ISSN: 2640-7477

Journal of Gastroenterology \& Digestive Systems

On Impermissibility of the Use of Any Equation Instead of the Corresponding One for Calculation of Rate Constants of Enzyme Inhibition and Activation

VI Krupyanko

G. K. Skryabin Institute of Biochemistry and Physiology of *Corresponding author

Microorganism, Russian Academy of Sciences, 142290 Pushchino, V I Krupyanko, Skryabin Institute of Biochemistry and Physiology of Moscow region, prospect Nauki 5.

Submitted: 20 Apr 2022; Accepted: 27 Apr 2022; Published: 06 May 2022

Citation: V I Krupyanko. (2022). On Impermissibility of the Use of Any Equation Instead of the Corresponding One for Calculation of Rate Constants of Enzyme Inhibition and Activation. J Gastro \& Digestive Systems, 6(1): 84-90

Abstract

The use of any other equation instead of the corresponding one for calculation of constants of enzyme inhibition and activation, is not allowed. Example of such substitution printed.

Keywords: Impermissibility of The Using of Other Equations
Running Title: Impermissibility of the using of other equations

Introduction

The development of fundamentals of vector method representation of enzymatic reactions (1-10) has opened up new possibilities for calculation of a wide array of kinetic parameters applying new approaches such as:

1. The perception of the presence of a symmetry between inhibited and activated of enzymatic reactions, this can be seen when comparing the initial rates of reactions

$$
\begin{equation*}
V_{i}<V_{0} V_{a}<V_{0} \tag{1}
\end{equation*}
$$

but correlation of the secondary parameters of these reactions on the level of correlation of $K_{m}, V, K^{0}{ }_{m}$ and V^{0} values still needs further follow-up.
2. In the works (3-7) was shown that such symmetry is proved based on the dependence of the ratio of the effective K_{m} and V parameters determined in the presence of an inhibitor (i) or activator (a) relative to $K^{0}{ }_{m}$ and V^{0} parameters of the initial (neither inhibited $\mathrm{i}=0$, nor activated $a=0$) enzymatic reaction rate (Table 1) and that L_{i} vectors of correspondent enzymatic inhibited reaction take oppositely directed pace to that (similar by type) of L_{a} vectors of activated reactions.

Figure 1: Three dimensional (non complete) $K_{m} V I$ system of rectangular coordinate with separately P_{i} and P_{a} semiaxes of molar concentrations of (i) inhibitor and (a) activator, where only LIi, $L_{I V i^{\prime}} L_{I I I} L_{I I i} L_{I a^{\prime}} L_{I I I a^{\prime}} L_{I I a}$ vectors of enzymatic reactions placed in appropriate parallelepipeds, $L_{I i} L_{I V i} L_{I I I i}$ and $L_{I a}$ are projections
of these \boldsymbol{L} vectors on basic σ_{0} plane. The magnitude of φ angle is about 3400 .

Figure 1a: Three dimensional (complete) $K_{m} V I$ coordinate system, (the same as Fig. 1), with all $14 \mathbf{L}$ vectors (7 type of \boldsymbol{L}_{i} inhibited (i), 7 type of \boldsymbol{L}_{a} activated (a) enzymatic reactions. The $15^{\text {th }} \boldsymbol{L}_{0}$ vector of initial reaction (and it \boldsymbol{L}_{0} projection take place in P point of coordinate intersection. The all 14 orthogonal $L_{I i}, L_{I V i} \ldots L_{I a}, L_{I a}$ projections of L vectors on basic σ_{0} plane, are placed completely in (Fig. 2). The broken line $\sigma_{\text {VIIa/Vi }}$ - first (I_{σ}) to $\sigma_{\text {VaVIII }} \mathrm{i}$ - third (III) quadrants of σ_{0} plane are denote transient station between: $V I I_{a} \leftrightarrow$ V_{i} and $V_{a} \leftrightarrow V I I_{i}$ type of enzymatic reactions, The magnitude of φ angle about 340°.
as well as that scalar \boldsymbol{L} projections of these vectors on basic σ_{0} plane were also oppositely directed (in the same Figs 1, 1a), or one can use (Fig. 2), convenient for scalar vector representations. of system shown in Figs 1, 1a)

Figure 2: Two-dimensional (scalar) $\mathrm{K}_{\mathrm{m}} \mathrm{V}$ coordinate system.
The symbols of kinetic parameters: such as, the same $K_{m}, V, K^{0} m$ are identical to those as in Fig. 1. The symbols of ($L_{I i}, L_{I V} \ldots L_{I a} \ldots$) projections of all three-dimensional L vectors (many of which are absent in Fig. 1) and placed completely in Fig. 2, (14 L projections). The broken line $\sigma_{V I I a / i}-$ from first (I_{σ}) to $\sigma \mathrm{Va} / \mathrm{VIIi} i$ - third (III ${ }_{\sigma}$) quadrants of σ_{0} plane are denote transient station between: $V I I_{a} \leftrightarrow V_{i}$ and $V_{a} \leftrightarrow V I I_{i}$ type of enzymatic reactions. The magni-
tude of φ angle in this Figure is about 30°.
It was possible to:
A. Complete a creation of unified (symmetrical) "Parameter-based classification" of the types of enzymatic reactions. It includes 15 individual types of catalyzed reactions. Among them there are 7 inhibited enzymatic reactions, 7 activated enzymatic reactions and one zero-order (I_{0} type) initial (uninhibited, $i=0$ and non-activated $a=0$) enzymatic reactions characterized by the position of zero-order L_{0} vector at point $P\left(K^{0}{ }_{m}, V^{0}, 0\right)$ of the origin of coordinates (Fig. 1).
B. Derive equations that can be used for calculation of rate constants, They are 7 equations for calculations of rate constants of enzyme activation, K_{a} (Eqs: 9-15, Table 1) and new 5 equations for calculation of rate constants of enzyme inhibition (Eqs: 1, 2, and 5-7, Table 1), a total amount of these equations accounts for 14 equations (of these, 12 were newly derived); and (Eqs: 3 and 4, Table 1) have long been known (11-14).

However, there are some questions that need answers. One of these questions which could seem insignificant at first glance can be formulated as follows:
It is incorrect the use any other equations (Eq.: 2-7, Table 1) to calculate the value of the rate of KLi constant, especially (Eqs.: 3 and 4, Table 1). Such examples in publication are numerous.

Let us consider the following examples.

Example 1. Determination of the type of inhibited reaction:

 The study (Vi) of pNPP cleavage catalyzed by porcine alkaline phosphatase revealed that initial rates in the presence of $1.10^{-5} \mathrm{M}$ $\mathrm{WO}^{2-}{ }_{4}$ decreased $\mathrm{V}_{\mathrm{i}}<\mathrm{V}_{0}$ within the whole interval of concentrations of substrate cleaved (Fig. 3).

Figure 3: Graphs of inhibitory effect of $\mathrm{Na}_{2} \mathrm{WO}_{4}$ on the initial rates $\left(\mathrm{V}_{\mathrm{i}}\right)$ of pNPP cleavage catalyzed by porcine alkaline phosphatase in the coordinates of Lineweaver-Burk. Line 1 - the concentration $\mathrm{Na}_{2} \mathrm{WO}_{4}$ is $1.10^{-5} \mathrm{M}$, line (0) - the inhibitor is absent.
i. e. this is inhibited reaction. The construct plots in the $\left(\mathrm{V}^{-1} ; \mathrm{S}^{-1}\right)$ double reciprocal coordinates (Fig. 3), permitted to establish that: $\mathrm{K}_{\mathrm{m}}^{0}=5.4510^{-5} \mathrm{M}, \mathrm{V} 0=9.36 \mu \mathrm{~mol} /\left(\min . \mu \mathrm{g}\right.$ protein) and $\mathrm{K}_{\mathrm{m}}=$ $10.62 .10^{-5} \mathrm{M}, \mathrm{V}=5.86 \mu \mathrm{~mol} /(\mathrm{min} . \mu \mathrm{g}$ protein) experimental lines intersect the coordinate axes in the point: $\mathrm{K}_{\mathrm{m}}>\mathrm{K}_{\mathrm{m}}^{0}$, $\mathrm{V}<\mathrm{V}^{0}$ which correspond to all the features of the biparametrically coordinated
(Ii type) of enzyme inhibition by WO_{4}^{2-} anions (Tables 1, line 1) and one should use (Eq. 1, Table 1) to calculate of K_{Ii}. constant of enzyme inhibition. Substitution of all the appropriate parameters in this equation
$K_{I}=i /\left(\left(\frac{K_{m}^{\prime}-K_{m}^{0}}{K_{m}^{0}}\right)^{2}+\left(\frac{V^{0}-V^{\prime}}{V^{\prime}}\right)^{2}\right)^{0.5}=8.92 \cdot 10^{-6} \mathrm{M}$, (7)
Indicates a more strong binding of the enzyme to $\mathrm{WO}^{2-}{ }_{4}\left(\mathrm{~K}_{\mathrm{m}}^{0} / \mathrm{K}_{\mathrm{li}}\right.$ $=5.45 / 0.892=6.11$) than to the cleaved substrate.

But all attempts to calculate the constant of this type of enzyme inhibition using when $\mathrm{V}=\mathrm{V}^{0}$, would yield $\left(K_{\text {viv }}\right)=10.54 \cdot 10^{-6} \mathrm{M}$, or when $K_{m}=K^{0}{ }_{m}$, would yield $\left(\mathrm{K}_{\mathrm{IIII}}\right)=16.74 \cdot 10^{-6} \mathrm{M}$ which would differ: in first case ($K_{I v} / K_{I i}=10.54 / 8.92$) more than 1.2, in the second case more than $(16,7 / 8.92=1.87)$ times from the $K_{l i}$ calculated by Eq. (1, Table 1). This happens, because a ratio of the (V and V^{0}) in the first and K_{m} and $K^{0}{ }_{m}$ parameters of this reaction is not taken into consideration.

Obviously no one another equation (Eqs. 2, 5-7 of Table 1), don't may to be used for construction and data treatment of (Fig. 3), such as: by the choice of Eq. 2 in Table 1 (instead Eq. 1) - it needs to take into account, that in this case should be: $K_{m}<K_{m}^{0}$ and (Fig. 2 in Table 1), and so on:
by the choice of Eq. 3 - that should be: $K_{m}=K_{m^{\prime}}^{0}$
by the choice of Eq. 4 - that should be: $V^{m}=V^{0}$,
by the choice of Eq. 5 - that should be: $V>V^{0}$,
by the choice of Eq. 6 - that should be: $K_{m}<K_{m}^{0}$ and $\operatorname{tg} w<\operatorname{tg} w^{0}$.
by the choice of Eq. 7 - that should be: $K_{m}^{m}<{K^{m}}_{m}^{0}$ and $\operatorname{tg} w<\operatorname{tg} w^{0}$.
In experimental practice the examples of using the Eqs. 4 and 3 (and other equations of Table 1) for the treatment of data analogous to Fig. 3 (or he same Fig. 1, Table 1) numerous (15-22).

Example 2. Determination of the type of activated reaction: It was shown that initial rates V_{a} of pNPP cleavage catalyzed by canine alkaline phosphatase in the presence of $1 \cdot 10^{-3} \mathrm{M}$ Guo increased $\mathrm{Va}>\mathrm{V} 0$ within the whole interval of concentrations of the substrate cleaved (Fig. 3).

Figure 4: Activating effect of guanosine (Guo) on the initial rates $\left(\mathrm{V}_{2}\right)$ of pNPP cleavage catalyzed by canine alkaline phosphatase in the coordinates of Lineweaver-Burk. Line 1 - the concentration

The study allowed to establish that $K^{0}{ }_{m}=4.69 \cdot 10^{-5} \mathrm{M}, V^{0}=2.921$ $\mu \mathrm{mol} /(\min \cdot \mu \mathrm{g}$ protein $), K^{0}=5.67 \cdot 10-5 \mathrm{M}, V=3.527 \mu \mathrm{~mol} /(\mathrm{min} \cdot$ $\mu \mathrm{g}$ protein). Plotting of dependencies in the above coordinates revealed that the experimental line 1 of activated reaction is located below and parallel to the line (0) of initial (nonactivated, $a=0$) reaction at the ratio of parameters: $K_{m}>K_{m^{\prime}}^{0}, V>V^{0}$ (with correlation $K m / V=K^{0}{ }_{m} / V^{0}$) i.e., these lines would never intersect (Fig. 4). As is easily seen from Table 1 (line 14), this corresponds to all the features of the unassociative, lla type, of activation and to calculate a course of change in $\mathrm{Vll}_{\mathrm{a}}$ as (a) function of S, (Eq. 14, Table 1) must be used for calculation of the $K l l_{a}$ constant of activation. Substitution of the obtained from (Fig. 3) parameters in Eq. (14) yields to:
of Guo is $110^{-3} \mathrm{M}$, line (0) - the activator is absent. Which have all the features of the unassociative activation, $1 l_{a}$ type, of enzyme (Table 1, line 14).
$K_{I I a}=a /\left(\left(\frac{K_{m}^{\prime}-K_{m}^{0}}{K_{m}^{0}}\right)^{2}+\left(\frac{V^{\prime}-V^{0}}{V^{0}}\right)^{2}\right)^{0.5}=9.07 \cdot 10^{-4} \mathrm{M}$, (8)
That shows that the binding of this enzyme to guanosine ($K_{l l a} / K^{0}{ }_{m}$ $=90.7 / 4.69=19)$ is by 19.3 times lower than to the substrate. But attempt to calculate the constant of this type of enzyme activation using when $\mathrm{V}=\mathrm{V}^{0}$, would yield $\left(K_{l l a}\right)=5.79 \cdot 10^{-3} \mathrm{M}$, or when $\mathrm{Km}=$ $K^{0}{ }_{m}$, would yield (Klla) $=4.48 \cdot 10^{-3} \mathrm{M} .\left(K_{l l a} / K_{l l a}=57.9 / 9.07\right)$ more than 6.37 , in the second case more than $(44.8,7 / 9.07=4.94)$ times from the $K_{l l a}$ calculated by Eq. (14, Table 1). This happens, because a ratio of the $\left(\mathrm{V}\right.$ and $\left.\mathrm{V}^{0}\right)$ in the first and K_{m} and $K^{0}{ }_{m}$ parameters of this reaction is not taken into consideration.

Table 1: Parametric classification of the types of enzymatic reactions

(11

Table 2: Equations for calculation of the Ki and Ka constants

Type of effect	New name of the types of enzymatic reactions	Traditional name	Corrected equation for calculation of the K_{i} and K_{a} constants
I_{i}	biparametrically coordinated inhibition	mixed inhibition	$K_{I}=i /\left(\left(\frac{K_{m}^{\prime}-K_{m}^{0}}{K_{m}^{0}}\right)^{2}+\left(\frac{V^{0}-V^{\prime}}{V^{\prime}}\right)^{2}\right)^{0.5}$
II_{i}	unassociative inhibition	uncompetitive inhibition	$K_{I I i}=i /\left(\left(\frac{K_{m}^{0}-K_{m}^{\prime}}{K_{m}^{\prime}}\right)^{2}+\left(\frac{V^{0}-V^{\prime}}{V^{\prime}}\right)^{2}\right)^{0.5}$
III ${ }_{i}$	catalytic inhibition	noncompetiti-ve inhibition	$K_{I I I}=\frac{i}{V^{0} / V^{\prime}-1}$
IV_{i}	associative inhibition	competitive inhibition	$K_{I V i}=\frac{i}{K_{m}^{\prime} / K_{m}^{0}-1}$
V_{i}	pseudoinhibition		$K_{V}=i /\left(\left(\frac{K_{m}^{\prime}-K_{m}^{0}}{K_{m}^{0}}\right)^{2}+\left(\frac{V^{\prime}-V^{0}}{V^{0}}\right)^{2}\right)^{0.5}$
VI_{i}	discoordinated inhibition		$K_{V I i}=i /\left(\left(\frac{K_{m}^{0}-K_{m}^{\prime}}{K_{m}^{\prime}}\right)^{2}+\left(\frac{V^{0}-V^{\prime}}{V^{\prime}}\right)^{2}\right)^{0.5}$

VII_{i}	transient inhibition		$K_{V I I i}=i /\left(\left(\frac{K_{m}^{0}-K_{m}^{\prime}}{K_{m}^{\prime}}\right)^{2}+\left(\frac{V^{0}-V^{\prime}}{V^{\prime}}\right)^{2}\right)^{0.5}$	
I_{0}	initial (uninhibited $\mathrm{i}=0$ and non-activated) enzymatic reaction			
VII ${ }_{a}$	transient activation		$K_{V I I a}=a /\left(\left(\frac{K_{m}^{\prime}-K_{m}^{0}}{K_{m}^{0}}\right)^{2}+\left(\frac{V^{\prime}-V^{0}}{V^{0}}\right)^{2}\right)^{0.5}$	
VI_{a}	discoordinated activation		$K_{V I a}=a /\left(\left(\frac{K_{m}^{\prime}-K_{m}^{0}}{K_{m}^{0}}\right)^{2}+\left(\frac{V^{\prime}-V^{0}}{V^{0}}\right)^{2}\right)^{0.5}$	
V_{a}	pseudoactivation		$K_{\\|}=a /\left(\left(\frac{K_{m}^{0}-K_{m}^{\prime}}{K_{m}^{\prime}}\right)^{2}+\left(\frac{V^{0}-V^{\prime}}{V^{\prime}}\right)^{2}\right)^{0.5}$	
IV_{a}	associative activation	competitive activation	$K_{I V a}=\frac{a}{K_{m}^{0} / K_{m}^{\prime}-1}$	
III_{a}	catalytic activation	noncompetitive activation	$K_{I I I a}=\frac{a}{V^{\prime} / V^{0}-1}$	
II ${ }_{a}$	unassociative activation	uncompetitive activation	$K_{I I a}=a /\left(\left(\frac{K_{m}^{\prime}-K_{m}^{0}}{K_{m}^{0}}\right)^{2}+\left(\frac{V^{\prime}-V^{0}}{V^{0}}\right)^{2}\right)^{0.5}$	
I_{a}	biparametrically coordinated activation *	mixed activation	$K_{L}=a /\left(\left(\frac{K_{m}^{0}-K_{m}^{\prime}}{K_{m}^{\prime}}\right)^{2}+\left(\frac{V^{\prime}-V^{0}}{V^{0}}\right)^{2}\right)^{0.5}$	

References

1. Krupyanko VI (1986) A system of rectangular coordinates convenient for the analysis of interactions between some types of enzyme activation and inhibition. Appl. Biochem. and Microbiol 22: 440-446.
2. Krupyanko VI (1990) A Vector Method of Representation of Enzymic Reactions, Nauka, Moscow.
3. Krupyanko VI (2009) Perspectives of Data Analysis of Enzyme Inhibition and Activation. Part 1: Use of the Three-Dimensional KmV I Coordinate System for Data Analysis of Enzyme Inhibition and Activation. J. Biochem. Mol. Toxicol 23: 97-100.
4. Krupyanko VI (2009) Perspectives of data analysis of enzyme inhibition and activation. Part 3: Equations for calculation of the initial rates of enzymatic reactions. J. Biochem. Mol. Toxicol 24: 108-118.
5. Krupyanko VI (2014) Non-existence of secondary coordinates of intersects. Eur. Chem. Bull 3: 815-822.
6. Krupyanko VI (2010) Perspectives of Data Analysis of Enzyme Inhibition and Activation. Part 4: Equations for Calculation of Constants of Enzyme Activation and Inhibition, J Biochem. Mol. Toxicol 24: 145-154.
7. Krupyanko VI and Krupyanko PV (2019) The Constants of Enzyme Inhibition and Activation Should not be Dependent on the Choice a Coordinate System Used for Their Calculation. Acta Scientific Otolarynology 1: 12-21.
8. Krupyanko VI (2015) Correction of Dixon Plots., Eur. Chem. Bull 4: 142-153.
9. Krupyanko VI (2014) Determination of intensity of enzyme inhibition and activation. Eur. Chem. Bull 3: 582-586.
10. Krupyanko VI and Krupyanko PV (2018) Application of the Pyphagor's Theorem for Correction of Ki and Ka constants of enzyme inhibition and activation. Archives of Pharmacy and Pharmacology 30: 60-68.
11. Dixon M and Webb EC (1966) Enzymes. Moscow, Mir Publishing 1966: 805-816.
12. Webb L (1966) Enzyme and metabolic inhibitors, Moscow, Mir publishers 1966.
13. Segel IH, Enzyme Kinetics, John Wiley (1975) Perspectives of data analysis of enzyme inhibition and activation. Part 3: Equations for calculation of the initial rates of enzymatic reactions Appl. Biochem. and Microbiol 1975: 100-287.
14. Palmer T (1985) Understanding enzymes, Wiley \& Sons 1985: 142-340.
15. Pochini L, Scalise M, Galluccio M, Amelio L, Indiveri C (2011) Reconstitution in liposomes of the functionally active human OCTN1 (SLC22A4) transporter overexpressed in E. coli., Biochem. J 439: 227-233.
16. Shimizu Y, Sakuraba H, Doi K, Ochhima T (2008) Molecular and functional characterization of D-3-phosphoglycerate dehydrogenase in the serine biosynthetic pathway of hyperthermophilic archaeon Sulfolobus tokodaii, Arch. Bioch. Biophys 470: 102-128.
17. Pascolo E, Wenz C, Lingner J, Hauel N (2002) Mechanizm of Human Telomerase by BIBR1532, a Synthetic, Non-nucleo-
sidic Drug Candidate, J. Biol. Chem 277: 15566-15572.
18. Wickramasinghe SR, Inglis KA, Urch JE, Muller S, Aalten DME (2006) Kinetic inhibition and structural studies on 3-oxoacyl-ACP reductase from Plasodium falciparum, a key enzyme in fatty acid biosynthesis, Biochem. J 393: 447-457.
19. Hou B, Lim E-K, Higgins GS, Bowles DJ (2004) N-Glucosylation of Cytokinins by Glycosyltransferases of Arabidopsis thaliana, J.Biol.Chem 279: 47822-47832.
20. Papp E, Tse JKY, Ho H, Wang S, Shaw D, et al. (2007) Steady State Kinetics of Spleen Tyrosine Kinase Investigated by a Real Time Fluorescense Assay, Biochemistry 46: 1510315114.
21. Gibson LM, Lovelacc LL, Lebioda L (2008) The R163K Mutant of Human Thymidylate Synthase 1s Stabilized in an Active Conformation. Structural Asymmetry and Reactivity of Cystein 195, Biochemistry 47: 4636-4643.
22. Gouzi H, Coradin T, Delicado EN, Unal U, Benmansour A (2010) Inhibition Kinetics of Agaricus bisporus (J.E. Lange) Imbach Polypenol, Open Enz 3: 1-7.

Copyright: ©2022 VI Krupyanko . This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

