξ′|2)1/2xn





m
j=l

ρ̂j(ξ
′)
j(j − 1)...(j − l)

j!
(ixn)

j−l


 .

Again, on Supp(χ), we have, |xn| ≤ 1
(1+|ξ′|2)1/2 . Thus, we get,

xj−l
n Dk−l

n


χ

(1 + |ξ′|2)1/2xn

 ≤ (1 + |ξ′|2)(k−j)/2

Hence, ∃ a constant c > 0 such that,



Rn−1

∞

0

Dk
nû(ξ

′, xn)

2
(1 + |ξ′|2)m−kdxndξ

′ ≤ c



Rn−1

|ρ̂j(ξ′)|2(1 + |ξ′|2)m−j−1/2dξ′

≤ c||ρj ||2m−j−1/2

It helps us conclude that,

|u|m ≤ c sup
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Hence our proof is complete.

1.5 Integration by Parts
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û(ξ′, xn) = χ

(1 + |ξ′|2)1/2xn

m−1
j=0

ρ̂j(ξ
′)
(ixn)

j

j!

Where, ρ̂j(ξ
′) = Dj
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nû(ξ

′, xn) =
k

l=0

CklD
k−l
n


χ

(1 + |ξ′|2)1/2xn





m
j=l

ρ̂j(ξ
′)
j(j − 1)...(j − l)

j!
(ixn)

j−l


 .

Again, on Supp(χ), we have, |xn| ≤ 1
(1+|ξ′|2)1/2 . Thus, we get,

xj−l
n Dk−l

n


χ

(1 + |ξ′|2)1/2xn

 ≤ (1 + |ξ′|2)(k−j)/2

Hence, ∃ a constant c > 0 such that,



Rn−1

∞

0

Dk
nû(ξ
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χ ∈ C∞
0 (R) such that,

χ =


1, in B(0, 1/2)

0, outside B(0, 1).

Now, we define,

û(ξ′, xn) = χ

(1 + |ξ′|2)1/2xn

m−1
j=0

ρ̂j(ξ
′)
(ixn)

j

j!

Where, ρ̂j(ξ
′) = Dj

nû(ξ′, 0).

We claim that, u ∈ Hm(Rn
+).

A priori using Leibniz Rule, we can justify that, ∃ constants Ckl satisfying,

Dk
nû(ξ

′, xn) =
k

l=0

CklD
k−l
n


χ

(1 + |ξ′|2)1/2xn





m
j=l

ρ̂j(ξ
′)
j(j − 1)...(j − l)

j!
(ixn)

j−l


 .

Again, on Supp(χ), we have, |xn| ≤ 1
(1+|ξ′|2)1/2 . Thus, we get,

xj−l
n Dk−l

n


χ

(1 + |ξ′|2)1/2xn

 ≤ (1 + |ξ′|2)(k−j)/2

Hence, ∃ a constant c > 0 such that,



Rn−1

∞

0

Dk
nû(ξ

′, xn)

2
(1 + |ξ′|2)m−kdxndξ

′ ≤ c



Rn−1

|ρ̂j(ξ′)|2(1 + |ξ′|2)m−j−1/2dξ′

≤ c||ρj ||2m−j−1/2

It helps us conclude that,

|u|m ≤ c sup
0≤j≤m−1

||ρj ||m−j−1/2

Hence our proof is complete.

1.5 Integration by Parts

Theorem 1.5.1. Assume any u, v ∈ H1(Rn
+). Then,



Rn
+

(Dnu)v dx = −


Rn
+

uDnv dx− i



Rn−1

γ0(u)γ0(v)dx
′ (1.7)
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nû(ξ

′, xn)

2
(1 + |ξ′|2)m−kdxndξ

′ ≤ c



Rn−1

|ρ̂j(ξ′)|2(1 + |ξ′|2)m−j−1/2dξ′

≤ c||ρj ||2m−j−1/2

It helps us conclude that,

|u|m ≤ c sup
0≤j≤m−1

||ρj ||m−j−1/2

Hence our proof is complete.

1.5 Integration by Parts

Theorem 1.5.1. Assume any u, v ∈ H1(Rn
+). Then,



Rn
+

(Dnu)v dx = −


Rn
+

uDnv dx− i



Rn−1

γ0(u)γ0(v)dx
′ (1.7)

Subham De 6 IIT Delhi, India

1 INTRODUCTION

Important to note that, such an extension of γj is unique, since, C∞
0 (R+

n
) is dense in Hm(Rn

+).

In order to establish surjectivity, assume any ρj ∈ Hm−j−1/2(Rn−1) for j = 0...m− 1. Define,

χ ∈ C∞
0 (R) such that,

χ =


1, in B(0, 1/2)

0, outside B(0, 1).

Now, we define,
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In order to establish surjectivity, assume any ρj ∈ Hm−j−1/2 (ℝn−1) for j = 0...m−1. Define,

χ ∈         (ℝ) such that,

Now, we define,

Where,

We claim that,

A priori using Leibniz Rule, we can justify that, ∃ constants Ckl satisfying,

Again, on Supp(χ), we have,                                    Thus, we get,

Hence, ∃ a constant c > 0 such that,

It helps us conclude that,

Hence our proof is complete.

1.5 Integration by Parts
Theorem 1.5.1. Assume any u, v ∈ H1             Then,

Proof. Choose any two sequences uk, vk ∈                     satisfying, |uk − vk| → 0 as k → ∞.
Therefore, we obtain,

2 CALCULUS ON THE BOUNDARY OF SOBOLEV SPACES

Proof. Choose any two sequences uk, vk ∈ C∞
0 (R+

n
) satisfying, |uk − vk| −→ 0 as k → ∞.

Therefore, we obtain,



Rn
+

(Dnuk)vk dx = i



Rn−1




∞

0

∂uk
∂xn

vkdxn


 dx′

= −


Rn
+

ukDnvk dx− i



Rn−1

uk(x
′, 0)vk(x

′, 0)dx′

A priori from the fact that, uk → u, vk → v, Dnuk → Dnu, Dnvk → Dnv, uk(x
′, 0) → γ0(u),

vk(x
′, 0) → γ0(v) as k → ∞ in L2. Hence, we obtain our desired result.

As a corollary to the above theorem, we can indeed deduce the following.

Corollary 1.5.2. Suppose, H1
0 (Rn

+) :=

u ∈ H1(Rn

+) : γ0(u) = 0

. Then, C∞

0 (Rn
+) is dense

in H1
0 (Rn

+).

2 Calculus on the Boundary of Sobolev Spaces

2.1 Domain with Smooth Boundary

Suppose, for 1 ≤ i ≤ n & r1, r2 > 0, and every x = (x1, x2, ..., xn), we denote,

x′ := (x1, x2, .., xi−1, xi+1, ...xn) ∈ Rn−1

We define the following sets in Rn−1 as,

Bi(x
′, r1) :=


y ∈ Rn−1 : |x′ − y| < r1



Vi(x, r1, r2) =

(y1, y2, ..., yn) ∈ Rn : |x′ − y′| < r1 , |xi − yi| < r2



Using the above notations, we explain the concept of a domain with smooth boundary as follows.

Definition 2.1.1. Ω ⊂ Rn is defined to be a domain with smooth boundary if for every

x0 ∈ ∂Ω, ∃ r1, r2 > 0, i ∈ 1, 2, ..., n and a smooth function, ψi : Bi(x
′, r1) → R satisfying,

Vi(x0, r1, r2) ∩ Ω =

x ∈ Vi(x0, r1, r2) : ψi(x

′) < xi


(2.1)

or,

Vi(x0, r1, r2) ∩ Ω =

x ∈ Vi(x0, r1, r2) : ψi(x

′) > xi


(2.2)

and,

Vi(x0, r1, r2) ∩ ∂Ω =

x : ψi(x

′) = xi

=


(x1, ..., xi−1, ψi(x

′), xi+1, ..., xn) : x′ ∈ Bi


(2.3)
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We define the following sets in ℝn−1 as,

Using the above notations, we explain the concept of a domain with smooth boundary as follows.

Definition 2.1.1. Ω ⊂ ℝn is defined to be a domain with smooth boundary if for every x0 ∈ ∂Ω, ∃ r1, r2 > 0, i ∈ 1, 2, ..., n and a smooth 
function, ψi : Bi(x′, r1) → ℝ satisfying,

or,

and,

Example 2.1.1. Consider Ω =           . Then, ψn(x′) = 0, where, x′ = (x1, x2, ..., xn−1). Furthermore, we can deduce that, r1 = r2 = ∞.

Definition 2.1.2. (Outward Normal) Suppose, x0 ∈ ∂Ω and, r1, r2 > 0, such that, (2.1) holds true.

For every x ∈ Vi(x0, r1, r2) ∩ ∂Ω, we define,
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′) = 0, where, x′ = (x1, x2, ..., xn−1). Further-

more, we can deduce that, r1 = r2 = ∞.

Definition 2.1.2. (Outward Normal) Suppose, x0 ∈ ∂Ω and, r1, r2 > 0, such that, (2.1) holds

true.

For every x ∈ Vi(x0, r1, r2) ∩ ∂Ω, we define,

ν(x) =
∇(−xi + ψi(x

′))

|∇(−xi + ψi(x′))|
=

(
∂ψi

∂x1
, ..., ∂ψi

∂xi−1
,−1, ∂ψi

∂xi+1
, ..., ∂ψi

∂xn

)
√
1 + |∇ψi|2

(2.4)

Subsequently,

|∇ψi|2 =
∣∣∣∣
∂ψi

∂x1

∣∣∣∣
2

+

∣∣∣∣
∂ψi

∂x2

∣∣∣∣
2

+ ...+

∣∣∣∣
∂ψi

∂xi−1

∣∣∣∣
2

+

∣∣∣∣
∂ψi

∂xi+1

∣∣∣∣
2

+ ...+

∣∣∣∣
∂ψi

∂xn

∣∣∣∣
2

(2.5)

ν is denoted as the unit outward normal to ∂Ω at the point x.

Definition 2.1.3. (Measure on ∂Ω) We define the measure dσ on Vi(x0, r1, r2)∩ ∂Ω as follows,

dσ =
√

1 + |∇ψi|2dx1dx2...dxi−1dxi+1...dxn (2.6)

We can use the Integration by Parts (Theorem (1.5.1)) to infer about the relation of ν and

dσ as defined above with the smooth boundary of a domain Ω.

Lemma 2.1.2. For any Ω ⊂ Rn, the unit outward normal, ν and the measure dσ as defined

earlier are in fact independent of the description of ∂Ω.

Theorem 2.1.3. In any bounded domain Ω ⊂ R with smooth boundary, we choose any u, v ∈
C1(Ω) ∩ C0(Ω̄). Then,

∫

Ω

∂u

∂xi
vdx = −

∫

Ω

u
∂v

∂xi
dx+

∫

∂Ω

uvνidσ (2.7)

Where, ν(x) = (ν1(x), ν2(x), ...., νn(x)) is the unit outward normal to ∂Ω and dσ is the measure

on ∂Ω.

Proof. We shall introduce two important results which shall be used to prove this theorem.

Lemma 2.1.4. Assume K to be the support of u as defined in the statement of the theorem,

such that, K is compact in Ω.. Furthermore, let, ϕ ∈ C1
0 (Ω) be such that, ϕ = 1 on K. Also, let

v1 = ϕv. Hence, u, v1 ∈ C1
0 (Rn) and Supp(u), Supp(v1) ∈ Ω, and

∫

Ω

∂u

∂xi
vdx = −

∫

Ω

u
∂v

∂xi
dx
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Subsequently,

ν is denoted as the unit outward normal to ∂Ω at the point x.

Definition 2.1.3. (Measure on ∂Ω) We define the measure dσ on Vi(x0, r1, r2)∩∂Ω as follows,

We can use the Integration by Parts (Theorem (1.5.1)) to infer about the relation of ν and dσ as defined above with the smooth 
boundary of a domain Ω.
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Lemma 2.1.2. For any Ω ⊂ ℝn, the unit outward normal, ν and the measure dσ as defined earlier are in fact independent of the 
description of ∂Ω.
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Definition 2.1.2. (Outward Normal) Suppose, x0 ∈ ∂Ω and, r1, r2 > 0, such that, (2.1) holds

true.

For every x ∈ Vi(x0, r1, r2) ∩ ∂Ω, we define,

ν(x) =
∇(−xi + ψi(x

′))

|∇(−xi + ψi(x′))|
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∂xi−1
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ν is denoted as the unit outward normal to ∂Ω at the point x.

Definition 2.1.3. (Measure on ∂Ω) We define the measure dσ on Vi(x0, r1, r2)∩ ∂Ω as follows,

dσ =
√

1 + |∇ψi|2dx1dx2...dxi−1dxi+1...dxn (2.6)

We can use the Integration by Parts (Theorem (1.5.1)) to infer about the relation of ν and

dσ as defined above with the smooth boundary of a domain Ω.

Lemma 2.1.2. For any Ω ⊂ Rn, the unit outward normal, ν and the measure dσ as defined

earlier are in fact independent of the description of ∂Ω.

Theorem 2.1.3. In any bounded domain Ω ⊂ R with smooth boundary, we choose any u, v ∈
C1(Ω) ∩ C0(Ω̄). Then,

∫

Ω

∂u

∂xi
vdx = −

∫

Ω

u
∂v

∂xi
dx+

∫

∂Ω

uvνidσ (2.7)

Where, ν(x) = (ν1(x), ν2(x), ...., νn(x)) is the unit outward normal to ∂Ω and dσ is the measure

on ∂Ω.

Proof. We shall introduce two important results which shall be used to prove this theorem.

Lemma 2.1.4. Assume K to be the support of u as defined in the statement of the theorem,

such that, K is compact in Ω.. Furthermore, let, ϕ ∈ C1
0 (Ω) be such that, ϕ = 1 on K. Also, let

v1 = ϕv. Hence, u, v1 ∈ C1
0 (Rn) and Supp(u), Supp(v1) ∈ Ω, and

∫

Ω

∂u

∂xi
vdx = −

∫

Ω

u
∂v

∂xi
dx
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ψi,Vi as defined before,let us take, η1 < r1, η2 < r2 and, u, v ∈ C1(Ω) ∩ C0(Ω̄) satisfying,

u ⊂ V (x0, η1, η2) ⊂ V (x0, r1, r2). Then,



Ω

∂u

∂xj
vdx = −



Ω

u
∂v

∂xj
dx+



∂Ω

uvνjdσ

Now we an indeed proceed to the proof of the main theorem.

Clearly, Ω̄ is compact, hence, it has a finite cover, say, Ω̄ ⊂ V 0 ∪l
α=1 V

α, where, V̄ 0 ⊂ Ω is

compact and, V α = V α
i (xα, rα1 , r

α
2 ), x

α ∈ ∂Ω.

Suppose, {χi}li=0 be a partition of unity subordinate to this cover. Therefore,

u =
l

α=0
uχα =

l
α=0

uα, where, we define, uα = uχα. As a result, Supp(u0) ⊂ V 0 ⊂ Ω and,

Supp(uα) ⊂ V α.

From the results mentioned in Lemmas (2.1.4) and (2.1.5), we obtain,



Ω

∂u

∂xi
vdx =

l
α=0



Ω

∂uα

∂xi
vdx

=
l

α=0


−



Ω

uα
∂v

∂xi
dx


+

l
α=0





∂Ω

uαvνidσ




=



Ω


l

α=0

uα


∂v

∂xi
dx+



∂Ω


l

α=0

uα


vνidσ

= −


Ω

u
∂v

∂xi
dx+



∂Ω

uvνidσ

And, the proof is done.

2.2 Boundary of Sobolev Spaces

Suppose, Ω be a bounded domain with a smooth boundary. Let, ∂Ω ⊂ ∪l
α=1V

α, where,

V α := V α
i (xα, rα1 , r

α
2 ) and assume ∃ ψα

i : B(xα
′
, rα1 ) −→ R describing ∂Ω as in (2.1.1).

Furthermore, let {χα} be a C∞-partition of unity subordinate to this cover. u : ∂Ω → R be a

function. A priori under the assumptions as discussed in the previous section, we can infer that,
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u =
∑

uα, where uα = χαu has support in V α
i (xα, rα1 , r

α
2 ). Hence, we define another function

ũα on Rn−1 by,

ũα(x) = uα(x1, ..., xi−1, ψ
α
i (x

′), xi+1, ..., xn)

Then, we give the follwing definition.

Definition 2.2.1. u ∈ Hs(∂Ω) iff ũα ∈ Hs(Rn−1) and,

||u||s =
l∑

α=1

||ũα||s

Remark 2.2.1. Important to observe that, the norm as defined above depends upon the partition

of unity and the cover {V α} and any such two norms obtained by different covers and partitions

of unity are in fact equivalent.

Using the definition of Hs(∂Ω) and the Trace Theorem (Theorem (1.4.1)) in Rn
+, the following

theorem follows.

Theorem 2.2.2. For a bounded domain Ω with smooth boundary, we define γj : C∞(Ω̄) →
C∞(∂Ω) as,

γ0u = u|∂Ω if, j = 0

γju =
∂ju

∂jν
|∂Ω if, j > 0

Where, ∂
∂ν =

n∑
l=1

νl
∂
∂xl

, ν(x) being the unit outward normal to ∂Ω at x.

Let, m ∈ N and 0 ≤ j ≤ m− 1, therefore, γj extends to a continuous surjective map from

Hm(Ω) to Hm−j−1/2(∂Ω). Moreover, if

Hm
0 (Ω) = {u ∈ Hm(Ω) : γju = 0 , 0 ≤ j ≤ m− 1}

Then, C∞
0 (Ω) is dense in Hm

0 (Ω).

Corollary 2.2.3. Suppose, u, v ∈ H1(Ω), then,
∫

Ω

∂u

∂xi
vdx = −

∫

Ω

u
∂v

∂xi
dx+

∫

∂Ω

γ0(u)γ0(v)νidσ

i.e., if, u ∈ H1
0 (Ω), then, ∫

Ω

∂u

∂xi
vdx = −

∫

Ω

u
∂v

∂xi
dx

Remark 2.2.4. The above formula in Corollary (2.2.3) holds true for C1-functions and thus by

approximation process, the same holds for H1(Ω).
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||ũα||s

Remark 2.2.1. Important to observe that, the norm as defined above depends upon the partition

of unity and the cover {V α} and any such two norms obtained by different covers and partitions

of unity are in fact equivalent.

Using the definition of Hs(∂Ω) and the Trace Theorem (Theorem (1.4.1)) in Rn
+, the following

theorem follows.

Theorem 2.2.2. For a bounded domain Ω with smooth boundary, we define γj : C∞(Ω̄) →
C∞(∂Ω) as,

γ0u = u|∂Ω if, j = 0

γju =
∂ju

∂jν
|∂Ω if, j > 0

Where, ∂
∂ν =

n∑
l=1

νl
∂
∂xl

, ν(x) being the unit outward normal to ∂Ω at x.

Let, m ∈ N and 0 ≤ j ≤ m− 1, therefore, γj extends to a continuous surjective map from

Hm(Ω) to Hm−j−1/2(∂Ω). Moreover, if

Hm
0 (Ω) = {u ∈ Hm(Ω) : γju = 0 , 0 ≤ j ≤ m− 1}

Then, C∞
0 (Ω) is dense in Hm

0 (Ω).

Corollary 2.2.3. Suppose, u, v ∈ H1(Ω), then,
∫

Ω

∂u

∂xi
vdx = −

∫

Ω

u
∂v

∂xi
dx+

∫

∂Ω

γ0(u)γ0(v)νidσ

i.e., if, u ∈ H1
0 (Ω), then, ∫

Ω

∂u

∂xi
vdx = −

∫

Ω

u
∂v

∂xi
dx

Remark 2.2.4. The above formula in Corollary (2.2.3) holds true for C1-functions and thus by

approximation process, the same holds for H1(Ω).

Subham De 10 IIT Delhi, India

2 CALCULUS ON THE BOUNDARY OF SOBOLEV SPACES

u =
∑

uα, where uα = χαu has support in V α
i (xα, rα1 , r

α
2 ). Hence, we define another function
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Then, we give the follwing definition.

Definition 2.2.1. u ∈ Hs (∂Ω) iff ũα ∈ Hs(ℝn−1) and,

Remark 2.2.1. Important to observe that, the norm as defined above depends upon the partition of unity and the cover {Vα} and any 
such two norms obtained by different covers and partitions of unity are in fact equivalent.

Using the definition of Hs(∂Ω) and the Trace Theorem (Theorem (1.4.1)) in ℝn, the following theorem follows.

Theorem 2.2.2. For a bounded domain Ω with smooth boundary, we define γj : C
∞(Ω) → C∞(∂Ω) as,¯

+

Where,                          ν(x) being the unit outward normal to ∂Ω at x.

Let, m ∈ ℕ and 0 ≤ j ≤ m − 1, therefore, γj extends to a continuous surjective map from Hm(Ω) to Hm−j−1/2(∂Ω). Moreover, if

Remark 2.2.4. The above formula in Corollary (2.2.3) holds true for C1-functions and thus by approximation process, the same holds 
for H1(Ω).
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3.1 Introducing Boundary Conditions on Solutions

Let, Ω ⊂ Rn be open, and aij ∈ C1(Ω̄), c ∈ C0(Ω̄). Furthermore, suppose, aij = aji, and they

satisfy the uniform ellipticity condition,

m|ξ|2 ≤
∑

aij(x)ξiξj ≤ M |ξ|2 , ∀ x ∈ Ω̄ , ξ ∈ Rn (3.1)

for some m,M > 0. Let, f ∈ C0(Ω̄), g ∈ C1(∂Ω), and u ∈ C2(Ω̄) be satisfying the following,

Lu+ c(x)u = −
n∑

i,j=1

∂

∂xi

(
aij(x)

∂u

∂xj

)
+ c(x)u = f (3.2)

with the following two kinds of boundary conditions imposed on ∂Ω as follows,

(1) u = g on ∂Ω (Dirichlet Boundary Condition) (3.3)

(2)
∂u

∂νL
=

∑
aijνi

∂u

∂xj
= g on ∂Ω (Neumann Boundary Condition) (3.4)

Therefore, multiplying (3.2) by v ∈ H2(Ω̄) and integrating by parts, it yields,

∫

Ω

fv = −
n∑

i,j=1

∫

Ω

∂

∂xi

(
aij(x)

∂u

∂xj

)
v +

∫

Ω

c(x)v

=
n∑

i,j=1

∫

Ω

aij
∂u

∂xi

∂v

∂xj
+

∫

Ω

c(x)uv −
∫

∂Ω

∂u

∂νL
vdσ

Interested readers may ask certain questions like, whether a solution to (3.2) really exists for given

f, g and under the so called boundary conditions as descibed in (3.3) and (3.4). Furthermore, if

a solution does in fact exists, one might also raise a question as to whether it is unique!

Remark 3.1.1. Existence of solutions to (3.2) in C2(Ω̄) is not true in general. Hence, we relax

the condition to a certain extent and look for solution in a much bigger space, i.e., the Sobolev
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Given f1 ∈ L2(Ω), g ∈ H3/2(∂Ω), we intend to find a u1 ∈ H2(Ω) satisfying,




Lu1 + c(x)u1 = −
n

i,j=1

∂
∂xi


aij(x)

∂u1
∂xj


+ c(x)u1 = f1 in Ω

γ0u1 = g on ∂Ω.

As γ0 : H2(Ω) → H3/2(∂Ω) is surjective, thus, ∃ u0 ∈ H2(Ω) with γ0u0 = g. Suppose,

u = u1 − u0.

Hence, u satisfies,



−
n

i,j=1

∂
∂xi


aij(x)

∂u
∂xj


+ cu = f1 − Lu0 − cu0 in Ω

γ0u = 0 on ∂Ω.

Thus, putting f = f1 −Lu0 − cu0, the problem further reduces to obtaining one such u ∈ H2(Ω)

such that,




−
n

i,j=1

∂
∂xi


aij(x)

∂u
∂xj


+ cu = f in Ω

γ0u = 0 on ∂Ω.

It suffices to look for a solution to the problem,



u ∈ H2(Ω) ∩H1
0 (Ω) ,

−
n

i,j=1

∂
∂xi


aij(x)

∂u
∂xj


+ cu = f in Ω.

.....(i)

Multiplying (i) by v ∈ H1
0 (Ω) and applying Integration by Parts, we obtain,



Ω


aij

∂u

∂xj

∂v

∂xi
+ cuv


dx =



Ω

fv (3.5)

Important to note that, u is a solution of (i) iff (3.5) is satisfied for every v ∈ H1
0 (Ω).

3.3 Weak Solution of a Dirichlet Problem

Using the above concept, we can introduce the notion of weak solution for a boundary value

problem as follows.

Definition 3.3.1. (Weak Solution) Suppose, u ∈ H1
0 (Ω). We define u to be a weak solution

of the problem,
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As γ0 : H
2(Ω) → H3/2(∂Ω) is surjective, thus, ∃ u0 ∈ H2(Ω) with γ0u0 = g. Suppose, u = u1 − u0.

Hence, u satisfies,

Thus, putting f = f1 −L u0 −cu0, the problem further reduces to obtaining one such u ∈ H2(Ω) such that,

It suffices to look for a solution to the problem,

Multiplying (i) by v ∈ H1 (Ω) and applying Integration by Parts, we obtain,0
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Using the above concept, we can introduce the notion of weak solution for a boundary value problem as follows.

Definition 3.3.1. (Weak Solution) Suppose, u ∈ H1 (Ω). We define u to be a weak solution of the problem,

0

0

0

0
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n

i,j=1

∂
∂xi


aij(x)

∂u
∂xj


+ cu = f in Ω

γ0u = 0 on ∂Ω.

iff ∀ v ∈ H1
0 (Ω), (3.5) holds true.

Remark 3.3.1. In case for weak solution, the assumption that, u ∈ H2(Ω) can be relaxed.

Further, using the above definition, we can in fact search for answers to some critical questions

related to the existence and uniqueness of a weak solution. Even, one can comment on some

regularity properties of the weak solution in H2(Ω).

We shall introduce the following results in order to discuss these concepts in the next section.

Lemma 3.3.2. (Poincare’s Lemma) ∃ a constant c > 0 which satisfies the following relation

for every u ∈ H1
0 (Ω),



Ω

|u|2dx ≤ c



Ω

|∇u|2dx (3.6)

Proof. A priori from the fact that, Ω is bounded, ∃ M > 0 such that,

Ω ⊂ {x : −M ≤ xi ≤ M , i = 1, 2, ..., n}

Suppose, u ∈ C∞
0 (Ω), thus, for x ∈ Ω,

u(x1, x2, ..., xn) =

x1

−M

∂u

∂t
(t, x2, ..., xn)dt

Hence,

|u|2 ≤ (x1 +M)

x1

−M


∂u

∂t


2

dt ≤ 2M


∂u

∂t
(t, x2, ..., xn)


2

dt

We thus conclude,



Ω

|u(x)|2dx ≤ (2M)2


Ω

|∇u|2dx

And the proof is complete.

As a corollary to the above result, we can infer the following.
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Corollary 3.3.3. Given any u, v ∈ H1
0 (Ω) and, c(x) ≥ 0, c ∈ L∞(Ω), suppose,

a(u, v) =

∫

Ω

(
aij

∂u

∂xi

∂v

∂xj
+ cuv

)
dx

Then, a satisfies the following conditions:

(i) (Symmetry) a(u, v) = a(v, u).

(ii) (Continuity) ∃ c1 > 0 such that, |a(u, v)| ≤ c1||u||1||v||1.

(iii) (Coercive) ∃ c2 > 0 such that, a(u, u) ≥ c2||u||21, where, ||.||1 is the norm defined on H1
0 (Ω).

Lemma 3.3.4. (Lax-Milgram Lemma) Suppose H be a Hilbert Space and a : H ×H → H

be symmetric, continuous bilinear map. Furthermore, let us assume that, ∃ c > 0 such that,

a(u, u) ≥ c||u||2 ∀u ∈ H.

Then, for every l ∈ H∗, ∃! u0 ∈ H satisfying,

a(u0, v) = l(v)

∀ v ∈ H.

Proof. H being an inner product space with respect to the bilinear form a(., .), which also

happens to be both continuous and coercive ( Corollary (3.3.3) ), we can conclude that, the two

norms, ||.|| and ||.||1 are indeed equivalent.

Therefore, H with the inner product a is complete and, subsequently is a Hilbert Space.

Applying Riesz Representation Theorem, for every l ∈ H∗, ∃ u0 ∈ H such that,

a(u0, v) = l(v) ∀v ∈ H holds true.

This eventually estblishes the statement of the lemma.

3.4 Existence and Uniqueness of Weak Solution

Theorem 3.4.1. Consider any aij , c ∈ L∞(Ω), such that, ∃ m,M > 0 satisfying,

(a) c ≥ 0.

(b) m|ξ|2 ≤
∑

aij(x)ξiξj ≤ M |ξ|2 , ∀ x ∈ Ω, ξ ∈ Rn.

Subham De 14 IIT Delhi, India



   Volume 3 | Issue 3 | 10J Math Techniques Comput Math, 2024

3 BOUNDARY VALUE PROBLEMS

Corollary 3.3.3. Given any u, v ∈ H1
0 (Ω) and, c(x) ≥ 0, c ∈ L∞(Ω), suppose,

a(u, v) =

∫

Ω

(
aij

∂u

∂xi

∂v

∂xj
+ cuv

)
dx

Then, a satisfies the following conditions:

(i) (Symmetry) a(u, v) = a(v, u).

(ii) (Continuity) ∃ c1 > 0 such that, |a(u, v)| ≤ c1||u||1||v||1.

(iii) (Coercive) ∃ c2 > 0 such that, a(u, u) ≥ c2||u||21, where, ||.||1 is the norm defined on H1
0 (Ω).

Lemma 3.3.4. (Lax-Milgram Lemma) Suppose H be a Hilbert Space and a : H ×H → H

be symmetric, continuous bilinear map. Furthermore, let us assume that, ∃ c > 0 such that,

a(u, u) ≥ c||u||2 ∀u ∈ H.

Then, for every l ∈ H∗, ∃! u0 ∈ H satisfying,

a(u0, v) = l(v)

∀ v ∈ H.

Proof. H being an inner product space with respect to the bilinear form a(., .), which also

happens to be both continuous and coercive ( Corollary (3.3.3) ), we can conclude that, the two

norms, ||.|| and ||.||1 are indeed equivalent.

Therefore, H with the inner product a is complete and, subsequently is a Hilbert Space.

Applying Riesz Representation Theorem, for every l ∈ H∗, ∃ u0 ∈ H such that,

a(u0, v) = l(v) ∀v ∈ H holds true.

This eventually estblishes the statement of the lemma.

3.4 Existence and Uniqueness of Weak Solution

Theorem 3.4.1. Consider any aij , c ∈ L∞(Ω), such that, ∃ m,M > 0 satisfying,

(a) c ≥ 0.

(b) m|ξ|2 ≤
∑

aij(x)ξiξj ≤ M |ξ|2 , ∀ x ∈ Ω, ξ ∈ Rn.

Subham De 14 IIT Delhi, India

3 BOUNDARY VALUE PROBLEMS

Corollary 3.3.3. Given any u, v ∈ H1
0 (Ω) and, c(x) ≥ 0, c ∈ L∞(Ω), suppose,

a(u, v) =

∫

Ω

(
aij

∂u

∂xi

∂v

∂xj
+ cuv

)
dx

Then, a satisfies the following conditions:

(i) (Symmetry) a(u, v) = a(v, u).

(ii) (Continuity) ∃ c1 > 0 such that, |a(u, v)| ≤ c1||u||1||v||1.

(iii) (Coercive) ∃ c2 > 0 such that, a(u, u) ≥ c2||u||21, where, ||.||1 is the norm defined on H1
0 (Ω).

Lemma 3.3.4. (Lax-Milgram Lemma) Suppose H be a Hilbert Space and a : H ×H → H

be symmetric, continuous bilinear map. Furthermore, let us assume that, ∃ c > 0 such that,

a(u, u) ≥ c||u||2 ∀u ∈ H.

Then, for every l ∈ H∗, ∃! u0 ∈ H satisfying,

a(u0, v) = l(v)

∀ v ∈ H.

Proof. H being an inner product space with respect to the bilinear form a(., .), which also

happens to be both continuous and coercive ( Corollary (3.3.3) ), we can conclude that, the two

norms, ||.|| and ||.||1 are indeed equivalent.

Therefore, H with the inner product a is complete and, subsequently is a Hilbert Space.

Applying Riesz Representation Theorem, for every l ∈ H∗, ∃ u0 ∈ H such that,

a(u0, v) = l(v) ∀v ∈ H holds true.

This eventually estblishes the statement of the lemma.

3.4 Existence and Uniqueness of Weak Solution

Theorem 3.4.1. Consider any aij , c ∈ L∞(Ω), such that, ∃ m,M > 0 satisfying,

(a) c ≥ 0.

(b) m|ξ|2 ≤
∑

aij(x)ξiξj ≤ M |ξ|2 , ∀ x ∈ Ω, ξ ∈ Rn.

Subham De 14 IIT Delhi, India

3 BOUNDARY VALUE PROBLEMS

Corollary 3.3.3. Given any u, v ∈ H1
0 (Ω) and, c(x) ≥ 0, c ∈ L∞(Ω), suppose,

a(u, v) =

∫

Ω

(
aij

∂u

∂xi

∂v

∂xj
+ cuv

)
dx

Then, a satisfies the following conditions:

(i) (Symmetry) a(u, v) = a(v, u).

(ii) (Continuity) ∃ c1 > 0 such that, |a(u, v)| ≤ c1||u||1||v||1.

(iii) (Coercive) ∃ c2 > 0 such that, a(u, u) ≥ c2||u||21, where, ||.||1 is the norm defined on H1
0 (Ω).

Lemma 3.3.4. (Lax-Milgram Lemma) Suppose H be a Hilbert Space and a : H ×H → H

be symmetric, continuous bilinear map. Furthermore, let us assume that, ∃ c > 0 such that,

a(u, u) ≥ c||u||2 ∀u ∈ H.

Then, for every l ∈ H∗, ∃! u0 ∈ H satisfying,

a(u0, v) = l(v)

∀ v ∈ H.

Proof. H being an inner product space with respect to the bilinear form a(., .), which also

happens to be both continuous and coercive ( Corollary (3.3.3) ), we can conclude that, the two

norms, ||.|| and ||.||1 are indeed equivalent.

Therefore, H with the inner product a is complete and, subsequently is a Hilbert Space.

Applying Riesz Representation Theorem, for every l ∈ H∗, ∃ u0 ∈ H such that,

a(u0, v) = l(v) ∀v ∈ H holds true.

This eventually estblishes the statement of the lemma.

3.4 Existence and Uniqueness of Weak Solution

Theorem 3.4.1. Consider any aij , c ∈ L∞(Ω), such that, ∃ m,M > 0 satisfying,

(a) c ≥ 0.

(b) m|ξ|2 ≤
∑

aij(x)ξiξj ≤ M |ξ|2 , ∀ x ∈ Ω, ξ ∈ Rn.

Subham De 14 IIT Delhi, India

Then, a satisfies the following conditions:
(i) (Symmetry) a(u, v) = a(v, u).
(ii) (Continuity) ∃ c1 > 0 such that, |a(u, v)| ≤ c1||u||1||v||1.
(iii) (Coercive) ∃ c2 > 0 such that, a(u, u) ≥ c2||u||2

1, where, ||.||1 is the norm defined on H1
0 (Ω).

Lemma 3.3.4. (Lax-Milgram Lemma) Suppose H be a Hilbert Space and a : H × H → H be symmetric, continuous bilinear map. 
Furthermore, let us assume that, ∃ c > 0 such that,

Then, for every l ∈ H∗, ∃! u0 ∈ H satisfying,

∀ v ∈ H.

Proof. H being an inner product space with respect to the bilinear form a(., .), which also happens to be both continuous and coercive 
( Corollary (3.3.3) ), we can conclude that, the two norms, ||.|| and ||.||1 are indeed equivalent.

Therefore, H with the inner product a is complete and, subsequently is a Hilbert Space.

Applying Riesz Representation Theorem, for every l ∈ H∗, ∃ u0 ∈ H such that,

This eventually estblishes the statement of the lemma.

3.4 Existence and Uniqueness of Weak Solution
Theorem 3.4.1. Consider any aij , c ∈ L∞(Ω), such that, ∃ m,M > 0 satisfying,
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0 (Ω) of the problem,
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Furthermore, if f ∈ L2(Ω), then ∃! weak solution u ∈ H1
0 (Ω) of the problem,





−
n

i,j=1

∂
∂xi


aij(x)

∂u
∂xj


+ cu = f in Ω

γ0u = 0 on ∂Ω.

Proof. Let us choose, v ∈ H1
0 (Ω) and,

a(u, u) =



Ω


aij

∂u

∂xi

∂v

∂xj
+ cu



l(v) =



Ω

fv

Hence, we have,

|l(v)| ≤ |f |L2(Ω)|v|L2(Ω) ≤ |f |L2(Ω)||v||1

This implies, l|H1
0 (Ω) is a continuous linear mapping. From the Lax-Milgram Lemma (Lemma

(3.3.4)), we can infer that, a is symmetric, continuous and coercive bilinear form on H1
0 (Ω),

hence, ∃! u0 ∈ H1
0 (Ω) saatisfying, a(u0, v) = l(v), for every v ∈ H1

0 (Ω).

Therefore, we conclude that u0 is the desired unique weak solution to the given Dirichlet

Problem.

4 Hm-Regularity for Second Order Elliptic Equations

In this section, we shall discuss the existence of the weak solution, u ∈ H1
0 (Ω) in the space

Hm(Ω). For our simplicity, we shall consider a special case, m = 2 for our analysis.

4.1 Interior Regularity

Given h ∈ R, ei := (0, 0, ...., 0, 1, 0, ..., 0), for 1 ≤ i ≤ n. Moreover, for every u ∈ Rn, we define,

(τ ihu)(x) :=
u(x+ hei)− u(x)

h
(4.1)

Lemma 4.1.1. (I) For every u ∈ H1(Rn), and 1 ≤ i ≤ n,

||τ ihu||L2 ≤ ||∇u||L2
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In this section, we shall discuss the existence of the weak solution, u ∈ H1
0 (Ω) in the space

Hm(Ω). For our simplicity, we shall consider a special case, m = 2 for our analysis.
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Lemma 4.1.1. (I) For every u ∈ H1(Rn), and 1 ≤ i ≤ n,
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(II) For every u ∈ H1(Rn
+), and 1 ≤ i ≤ n− 1,

||τ ihu||L2 ≤ ||∇u||L2

Theorem 4.1.2. (Interior Regularity) A priori given aij ∈ C1(Rn), u ∈ H1(Rn) such that,

Supp(u) is indeed compact in Rn. Then, f ∈ L2(Rn), and moreover, ∃ m > 0 satisfying,

1.

m|ξ|2 ≤
∑

aij(x)ξiξj , ∀x ∈ Ω̄

Where, Ω is an open set such that, Supp(u) ⊂ Ω.

2. ∀ v ∈ H1(Rn),

∑
i,j

∫

Rn

aij
∂u

∂xi

∂v

∂xj
=

∫

Rn

fv

Then, u ∈ H2(Rn).

Proof. To prove the above Theorem, one can in fact proceed through the following steps

systematically, using the results and concepts which we shall briefly discuss below.

Lemma 4.1.3. ∃ c, c0 > 0 satisfying,
∣∣∣∣
∣∣∣∣τ ih

∂u

∂xj

∣∣∣∣
∣∣∣∣
L2

≤ c , ∀ 0 < |h| < c0 , 1 ≤ i, j ≤ n

From the above Lemma (4.1.3), we can observe that,
{
τ ih

∂u
∂xj

}
0<|h|<c0

is indeed bounded

in L2. Thus, for any subsequence, τ ihk

∂u
∂xj

converging weakly to vij in L2(Rn), and for every

ϕ ∈ C∞
0 (Rn), we shall have,

∫

Rn

τ ihk

∂u

∂xj
ϕdx =

∫

Rn

∂u

∂xj

{
ϕ(x− hkei)− ϕ(x)

hk

}
dx

As k → ∞, we apply dominated convergence theorem to deduce,

∂2u

∂xi∂xj
= vij ∈ L2(Rn)

Hence, we conclude that, u ∈ H2(Rn), and the proof is complete.

We can indeed generalize the above result to comment on the Hm-Interior Regularity for a

Dirichlet problem.
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systematically, using the results and concepts which we shall briefly discuss below.
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τ ih
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}
0<|h|<c0

is indeed bounded

in L2. Thus, for any subsequence, τ ihk
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converging weakly to vij in L2(Rn), and for every

ϕ ∈ C∞
0 (Rn), we shall have,

∫
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τ ihk

∂u

∂xj
ϕdx =

∫

Rn

∂u

∂xj

{
ϕ(x− hkei)− ϕ(x)
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}
dx

As k → ∞, we apply dominated convergence theorem to deduce,

∂2u

∂xi∂xj
= vij ∈ L2(Rn)

Hence, we conclude that, u ∈ H2(Rn), and the proof is complete.

We can indeed generalize the above result to comment on the Hm-Interior Regularity for a

Dirichlet problem.
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Theorem 4.1.2. (Interior Regularity) A priori given aij ∈ C1(ℝn), u ∈ H1(ℝn) such that, Supp(u) is indeed compact in ℝn. Then, f ∈ 
L2(ℝn), and moreover, ∃ m > 0 satisfying,

Where, Ω is an open set such that, Supp(u) ⊂ Ω.

Then, u ∈ H2(ℝn).

Proof. To prove the above Theorem, one can in fact proceed through the following steps systematically, using the results and 
concepts which we shall briefly discuss below.

Lemma 4.1.3. ∃ c, c0 > 0 satisfying,

As k → ∞, we apply dominated convergence theorem to deduce,

Hence, we conclude that, u ∈ H2(ℝn), and the proof is complete.

We can indeed generalize the above result to comment on the Hm-Interior Regularity for a Dirichlet problem.

Corollary 4.1.4. Assume that, aij ∈ Cm+1(ℝn), f ∈ Hm(ℝn), u ∈ H1(ℝn) , ∀ 1 ≤ i, j ≤ n satisfy the same hypothesis as described in 
Theorem (4.1.2). Then, u ∈ Hm+2(ℝn).

In addition, one can further deduce the following.
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Corollary 4.1.5. If aij , f ∈ C∞(ℝn) , ∀ 1 ≤ i, j ≤ n, then, u ∈ C∞(ℝn).

4.2 Boundary Regularity
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4.2 Boundary Regularity

Theorem 4.2.1. Suppose, aij ∈ C1(R+
n
), u ∈ H1

0 (R+
n
) satisfying, Supp(u) is compact in

R+
n
. Moreover, let f ∈ L2(Rn) and ∃ m > 0 such that,

1.

m|ξ2|2 ≤
∑

aij(x)ξiξj , ∀x ∈ Ω̄

Where, Ω is an open set in R+
n
such that, Supp(u) ⊂ Ω.

2. ∀ v ∈ H1(Rn),

∑
i,j

∫

Rn
+

aij
∂u

∂xi

∂v

∂xj
=

∫

Rn
+

fv

Then, u ∈ H2(R+
n
).

Proof. Suppose, 0 < |h| < ϵ0 satisfies that, for i ≤ k ≤ n− 1, the support of x → u(x+ hek) is

in fact contained in Ω̄ [ Since, k ≤ n− 1 ].

A priori using concepts similar tothe case for interior regularity, it follows that,

||τkh∇u||L2(Rn
+) ≤ c , 0 < |h| < ϵ0 , k ≤ n− 1.

Thus, for a subsequence hk → 0, we obtain,

(i) ∂2u
∂xi∂xj

∈ L2 , ∀ 1 ≤ i, j ≤ n− 1.

(ii) ∂2u
∂xn∂xi

∈ L2 , ∀ 1 ≤ i, j ≤ n− 1.

Therefore, it only suffices to prove that, ∂2u
∂x2

n
∈ L2. Let, ϕ ∈ C1

0 (R+
n
). Hence,

∫

Rn
+

ann
∂u

∂xn

∂ϕ

∂xn
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In addition, one can further deduce the following.

Corollary 4.1.5. If aij , f ∈ C∞(Rn) , ∀ 1 ≤ i, j ≤ n, then, u ∈ C∞(Rn).

4.2 Boundary Regularity

Theorem 4.2.1. Suppose, aij ∈ C1(R+
n
), u ∈ H1

0 (R+
n
) satisfying, Supp(u) is compact in

R+
n
. Moreover, let f ∈ L2(Rn) and ∃ m > 0 such that,

1.

m|ξ2|2 ≤
∑

aij(x)ξiξj , ∀x ∈ Ω̄

Where, Ω is an open set in R+
n
such that, Supp(u) ⊂ Ω.

2. ∀ v ∈ H1(Rn),

∑
i,j

∫

Rn
+

aij
∂u

∂xi

∂v

∂xj
=

∫

Rn
+

fv

Then, u ∈ H2(R+
n
).

Proof. Suppose, 0 < |h| < ϵ0 satisfies that, for i ≤ k ≤ n− 1, the support of x → u(x+ hek) is

in fact contained in Ω̄ [ Since, k ≤ n− 1 ].

A priori using concepts similar tothe case for interior regularity, it follows that,

||τkh∇u||L2(Rn
+) ≤ c , 0 < |h| < ϵ0 , k ≤ n− 1.

Thus, for a subsequence hk → 0, we obtain,

(i) ∂2u
∂xi∂xj

∈ L2 , ∀ 1 ≤ i, j ≤ n− 1.

(ii) ∂2u
∂xn∂xi

∈ L2 , ∀ 1 ≤ i, j ≤ n− 1.

Therefore, it only suffices to prove that, ∂2u
∂x2

n
∈ L2. Let, ϕ ∈ C1

0 (R+
n
). Hence,

∫

Rn
+

ann
∂u

∂xn

∂ϕ

∂xn
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= −


Rn
+





i,j≤n−1

aij
∂u

∂xi

∂ϕ

∂xj


−


j≤n−1







Rn
+

anj
∂u

∂xj

∂ϕ

∂xn
+



Rn
+

ajn
∂u

∂xn

∂ϕ

∂xj





+



Rn
+

fϕ

=



Rn
+

Fϕ

Where,

F =





i,j≤n−1

∂aij
∂xj

∂u

∂xi
+ aij

∂2u

∂xi∂xj


j≤n−1

∂anj
∂xn

∂u

∂xj
+


j≤n−1

∂ajn
∂xj

∂u

∂xn
+ 2ajn

∂2u

∂xj∂xn
+ f





Therefore,

∂

∂xn


ann

∂u

∂xn


= F ∈ L2

i.e.,

−ann
∂2u

∂x2n
= F +

∂ann
∂xn

∂u

∂xn
∈ L2

Applying the concept that, ann > 0 in Ω̄ and therefore, ∂2u
∂x2

n
∈ L2, and the proof.

As a corollary, one can establish the following.

Corollary 4.2.2. (Higher Regularity) Assuming aij ∈ Cm+1, f ∈ Hm(Rn
+), u ∈ H1

0 (Rn
+)

satisfying similar conditions as above. Then, u ∈ Hm+2(Rn
+).

Corollary 4.2.3. Let, aij ∈ C∞, f ∈ C∞(Rn
+), then, u ∈ C∞.

4.3 A Special Diffeomorphism on Second Order Elliptic Operators

Theorem 4.3.1. Given Ω1 and Ω2 being bounded open sets, and F : Ω1 → Ω2 be a diffeomor-

phism. We further define, J(F ) :=

∂Fk
∂yi


i,k
, such that, J(F ) and J−1(F ) exist ∀ y ∈ Ω̄1 and

is continuous there. Then F transforms any second order elliptic operator L on Ω1 to a second

order elliptic operator on Ω2.

Proof. A priori given any two bounded domains ω1 and Ω2, and a diffeomorphism defined as,

F := (F1, F2, ..., Fn) : Ω̄1 → Ω̄2

We an in fact observe that, F is C∞, one-one and onto and the inverse is indeed differentiable.
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Applying the concept that, ann > 0 in Ω̄ and therefore, ∂2u
∂x2

n
∈ L2, and the proof.

As a corollary, one can establish the following.

Corollary 4.2.2. (Higher Regularity) Assuming aij ∈ Cm+1, f ∈ Hm(Rn
+), u ∈ H1

0 (Rn
+)

satisfying similar conditions as above. Then, u ∈ Hm+2(Rn
+).

Corollary 4.2.3. Let, aij ∈ C∞, f ∈ C∞(Rn
+), then, u ∈ C∞.

4.3 A Special Diffeomorphism on Second Order Elliptic Operators

Theorem 4.3.1. Given Ω1 and Ω2 being bounded open sets, and F : Ω1 → Ω2 be a diffeomor-

phism. We further define, J(F ) :=

∂Fk
∂yi


i,k
, such that, J(F ) and J−1(F ) exist ∀ y ∈ Ω̄1 and

is continuous there. Then F transforms any second order elliptic operator L on Ω1 to a second

order elliptic operator on Ω2.

Proof. A priori given any two bounded domains ω1 and Ω2, and a diffeomorphism defined as,

F := (F1, F2, ..., Fn) : Ω̄1 → Ω̄2

We an in fact observe that, F is C∞, one-one and onto and the inverse is indeed differentiable.
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Furthermore, for any function u on Ω2, we define ũ : Ω1 → R by,

ũ(y) := u(F (y)) , y ∈ Ω1

Consequently,

∂ũ

∂yi
=

n∑
k=1

∂u

∂xk
(F (y))

∂Fk

∂yi
(y)

and,

∂2ũ

∂yi∂yj
=

n∑
k,l=1

∂2u

∂xl∂xk
(F (y))

∂Fl

∂yi

∂Fk

∂yj
+

n∑
k=1

∂u

∂xk
(F (y))

∂2Fk

∂yi∂yj
.

Let,

L :=
∑

ãij(y)
∂2

∂yi∂yj
+

∑
b̃i(y)

∂

∂yi
+ c̃(y)

be any elliptic differential operator on Ω1. Hence, in Ω2, we can in fact deduce that,

L :=
∑

ail(y)
∂2

∂xk∂xl
+

∑
bk(y)

∂

∂xk
+ c(x). (4.2)

Where,

akl(x) =
∑
i,j

ãij(F
−1(x))

∂Fk

∂yi
(F−1(x))

∂Fl

∂yj
(F−1(x))

and,

bk(x) =
∑
i

b̃i(F
−1(x))

∂Fk

∂yi
(F−1(x)) +

∑
i,j

ãij(F
−1(x))

∂2Fk

∂yi∂yj
(F−1(x))

and,

c(x) = c̃(F−1(x))

One can indeed verify the neccessary conditions for L to be an elliptic differential operator on

Ω2.

Suppose, for r1, r2 > 0, x′ := (x1, x2, ..., xn−1), we define, x0 := (x′0, x
0
n) ∈ Rn. Furthermore,

ψ : B(x′0, r1) → R be a smooth map such that, x0n = ψ(x′0). Let,

Ω1 :=
{
x | x′ ∈ B(x′0, r1) , ψ(x

′) < xn < r2
}
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ãij(y)
∂2

∂yi∂yj
+
∑

b̃i(y)
∂

∂yi
+ c̃(y)

be any elliptic differential operator on Ω1. Hence, in Ω2, we can in fact deduce that,

L :=
∑

ail(y)
∂2

∂xk∂xl
+

∑
bk(y)

∂

∂xk
+ c(x). (4.2)

Where,

akl(x) =
∑
i,j
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Consequently,

and,

Let,

be any elliptic differential operator on Ω1. Hence, in Ω2, we can in fact deduce that,
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∂yi∂yj
=

n∑
k,l=1

∂2u

∂xl∂xk
(F (y))

∂Fl

∂yi

∂Fk

∂yj
+

n∑
k=1

∂u

∂xk
(F (y))

∂2Fk

∂yi∂yj
.

Let,

L :=
∑
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∂yi∂yj
=

n∑
k,l=1

∂2u

∂xl∂xk
(F (y))

∂Fl

∂yi

∂Fk

∂yj
+

n∑
k=1

∂u

∂xk
(F (y))

∂2Fk

∂yi∂yj
.

Let,

L :=
∑

ãij(y)
∂2

∂yi∂yj
+

∑
b̃i(y)

∂

∂yi
+ c̃(y)

be any elliptic differential operator on Ω1. Hence, in Ω2, we can in fact deduce that,

L :=
∑

ail(y)
∂2

∂xk∂xl
+

∑
bk(y)

∂

∂xk
+ c(x). (4.2)

Where,

akl(x) =
∑
i,j
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ãij(y)
∂2

∂yi∂yj
+
∑

b̃i(y)
∂

∂yi
+ c̃(y)

be any elliptic differential operator on Ω1. Hence, in Ω2, we can in fact deduce that,

L :=
∑

ail(y)
∂2

∂xk∂xl
+
∑

bk(y)
∂

∂xk
+ c(x). (4.2)

Where,

akl(x) =
∑
i,j
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ãij(F
−1(x))

∂Fk

∂yi
(F−1(x))

∂Fl

∂yj
(F−1(x))

and,

bk(x) =
∑
i

b̃i(F
−1(x))

∂Fk

∂yi
(F−1(x)) +

∑
i,j
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and,

Ω2 :=
{
y | y′ ∈ B(x′0, r1) , 0 < yn < r2 − ψ(x′)

}

We define,

F := (F1, F2, ...., Fn) : Ω̄1 → Ω̄2

by,
{

Fi(x) = xi 1 ≤ i ≤ n− 1

Fn(x) = xn − ψ(x′).

Putting y = F (x), we can deduce,

B(x′0, r1) = B(y′0, r1) , 0 < yn < r2 − ψ(y′)

and,

JF (x) =
(

∂F
∂xi

)
=

{
I(n−1)×(n−1) 0

−∇ψ 1

}
.

Moreover, the diffeomorphism F maps {x : xn = ψ(x′)} to {y : yn = 0}.
Using the above concept, we can indeed conclude the following result.

Theorem 4.3.2. Given a bounded domain Ω with smooth boundary, suppose we have the

following second order elliptic operator,

L = −
n∑

i,j=1

∂

∂xi

(
aij(x)

∂

∂xj

)
+

n∑
i=1

bi(x)
∂

∂xi
+ c (4.3)

where, the coefficients satisfy, aij ∈ C1(Ω̄), bi, c ∈ L∞(Ω) and the ellipticity condition given by,

m|ξ|2 ≤
∑

aijξiξj ≤ M |ξ|2 , ∀ ξ ∈ Rn. (4.4)

for some m,M > 0. Let, f ∈ L2(Ω) and, u ∈ H1
0 (Ω) be a weak solution of the problem,

Lu = f in Ω (4.5)

Then, u ∈ H2(Ω).

Proof. Suppose, {V α} be an open cover satisfying,

(i) V 0 ⊂ Ω.
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Using the above concept, we can indeed conclude the following result.

Theorem 4.3.2. Given a bounded domain Ω with smooth boundary, suppose we have the

following second order elliptic operator,

L = −
n∑

i,j=1

∂

∂xi

(
aij(x)

∂

∂xj
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n∑
i=1

bi(x)
∂

∂xi
+ c (4.3)

where, the coefficients satisfy, aij ∈ C1(Ω̄), bi, c ∈ L∞(Ω) and the ellipticity condition given by,

m|ξ|2 ≤
∑

aijξiξj ≤ M |ξ|2 , ∀ ξ ∈ Rn. (4.4)

for some m,M > 0. Let, f ∈ L2(Ω) and, u ∈ H1
0 (Ω) be a weak solution of the problem,

Lu = f in Ω (4.5)

Then, u ∈ H2(Ω).

Proof. Suppose, {V α} be an open cover satisfying,

(i) V 0 ⊂ Ω.
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(ii) V α = Vi(x
α, rα1 , r

α
2 ), and, ψ

α
i : B(xα, rα1 ) → R be a smooth function such that,

Ω ∩ V α =
{
x ∈ V α

i | x′ ∈ B(xα, rα1 ), ψ
α(x′) < xi < rα2

}
,

∂Ω ∩ V α =
{
x ∈ V α

i | ψα(x′) = xi
}

Let, Fα : Ω ∩ V α → R+
n − {y : yi > 0} be defined as,

{
F j
α(x) = xj j ̸= i

F i
α(x) = xi − ψ′(x′).

and,

Wα = Fα(Ω ∩ V α) =
{
y | y′i ∈ B(xα, rα1 ), 0 < yi < rα2 − ψ(y′)

}
.

Consider a C∞ partition of unity as {χα}lα=0 subordinate to the assumed covering such that,

uα = χαu.

We can observe that, u =
∑

uα and, Supp(uα) ⊂ V α, where,

∂

∂xi
(uα) =

∂

∂xi
(χαu) = χα ∂u

∂xi
+ u

∂χα

∂xi

As a result, we can obtain bαi , c
α ∈ L∞(Ω), Supp(bαi ), c

α ⊂ V α such that,

Luα = χαL(u) +
∑

bαi
∂u

∂xi
+ cαu

= χα +
∑

bαi
∂u

∂xi
+ cαu = fα ∈ L2(V α)

Clearly, we have, Supp(fα) ⊂ Supp(χα) = Kα is compact. Moreover, Supp(uα) ⊂ Supp(χα) =

Kα.

For α = 0, we have, Supp(u0) ⊂ K0 ⊂ Ω and, Lu0 = f0 in Ω. Thus, Lu0 = f0 in Rn.

A priori from the fact that, L is indeed elliptic in Ω, hence, by interior regularity property,

we conclude, u0 ∈ H2(Ω).

In case when, α ̸= 0, we define, Fα : (Ω ∩ V α) → Wα such that,

ũα(y) = uα((Fα)−1(y)).

Therefore, ũα ∈ H1
0 (W

α) implying, Supp(ũα) is in fact compact in R+
n
. Consequently, ũα is a

weak solution of a second order uniformly elliptic operator Lα, in other words,
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α) implying, Supp(ũα) is in fact compact in R+
n
. Consequently, ũα is a
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0 (W
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weak solution of a second order uniformly elliptic operator Lα, in other words,

Subham De 21 IIT Delhi, India

4 Hm-REGULARITY FOR SECOND ORDER ELLIPTIC EQUATIONS

(ii) V α = Vi(x
α, rα1 , r

α
2 ), and, ψ

α
i : B(xα, rα1 ) → R be a smooth function such that,

Ω ∩ V α =
{
x ∈ V α

i | x′ ∈ B(xα, rα1 ), ψ
α(x′) < xi < rα2

}
,

∂Ω ∩ V α =
{
x ∈ V α

i | ψα(x′) = xi
}

Let, Fα : Ω ∩ V α → R+
n − {y : yi > 0} be defined as,

{
F j
α(x) = xj j ̸= i

F i
α(x) = xi − ψ′(x′).

and,

Wα = Fα(Ω ∩ V α) =
{
y | y′i ∈ B(xα, rα1 ), 0 < yi < rα2 − ψ(y′)

}
.

Consider a C∞ partition of unity as {χα}lα=0 subordinate to the assumed covering such that,

uα = χαu.

We can observe that, u =
∑

uα and, Supp(uα) ⊂ V α, where,

∂

∂xi
(uα) =

∂

∂xi
(χαu) = χα ∂u

∂xi
+ u

∂χα

∂xi

As a result, we can obtain bαi , c
α ∈ L∞(Ω), Supp(bαi ), c

α ⊂ V α such that,

Luα = χαL(u) +
∑

bαi
∂u

∂xi
+ cαu

= χα +
∑

bαi
∂u

∂xi
+ cαu = fα ∈ L2(V α)

Clearly, we have, Supp(fα) ⊂ Supp(χα) = Kα is compact. Moreover, Supp(uα) ⊂ Supp(χα) =

Kα.

For α = 0, we have, Supp(u0) ⊂ K0 ⊂ Ω and, Lu0 = f0 in Ω. Thus, Lu0 = f0 in Rn.

A priori from the fact that, L is indeed elliptic in Ω, hence, by interior regularity property,

we conclude, u0 ∈ H2(Ω).

In case when, α ̸= 0, we define, Fα : (Ω ∩ V α) → Wα such that,
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α) implying, Supp(ũα) is in fact compact in R+
n
. Consequently, ũα is a
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{
Lαũα = f̃α in Rn

+

ũα ∈ H1
0 (Rn

+).

Hence, ũα ∈ H2(Wα) =⇒ uα ∈ H2(Ω ∩ V α) =⇒ u :=
∑

uα ∈ H2(Ω). The result is thus

established.

As a corollary, we can further comment on the Hm−regularity for the case m ≥ 2 as follows.

Corollary 4.3.3. Suppose, f ∈ Hm(Ω), g ∈ Hm+ 3
2 (∂Ω), and u ∈ H1(Ω) satisfies,

{
Lu = f in Ω

γ0u = g on ∂Ω

Then, u ∈ Hm+2(Ω).

Proof. A priori applying the fact that, γ0 : H
m+2(Ω) → Hm+ 3

2 (∂Ω) is surjective, and hence, ∃
u1 ∈ Hm+2 with, γ0(u1) = g. Let, v = u − u1. then, v ∈ H1

0 (Ω). Moreover, Lv = f − Lu1 ∈
Hm(Ω), and, γ0v = 0 onto ∂Ω.

It follows that, uα indeed satisfies the Interior Regalarity and Boundary Regularity conditions

as described in Theorems (4.1.2) and (4.2.1) respectively. Therefore, we conclude that, uα ∈
Hm+2(Ω), ∀ α, implying that, u ∈ Hm+2(Ω). And the proof is thus complete.
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Lαũα = f̃α in Rn

+
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