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Abstract

Our primary objective in this paper is to discuss the H"-Regularity for second order elliptic equations over Sobolev
Spaces. We here consider the cases m = 1 and m> 2 separately. We revisit some elementary concepts in Functional
Analysis and Abstract Harmonic Analysis before providing a proper definiton to the notion of weak solution of a Dirichlet
Problem. While towards the later stages, we shall classify different types of regularity conditions, the main focus lies
upon deducing appropriate ellipticity conditions in support of commenting about the existence and uniqueness of the
weak solutions to a given problem. Appropriate references are provided in the bibliography section to facilitate further
reading for ardent readers and researchers in this field.
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1. Introduction
1.1 Notations
We shall use the following notations throughout the article. They are as follows:

o R} = {(z1,22,..., xzn) € R" | &, > 0}.

e A priori given integers, a.z20Vi=1,2,..n,we denote,

a = (a1, 09, ..., ap)
! . 0
o = (al,ag,....,an,l, )
® For a multi-index a, we define,
|Oz| =1 tag+ ...+ ay
D& — 1 alal

= S aor s an
ilol" 9z L. .oz

Where, i=,/—1.

*Forevery 1 <k<pm,andj €N,

jo._ 1 o
Dp =}

It is assumed for simplicity that, forj = 1, we just write D,.
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e Cf° (RL") := Setofall C* functions upto the boundary of R and having compact supportin R, ".

1.2 Important results in Fourier Analysis
We recall the definition of Fourier transform and shall discuss about some of its important properties pertinent to our topic. For
further details, one can refer to [2].

Definition 1.2.1. (Fourier Transform) For any u € L'(R"), v € L'(R",), we define the fourier transforms of « and v as,

u(§) = /eix'gu(az)daz ) EeR"
Rn
and,
(€ ) = / e—ix'f'u(;p’,xn)daz' , geR = (@', z)
Rnfl

Furthermore, for u € L>(R”) N L'(R"), we have the Parseval Relation,

/ e — / a(€) P (11)
Rn n

(2m)™
R
And,
(6% 1 (0% ~
10t = o [l PliPas (12)
En En
The relations (1.1) and (1.2) yields,
oo 1 o
J A = A L R [
0 Rrn—1 0 Rn—1
r ¥ R A
//‘D U($/7$n)|2d$/d$n—(27r)m/ / €420, @) [PdE d,
0 Rn—1 0 Rrn—1

A priori given a Schwartz Space S of rapidly decreasing functions in R” with its dual as S’, we can deduce the following,

a(¢)=u(d), weS ,pedS

Remark 1.2.1. An important observation is that, 2 € S” as well for every u € S', by properties of Fourier Transform on Schwartz
Spaces.

Using the above results, we provide a formal definition of the Sobolev Space as follows :
Definition 1.2.2. (Sobolev Space) For every s € R, we define the Sobolev Space A* (R”) as,
HE) = {ues s [+ la©Pd < oo (1.3)

R"

It can be verified that, #* (R”) is indeed a Hilbert Space with respect to the following inner product defined on it,

<uus = / (1+ €2)a(€)3(E)de

R”

Remark 1.2.2. For s € N U {0}, we can interpret the above as following,

H5(R") == {u e L*R") : D € L*(R"), for |a| < s}
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Where, D* denotes the weak (distributional) derivative of u with an equivalent norm defined on /* (R”) as,
2 2
lal =3 [ 10 (14)
|Oé‘§5 Rn

Important to note that, the above definition has a valid extension to ]1%7}r as,
HY(RY) := {u e [*(R?) : D e L2(R) , for |o] < s}
which in turn forms a Hilbert Space with respect to the inner product,

< U,V >i= Z D%u.D%v
<s m@n
lof<s gn

For future reference and for simplicity, since we shall be working in the case when s € N U 0, we take, s = m, and for notational
purposes, we shall consider the Sobolev Space /" (R'}) in our future deductions.

1.3 Equivalent Norm on H" (}fgf)
A priori from the definition of norm as mentioned in (1.4) and using the property that, 3 constants ¢, ¢, > 0 such that,

al+gAm 7 < S P <+ g v €0,1,2,..m

lo/|<m—j
For every u € H” ( R% ), it helps us provide the definition of an equivalent norm on A" ( R% ), denoted by |.|m, and defined as,

Definition 1.3.1.

Jul?, ::Z/ / (L+1€12)" 7 |DLa(e!, ) 2de day (1.5)
Jj=0 0 Rn—1

Definition 1.3.2. For every, 0 <j <m — 1, we define, ¥ CgO(R+ ) —> CSO(R+ ) as,

(vju)(@’) = (Dju)(a’, 0) (1.6)

1.4 Trace Theorem
Theorem 1.4.1. The map y, ( as defined in (1.6) ) has in fact an extension from H" (R )onto H = 12(R"1) as an operator which is
both bounded and linear.

Proof. Using (1.5), we can interpret the following for every u € C§° (En),

. 17 T
D€ P < [ 103 (¢ P+ A [ 1Djt (€ ) Pl
0 0

Where, we take, 4 = (1 + |£]*)"2 for the purpose of this proof ( in fact any value of A would work in general ).
Therefore, multiplying both sides by (1 + |£'?)"7"12, we obtain,
2\m—j—1/2|1yj 7 2 2
[ @By Dl € 0 g’ <
Rn—1
Le,  yullm—j—1/2 < llullm

Important to note that, such an extension of Y, is unique, since, C° (R4 )is dense in H" (R’j_)
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In order to establish surjectivity, assume any p. € H77712 (R*™) for j = 0...m—1. Define,

X € C§° (R) such that,

{ 1, in B(0,1/2)

= 0, outside B(0,1).
Now, we define,
m—1 ’l$
a(&’,xn):x((lJr!f! )2 ) () on)
7=0

Where, ;(&') = D%ﬂ(f’,@).
We claim that, u € H™(R"}).

A priori using Leibniz Rule, we can justify that, 3 constants C,, satisfying,

é- «Tn chle Z{X ((1 + ‘5/’2)1/21,”)} iﬁ](gl)](] - 1)(] - l) (van)j*l

|
=1 I

Again, on Supp(y), we have, || < W Thus, we get,

D (e (L4 1€ 20 )| < (1 g2k

Hence, 3 a constant ¢ > 0 such that,
/ / [Dbie’ x2)
Rn— 1

It helps us conclude that,

(Lt | dede’ < / €L+ €2V 24

< C||Pj||72n—j—1/2

ulm < c SUP Hpj’|m—j—1/2
0<5<m—1

Hence our proof is complete.

1.5 Integration by Parts
Theorem 1.5.1. Assume any u, v € H! (]Rﬁ_) Then,

/(Dnu)v dx = — /anv dx —1i / yo(u)yo(v)dz' (1.7)
R? R? Rn—1

Proof. Choose any two sequences u,, v, € C5°(R ) satistying, |u, — v,| — 0 as k — co.
Therefore, we obtain,

/(Dnuk)vk dx =1 / gzzvkdazn dx’
R? Rn-1

= —/uanvk dr —1 / ug (', 0)vg (2, 0)da’

Ri Rn—1
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A pr.iori from t.he fact that, u, — u, v, > v, Du, — D u, D v, — D v, u(x', 0) — y,(u), v(x', 0) — y,(v) as k — oo in L*. Hence, we
obtain our desired result.

As a corollary to the above theorem, we can indeed deduce the following.
Corollary 1.5.2. Suppose, H} (R ) := {u € HY(R?) : ~o(u) = 0}, is dense in H} (R%).

2 Calculus on the Boundary of Sobolev Spaces
2.1 Domain with Smooth Boundary
Suppose, for 1 <i<n & r, r,> 0, and every x = (x,, x,, ..., X,), we denote,

"= -1
= (21,29, 0y Tim1, Tit1,...Ty) € R"
We define the following sets in R" as,

Bi(a',r) = {y e R ¢ |2/ —y| <1}

‘/;Z(xyrlar2) = {(yl:y% ay’n) eR" : |JJ/ - yl‘ <71, ’xl - yl‘ < 7"2}
Using the above notations, we explain the concept of a domain with smooth boundary as follows.

Definition 2.1.1. Q c R” is defined to be a domain with smooth boundary if for every x, € 62,3 r,r,>0,i € 1,2, ..., n and a smooth
function, y, : B(x', 7)) — R satisfying,

Vi(zg,r1,m2) N = {x € Vi(mo,r1,7m2) & () < xz} (2.1)

or,

Vi(zg,r1,m2) N = {x € Vi(xg,r1,7m2) & i(2’) > xz} (2.2)

and,
Vi(xo,r1,7m2) N O = {ﬂc s () = :UZ} = {(m, s T 1, Vi (2, i1y ey ) 2 € Bi} (2.3)

Example 2.1.1. Consider Q = Ri . Then, y (x") = 0, where, x' = (x, x,, ..., x_,). Furthermore, we can deduce that, r, = r, = oo.

Definition 2.1.2. (Outward Normal) Suppose, x, € 62 and, r, r, > 0, such that, (2.1) holds true.

2

For every x € V(x,, ,, r,) N 082, we define,

V(w) _ V(*ﬂfl ‘f‘%(l",)) _ (axly..-, (92137;_17_ ’8:&;_‘_1"“’ 8(En> (2 4)
IV (=i + i(a))] 1+ [Vh]?
Subsequently,
ovi|* o) o |2 | oy |? oy |
2 — ? ? 7 7 7
Vil ‘8:61 + ‘&EQ S P ey T o (2.5)

v is denoted as the unit outward normal to 0% at the point x.
Definition 2.1.3. (Measure on 02) We define the measure do on V(x,, r,, ,)N0L2 as follows,
do = /1 + |V;|2dx1dxs...dx;—1dxiyq...dxy, (2.6)

We can use the Integration by Parts (Theorem (1.5.1)) to infer about the relation of v and do as defined above with the smooth
boundary of a domain Q.

J Math Techniques Comput Math, 2024 Volume 3 | Issue 3 |5



Lemma 2.1.2. For any Q C Rn, the unit outward normal, v and the measure do as defined earlier are in fact independent of the
description of 0Q.

Theorem 2.1.3. In any bounded domain Q c R with smooth boundary, we choose any u, v € C'(Q) N C°(Q). Then,

ou ov
/a%vdx— / oz, /uw/ida (2.7)

Q Q oN

Where, v(x) = (v,(x), v,(X), ...., v (x)) is the unit outward normal to 02 and do is the measure on 0.
Proof. We shall introduce two important results which shall be used to prove this theorem.

Lemma 2.1.4. Assume K to be the support of u as defined in the statement of the theorem, such that, K is compact in Q. Furthermore,
let, ¢ € C' (Q) be such that, ¢ = 1 on K. Also, let v, = ¢v. Hence, u, v, € C' (R") and Supp(u), Supp(v,) € Q, and

ou ov
&Uivdx = — /uaxi dx
Q Q

Lemma 2.1.5. Let x, € 0Q, and, r,, r,> 0, 1 <i <n. A priori using the notations y,V, as defined before,let us take, n, <r, n,<r,
and, u, v € C'(Q) N CO(Q) satisfying, u < V(x, n,n,) € V(x r,). Then,

0’[’

G—%Uda: = /udaz+/uvujda

Now we an indeed proceed to the proof of the main theorem.

Clearly, Q is compact, hence, it has a finite cover, say, Q C V0 fo:l Ve, where, V0 C Q is compact and, V = Vo (z®
r{,rg), x® € o5

Suppose, {Xz’}ﬁ:o be a partition of unity subordinate to this cover. Therefore,
!
u= > UXa = Y. Uy, Where, we define, u, = uxa. As a result, Supp(ug) C V° C Q and, Supp(u,) C V.
a=0 a=0

From the results mentioned in Lemmas (2.1.4) and (2.1.5), we obtain,

(5 e

an =0

= / dw+ / uvv;do
ox;
o0

And, the proof is done.

2.2 Boundary of Sobolev Spaces
Suppose, 2 be a bounded domain with a smooth boundary. Let, 092 C Ufllec“, where, V& = V(2% r¢ 1) and assume

3 4¢ ¢ B(a®,r$) — R describing 9Q as in (2.1.1). Furthermore, let {xa} be a C*-partition of unity subordinate to this
cover. u: 9 — R be a function. A priori under the assumptions as discussed in the previous section, we can infer that,u = >_ ua,
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where uq = Xqu has support in V& (z®,r¢,r$). Hence, we define another function i, on R™™* by,

U () = ua(T1, ooy Tim1, V() Tig1s ooy Tn)
Then, we give the follwing definition.

Definition 2.2.1. u € i (0Q) iff i, € H'(R"™") and,

l
lulls = [ldalls
a=1

Remark 2.2.1. Important to observe that, the norm as defined above depends upon the partition of unity and the cover {V*} and any
such two norms obtained by different covers and partitions of unity are in fact equivalent.

Using the definition of A*(0€2) and the Trace Theorem (Theorem (1.4.1)) in R”, the following theorem follows.

Theorem 2.2.2. For a bounded domain Q2 with smooth boundary, we define Y- C*(Q) — C*(0Q) as,

You = ulaq if, j =0

Mu .
Yiu = %’89 if, 7 >0

n

Where, 2 = 3" yl%, v(x) being the unit outward normal to 0Q at x.

Let, me N and 0 <j <m — 1, therefore, ¥ extends to a continuous surjective map from H"(Q) to H"7~"?(0Q). Moreover, if
Hy' () ={ue H"() : yju=0,0<j<m-—1}

Then, C3°(2) is dense in HJ' ().

Corollary 2.2.3. Suppose, u,v € H*(Q), then,

ou ov
oz, vdr = _/uf)a:i dx + /’yg(u)fyo(v)uida

Q Q o2

ou ov
/axivd:v = —/uamida:

Q Q

i.e., if, u € HY(Q), then,

Remark 2.2.4. The above formula in Corollary (2.2.3) holds true for C'-functions and thus by approximation process, the same holds
for H'(QY).

3 Boundary Value Problems
3.1 Introducing Boundary Conditions on Solutions
Let, £ € R" be open, and a;€C 1(Q), ¢ € C%(Q). Furthermore, suppose, a;=a, and they satisfy the uniform ellipticity condition,

mlg? <3 aij(@)6& < MIEP  VreQ, R (3.1)

for some m, M > 0. Let, f € C°(Q), g € C*(89), and u € C?()) be satisfying the following,

Lu+ c(z)u = — Z 68% (a”(x)88u> +e(x)u=f (3.2)

4,j=1

with the following two kinds of boundary conditions imposed on 0Q as follows,
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(1) wu=g on 909N (Dirichlet Boundary Condition) (3.3)

8 Zawyl =g on 092 (Neumann Boundary Condition) (3.4)
vr

Therefore, multiplying (3.2) by v € H?(Q) and integrating by parts, it yields,

[ro== 3 [ (g ) o [ o

1,j=1¢

= Z /aijauav—i—/ uv—/vda
= 8@ al'j 8V£
’L,]ZIQ

Interested readers may ask certain questions like, whether a solution to (3.2) really exists for given f, g and under the so called
boundary conditions as descibed in (3.3) and (3.4). Furthermore, if a solution does in fact exists, one might also raise a question as
to whether it is unique!

Remark 3.1.1. Existence of solutions to (3.2) in CX(Q) is not true in general. Hence, we relax the condition to a certain extent and
look for solution in a much bigger space, i.c., the Sobolev Space. There, we consider only the Dirichlet Problem and the other
boundary conditions can bemodified in a similar manner.

3.2 Weak Formulation of a Dirichlet Problem

A priori from the fact that, the operator £ maps H*(Q) into L*(Q) and y, maps H*(Q) into H**(0Q). It allows us to reformulate the
problem in the following manner:

Given f, € L(Q), g € H**(0Q), we intend to find a u, € H*(Q) satisfying,

Lur+ e =— 3 2 (ay@)35) +e@hm=fi 0
1,j=1

Youir =g on Of).

As y, 1 H(Q) — H*(0Q) is surjective, thus, 3 u, € H*(Q) with yu, = g. Suppose, u = u, — u,.
Hence, u satisfies,

n

_leai (%( ) ;Z)‘FCU:fl—ﬁuo—CUO in O
You =0 on 9.
Thus, putting /= f, =L 4, —cuo, the problem further reduces to obtaining one such u € H*(Q) such that,
n
=2 o (o)) veu=s im0
’ You =0 on 99.

It suffices to look for a solution to the problem,

u € H?(Q) N H(Q) ’
-2 a?: (%( )ax)+cu—f nQ

ij=1

Multiplying (i) by v € H} (Q) and applying Integration by Parts, we obtain,
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ou Ov
/<am 9z, 0z, +cuv> dx = /fv (3.5)
Q

Important to note that, u is a solution of (i) iff (3.5) is satisfied for every v € H} (Q).

3.3 Weak Solution of a Dirichlet Problem
Using the above concept, we can introduce the notion of weak solution for a boundary value problem as follows.

Definition 3.3.1. (Weak Solution) Suppose, u € H} (). We define u to be a weak solution of the problem,

n

_.Zla?cz (aw( ) ;;;)Jrcu:f in Q
Z7]
You =0 on 0f).

iff Vv e H! (Q), (3.5) holds true.

Remark 3.3.1. In case for weak solution, the assumption that, u € H*(Q2) can be relaxed. Further, using the above definition, we
can in fact search for answers to some critical questions related to the existence and uniqueness of a weak solution. Even, one can
comment on some regularity properties of the weak solution in H*(Q).

We shall introduce the following results in order to discuss these concepts in the next section.

Lemma 3.3.2. (Poincare’s Lemma) 3 a constant ¢ > 0 which satisfies the following relation for every u € H} (Q),

/\u|2dx < c/yvu\%zx (3.6)
Q Q

Proof. A priori from the fact that, Q is bounded, 3 M > 0 such that,

Qc{x : —M<x; <M, ,i=1,2,...,n}
Suppose, u € C§°(R2), thus, for z € Q,
T1 P
U
w(xy, o, ooy Ty) = —(t,mo, ..., xy)dt
ot
—M
Hence,
1
ou |? d 2
lu|? < (x1 + M) / 6—1; dt < 2M ‘é(t,xg,...,xn) dt

-M

We thus conclude,

lu(x)|?de < (2M)?* | |Vul?dz
[ [

Q
And the proof is complete.
As a corollary to the above result, we can infer the following.

Corollary 3.3.3. Given any u, v € H' (Q) and, c(x) > 0, ¢ € L*(Q), suppose,

a(u,v):/( ”36;; a@v +cuv> dx
i OFj
Q
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Then, a satisfies the following conditions:

(i) (Symmetry) a(u, v) = a(v, u).

(ii) (Continuity) 3 ¢, > 0 such that, |a(u, v)| < cl|lul|1|[v||].

(iii) (Coercive) 3 ¢, > 0 such that, a(u, u) > c,||u||’,, where, ||.||1 is the norm defined on H', ().

Lemma 3.3.4. (Lax-Milgram Lemma) Suppose H be a Hilbert Space and a : H x H — H be symmetric, continuous bilinear map.
Furthermore, let us assume that, 3 ¢ > 0 such that,

a(u,u) > c||lul|* Yu € H.
Then, for every l € H*, ! u, € H satisfying,
a(ug,v) = 1(v)
Vv eH.

Proof. H being an inner product space with respect to the bilinear form a(_, .), which also happens to be both continuous and coercive
( Corollary (3.3.3) ), we can conclude that, the two norms, ||.|| and ||.||, are indeed equivalent.

Therefore, H with the inner product a is complete and, subsequently is a Hilbert Space.

Applying Riesz Representation Theorem, for every / € H*, 3 u, € H such that,
a(up,v) =1(v) Vv € H holds true.

This eventually estblishes the statement of the lemma.

3.4 Existence and Uniqueness of Weak Solution

Theorem 3.4.1. Consider any a;, ce L*(Q), such that, 3 m,M > 0 satisfying,

(a) c > 0.

() mdP <X a(x)SE <ML, VxeQ CeRn

Furthermore, if f € L*(Q), then 3! weak solution u € H' | (Q) of the problem,

Z?J:

You = on 0f).

Proof. Let us choose, v € H}(Q) and,

Hence, we have,
1) < [flrz@lvlez) < [flrz@llvlh
4 Hm-Regularity for Second Order Elliptic Equations

In this section, we shall discuss the existence of the weak solution, u € H(Q2) in the space H"(2). For our simplicity, we shall
consider a special case, m = 2 for our analysis.

4.1 Interior Regularity
Givenh €R, e, := (0,0, ..., 0, 1,0, ..., 0), for 1 <i<n. Moreover, for every u € R", we define,
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(rhu)(a) = A he}i) —u(@) (4.1)

Lemma 4.1.1. (1) For every u € H'(R"), and 1 <i <n,
Imull2 < [Vl

(Il) For everyu € H(R"), and 1 <i<n— 1,
lImhullre < [Vl

Theorem 4.1.2. (Interior Regularity) A priori given a, € C'(R"), u € H(R") such that, Supp(u) is indeed compact in R". Then, f €
L*(R"), and moreover, 3 m > 0 satisfying,

1.
mle? <3 aii(2)&E . Yz e

Where, Q is an open set such that, Supp(u) c Q.
2.Vve Hl(R”),

Z/a..auf’“ _/fv
— ”8@ 8SU]' -
(2%} R R"
Then, u € H*(R").

Proof. To prove the above Theorem, one can in fact proceed through the following steps systematically, using the results and
concepts which we shall briefly discuss below.

Lemma 4.1.3. 3 ¢, ¢, > 0 satisfying,

ou

— <ec, V 0<lhl<c, 1<ij<n
8a;j

L2

7

i Ou

From the above Lemma (4.1.3), we can observe that, {Thwj o

} is indeed boundedin L?. Thus, for any subsequence, T}i v
0<|h|<co k OTj

converging weakly to v;- in L?(R"), and for every ¢ € C§°(R™), we shall have,

[ 2 [ 22 {qb(w—hkei)—gﬁ(x)}dx
k(‘)a;j

ox 7 hk
R™ R

As k — oo, we apply dominated convergence theorem to deduce,

0%u i 9
——— =v' e L*(R"
(%i@xj J ( )
Hence, we conclude that, u € H*(R"), and the proof is complete.

We can indeed generalize the above result to comment on the A”-Interior Regularity for a Dirichlet problem.

Corollary 4.1.4. Assume that, a, € c R, f€ H(RY), u € H(R") , ¥V 1 <i, j <n satisfy the same hypothesis as described in
Theorem (4.1.2). Then, u € H"?(R").

In addition, one can further deduce the following.
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Corollary 4.1.5. Ifai].,fe C*(R"),V 1 <i,j<n, then, u € C*(R").
4.2 Boundary Regularity
Theorem 4.2.1. Suppose, a;j € CY(RY"), u € H{(RY") satisfying, Supp(u) is compact nR,". Moreover, let f € L*(R") and 3

m > 0 such that,

m|£2|2 < Zaw x)&&5 Ve e Q

Where, 2 is an open set in Ry~ such that, Supp(u) C Q.

2.V ve HY(R),

Z/ auav_/fv
i ”6:132- al‘j N
) R” RT}F
Then, u € H2R").

Proof. Suppose, 0 < |h| < € satisfies that, for i < k <n — 1, the support of x — u(z + hey) is
in fact contained in Q [ Since, k <n —1].

A priori using concepts similar tothe case for interior regularity, it follows that,
||T}]Z:VUHL2(]R¢)SC, O<‘h‘<60, kﬁn—l
Thus, for a subsequence s, — 0, we obtain,

. 52 2 ..
(%) W&EL ,V 1<i,j<n—1

(i) yod-eL? ¥V 1<ij<n-—1
Therefore, it only suffices to prove that, ‘9 ¥ - € L2 Let, ¢ € CL(Ry"). Hence,
ou (9¢
@nn 6:&” 8:En

Rn

_ Ou 99 | _ Ou 9¢ _ Ou 0¢ /
B / . Z Y o ox; Z / g dxj Oxp * ) an Oxy, O Ty
Ri i,7<n—1 j<n—1 Ri Ri Ri

R}
Where,
Oa; Ou Oan,; Ou da;, Ou d%u
F= i a; L 2 4 20, ———
2 o om Ja 8x ,Z T D DI v e L v el
3,j<n—1 < j<n—1
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Therefore,

0 ou
a. wmey— | =F L?
(amge) = e

o0z, T,
ie.,
9%u Oann OU 9
—apn—— = F + —cL
"0z oz, Oz,

Applying the concept that, an, > 0 in Q and therefore, g% € L?, and the proof.
As a corollary, one can establish the following.

Corollary 4.2.2. (Higher Regularity) Assuming a;j € C™, f € H™(R%Y), u € H}(RY) satisfying similar conditions as

above. Then, u € H™(R").

Corollary 4.2.3. Let, aj; € C%, f € C®(R?%), then, u € C™.

4.3 A Special Diffeomorphism on Second Order Elliptic Operators

Theorem 4.3.1. Given Q and Qs being bounded open sets, and I : Q1 — Qo be a diffeomorphism. We further define, J(F')
= (%%) X such that, J(F) and J~Y(F) existV y € Qy and phism. We further define, J(F) := (%)i K such that, J(F')

and J_l(F) exist V y € Q1 and is continuous there. Then F transforms any second order elliptic operator £ on )y to a second

order elliptic operator on §s.

Proof. A priori given any two bounded domains wy and €9, and a diffeomorphism defined as,
F .= (Fl,FQ,...,Fn) : Ql —)QQ
We an in fact observe that, F' is C'°, one-one and onto and the inverse is indeed differentiable.

Furthermore, for any function v on 9, we define 4 : 2y — R by,

a(y) = u(F(y)) , y €

Consequently,
871 _ 811, 8Fk
O = 2oy ) gy
and,
Pi = Pu aFlaFk z": asz
Qyidy; A=, dmidxy ayz dy; 3»’% 3y13yg
Let,
L= a;;( +
Z ! 8yl8y] Z ayz e

be any elliptic differential operator on Q. Hence, in £, we can in fact deduce that,
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0? 0

L:= Zail(y)m + Zbk(y)@Tck + c(z). (4.2)

Where,
_ OFy oFy ,
ap(z) = 2 aij (F~ ' (x)) 3%( l(fﬂ))aT/j(F )

and,

-~ OFy , __ . _ O*F,

o) = S BE @ G ) + L ) g )

and,

~ 1
c(x) = e(F (x))
One can indeed verify the neccessary conditions for £ to be an elliptic differential operator on £}
Suppose, for 71,79 > 0,2' := (21, T2, ..., ¥n_1), we define, zg := ({,29) € R". Furthermore, ¢ : B(x},71) — R be a smooth

map such that, 2 = 1(z}). Let,

Q1 = {z |2’ € B(zy, 1) , (') <zp <12}

and,
Qo = {y | v € B(zh,r1) , 0 <yn <ro— w(x’)}
We define,
F = (Fl,FQ, ,Fn) : Ql — QQ
by,

Putting y = F(x), we can deduce,
B($6,7“1) :B(y(,brl) ) 0<yn<7"2—¢(y/)

and,

Ttn—1)x(n-1) O
e = (3£) = { e )

Moreover, the diffeomorphism /' maps {x : x, = w(x)} to {y : y, = 0}.
Using the above concept, we can indeed conclude the following result.
Theorem 4.3.2. Given a bounded domain  with smooth boundary, suppose we have the following second order elliptic operator,

L=— Z 80; (aw(ac);;) + Zle(x) 83% +c (4.3)

ij=1
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where, the coefficients satisfy, a;; € C1(Q),bi,c € L>=(Q) and the ellipticity condition given by,
mle)? <> ai&igy < MIEP, ¥ EER™ (4.4)
for some m, M > 0. Let, f € L*(Q) and, u € H}(Q) be a weak solution of the problem,
Lu=f in Q (4.5)
Then, u € H?(Q).
Proof. Suppose, {V*} be an open cover satisfying,

() VOcQ.
(i9) V¢ =Vi(a®, rf,rg), and, ¢ : B(z®,r¢) — R be a smooth function such that,

QNVe = {x eV |2 e B(x®,r}), v () <2 < 7‘5‘},

NV ={z eV | () =i}

Let, Fp, : QNVe - Ry —{y:y; >0} be defined as,

and,

W =F,(anVe)={y|y; € B(x*r}),0 <y <15 —v(y)}.

o

Consider a C'™ partition of unity as {XQ}L:O subordinate to the assumed covering such that, u® = x“u.

We can observe that, u = > u® and, Supp(u®) C V¢, where,

0 0 ou ox“

As a result, we can obtain b, c® € L*®(Q), Supp(b?),¢® C V& such that,
Lu® = x"L(u) + Z bqa—u + c®u
! 8SCZ

— +Zbia—xi+c u=f*eL*V®

Clearly, we have, Supp(f®) C Supp(x®) = K* is compact. Moreover, Supp(u®) C Supp(x*) = K*.

For a = 0, we have, Supp(u®) € K° ¢ Q and, Lu® = f¥ in Q. Thus, Lu® = f° in R™.
A priori from the fact that, £ is indeed elliptic in €2, hence, by interior regularity property,

we conclude, u® € H%(Q).

In case when, a # 0, we define, F* : (AN V®) — W< such that,

a(y) = u((F*) " (y)-
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Therefore, 1% € H&(W‘“) implying, Supp(a®) is in fact compact in ER Consequently, a“ is a weak solution of a second order

uniformly elliptic operator £%, in other words,

LYY = f@ in R’
u® € H& (Rr_f_)
Hence, @* € HX(W?) = u® € H*(QNV?) = wu:= > u®* € H*Q). The result is thus established.

As a corollary, we can further comment on the H™—regularity for the case m > 2 as follows.

Corollary 4.3.3. Suppose, f € H™(Q)), g € H’"*g(aQ), and u € HY(Q) satisfies,

Lu=f in Q
Yu=g on 02

Then, u € H™2(Q).

Proof. A priori applying the fact that, vo : H™2(Q) — H"‘*g(aQ) is surjective, and hence, 3
wp € H™ 2 with, yo(u1) = g. Let, v = u — uy. then, v € H}(Q). Moreover, Lv = f — Lug €
H™(Q), and, yov = 0 onto 0f2.

It follows that, u® indeed satisfies the Interior Regalarity and Boundary Regularity conditions
as described in Theorems (4.1.2) and (4.2.1) respectively. Therefore, we conclude that, u® €
H™2(Q), Y «, implying that, u € H™+2(Q). And the proof is thus complete. O
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