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Introduction 
The development of fundamentals of vector method representation 
of enzymatic reactions (1-10) has opened up new possibilities for 
calculation of a wide array of kinetic parameters applying new 
approaches such as:

1.	 The perception of the presence of a symmetry between in-
hibited and activated of enzymatic reactions, this can be seen 
when comparing the initial rates of reactions

	  Vi < V0 Va < V0                                                      (1) 
but correlation of the secondary parameters of these reactions on 
the level of correlation of Km, V, K0

m and V0 values still needs fur-
ther follow-up. 
2.	 In the works (3-7) was shown that such symmetry is proved 

based on the dependence of the ratio of the effective Km and 
V parameters determined in the presence of an inhibitor (i) 
or activator (a) relative to K0

m and V0 parameters of the initial 
(neither inhibited i = 0, nor activated a = 0) enzymatic reac-
tion rate (Table 1) and that Li vectors of correspondent enzy-
matic inhibited reaction take oppositely directed pace to that 
(similar by type) of La vectors of activated reactions.

Figure 1: Three dimensional (non complete) KmVI system of rect-
angular coordinate with separately  Pi  and Pa  semiaxes of molar 
concentrations of (i) inhibitor and (a) activator, where only LIi, 
LIVi,  LIIIi, LIIi, LIa, LIIIa, LIIa  vectors of enzymatic reactions placed 
in appropriate parallelepipeds, LIi, LIVi, LIIIi and LIa  are  projections 
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Fig. 1. Three dimensional (non complete) IVKm
''  system of rectangular coordinate with separately Pi  and Pa   

semiaxes of molar concentrations of ( i ) inhibitor and (a ) activator, where only LIi, LIVi,  LIIIi, LIIi, LIa, LIIIa, LIIa  
vectors of enzymatic reactions placed in appropriate parallelepipeds, LIi, LIVi, LIIIi and LIa  are  projections of these L 
vectors on basic 0 plane. The magnitude of   angle is about 3400.  
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of these L vectors on basic σ0 plane. The magnitude of φ  angle is 
about 3400. 

Figure 1a: Three dimensional (complete) KmV I coordinate sys-
tem, (the same as Fig. 1), with all 14 L vectors (7 type of Li inhib-
ited (i), 7 type of La activated (a) enzymatic reactions. The 15th L0 
vector of initial reaction (and it L0 projection take place in P point 
of coordinate intersection. The all 14 orthogonal LIi, LIVi … LIa , LIa 
projections of L vectors on basic σ0 plane, are placed completely 
in (Fig. 2). The broken line σVIIa/Vi – first (Iσ) to σVa/VIIi i – third (IIIσ) 
quadrants of σ0 plane are denote transient station between: VIIa ↔ 
Vi and Va ↔ VIIi type of enzymatic reactions, The magnitude of  φ  
angle about 3400.

as well as that scalar L projections of these vectors on basic σ0 
plane were also oppositely directed (in the same Figs 1, 1a), or one 
can use (Fig. 2), convenient for scalar vector representations. of 
system shown in Figs 1, 1a)

Figure 2: Two-dimensional (scalar) KmV coordinate system. 

The symbols of kinetic parameters: such as, the same Km, V, K0m 
are identical to those as in Fig. 1. The symbols of (LIi, LIVi… LIa …) 
projections of all three-dimensional L vectors (many of which are 
absent in Fig. 1) and placed completely in Fig. 2, (14 L projec-
tions). The broken line σVIIa/Vi – from first (Iσ) to σVa/VIIi i – third 
(IIIσ) quadrants of σ0 plane are denote transient station between: 
VIIa ↔ Vi  and Va ↔ VIIi type of enzymatic reactions. The magni-

tude of  φ angle in this Figure is about 300. 

It was possible to: 
A. Complete a creation of unified (symmetrical) “Parameter-based 
classification” of the types of enzymatic reactions. It includes 15 
individual types of catalyzed reactions. Among them there are 7 
inhibited enzymatic reactions, 7 activated enzymatic reactions and 
one zero-order (I0 type) initial (uninhibited, i = 0 and non-acti-
vated a = 0) enzymatic reactions characterized by the position of 
zero-order L0 vector at point P (K0

m, V0, 0) of the origin of coordi-
nates (Fig. 1).

B. Derive equations that can be used for calculation of rate con-
stants, They are 7 equations for calculations of rate constants of 
enzyme activation, Ka (Eqs: 9 - 15, Table 1) and new 5 equations 
for calculation of rate constants of enzyme inhibition (Eqs: 1, 2, 
and 5 - 7, Table 1), a total amount of these equations accounts for 
14 equations (of these, 12 were newly derived); and (Eqs: 3 and 4, 
Table 1) have long been known (11-14).

However, there are some questions that need answers. One of these 
questions which could seem insignificant at first glance can be for-
mulated as follows:
It is incorrect the use any other equations (Eq.: 2 - 7, Table 1) to 
calculate the value of the rate of KLi constant, especially (Eqs.: 3 
and 4, Table 1). Such examples in publication are numerous. 

Let us consider the following examples.
Example 1. Determination of the type of inhibited reaction: 
The study (Vi) of pNPP cleavage catalyzed by porcine alkaline 
phosphatase revealed that initial rates in the presence of 1.10-5 М 
WO2-

4  decreased Vi < V0 within the whole interval of concentra-
tions of substrate cleaved (Fig. 3).

Figure 3: Graphs of inhibitory effect of Na2WO4 on the initial rates 
(Vi) of pNPP cleavage catalyzed by porcine alkaline phosphatase 
in the coordinates of Lineweaver-Burk. Line 1 – the concentration 
Na2WO4 is 1.10-5 M, line (0) – the inhibitor is absent. 

i. e. this is inhibited reaction. The construct plots in the (V-1; S-1) 
double reciprocal coordinates (Fig. 3), permitted to establish that: 
K0

m = 5.45 10-5 M, V0= 9.36 μmol/(min.μg protein) and Km = 
10.62.10-5 M, V = 5.86 μmol/(min.μg protein) experimental lines 
intersect the coordinate axes in the point: Km > K0

m, V < V0 which 
correspond to all the features of the biparametrically coordinated     Volume 5 | Issue 2 | 111www.opastonline.comJ Gastro & Digestive Systems 2021
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Fig. 3. Graphs of inhibitory effect of Na2WO4 on the initial rates ( iv ) of pNPP cleavage catalyzed by  

porcine alkaline phosphatase in the coordinates of Lineweaver-Burk. Line 1 – the concentration  

Na2WO4 is 110-5 M, line (0) – the inhibitor is absent.  
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Vi and Va ↔ VIIi type of enzymatic reactions, The magnitude of  φ  
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as well as that scalar L projections of these vectors on basic σ0 
plane were also oppositely directed (in the same Figs 1, 1a), or one 
can use (Fig. 2), convenient for scalar vector representations. of 
system shown in Figs 1, 1a)

Figure 2: Two-dimensional (scalar) KmV coordinate system. 

The symbols of kinetic parameters: such as, the same Km, V, K0m 
are identical to those as in Fig. 1. The symbols of (LIi, LIVi… LIa …) 
projections of all three-dimensional L vectors (many of which are 
absent in Fig. 1) and placed completely in Fig. 2, (14 L projec-
tions). The broken line σVIIa/Vi – from first (Iσ) to σVa/VIIi i – third 
(IIIσ) quadrants of σ0 plane are denote transient station between: 
VIIa ↔ Vi  and Va ↔ VIIi type of enzymatic reactions. The magni-

tude of  φ angle in this Figure is about 300. 

It was possible to: 
A. Complete a creation of unified (symmetrical) “Parameter-based 
classification” of the types of enzymatic reactions. It includes 15 
individual types of catalyzed reactions. Among them there are 7 
inhibited enzymatic reactions, 7 activated enzymatic reactions and 
one zero-order (I0 type) initial (uninhibited, i = 0 and non-acti-
vated a = 0) enzymatic reactions characterized by the position of 
zero-order L0 vector at point P (K0

m, V0, 0) of the origin of coordi-
nates (Fig. 1).

B. Derive equations that can be used for calculation of rate con-
stants, They are 7 equations for calculations of rate constants of 
enzyme activation, Ka (Eqs: 9 - 15, Table 1) and new 5 equations 
for calculation of rate constants of enzyme inhibition (Eqs: 1, 2, 
and 5 - 7, Table 1), a total amount of these equations accounts for 
14 equations (of these, 12 were newly derived); and (Eqs: 3 and 4, 
Table 1) have long been known (11-14).

However, there are some questions that need answers. One of these 
questions which could seem insignificant at first glance can be for-
mulated as follows:
It is incorrect the use any other equations (Eq.: 2 - 7, Table 1) to 
calculate the value of the rate of KLi constant, especially (Eqs.: 3 
and 4, Table 1). Such examples in publication are numerous. 

Let us consider the following examples.
Example 1. Determination of the type of inhibited reaction: 
The study (Vi) of pNPP cleavage catalyzed by porcine alkaline 
phosphatase revealed that initial rates in the presence of 1.10-5 М 
WO2-

4  decreased Vi < V0 within the whole interval of concentra-
tions of substrate cleaved (Fig. 3).

Figure 3: Graphs of inhibitory effect of Na2WO4 on the initial rates 
(Vi) of pNPP cleavage catalyzed by porcine alkaline phosphatase 
in the coordinates of Lineweaver-Burk. Line 1 – the concentration 
Na2WO4 is 1.10-5 M, line (0) – the inhibitor is absent. 

i. e. this is inhibited reaction. The construct plots in the (V-1; S-1) 
double reciprocal coordinates (Fig. 3), permitted to establish that: 
K0

m = 5.45 10-5 M, V0= 9.36 μmol/(min.μg protein) and Km = 
10.62.10-5 M, V = 5.86 μmol/(min.μg protein) experimental lines 
intersect the coordinate axes in the point: Km > K0

m, V < V0 which 
correspond to all the features of the biparametrically coordinated 

 3 

K'
m

V
'

IVi

IVa

 i

IIIi

IIIa

0

P
LIVi

LIi

LIIIa

LIa

LIIIi

LIVa

0v'

0K'm



LIa LIVa

LIIi LIIIi LIi

LIVi

l

a

LIa

LIa

LIVa

a

'IVi

'IIIa

'IIIi
'IVa



i

LVIa LIIa LVIIa

LVIiLVIIi

LVi

LVi

LVa

LVa





 
 
Fig. 1a. Three dimensional (complete) IVKm

'' coordinate system, (the same as Fig. 1), with all 14 L vectors (7 type of  
Li inhibited (i), 7 type of  La activated (a) enzymatic reactions. The 15th L0 vector of initial reaction (and it L0 
projection take place in P point of coordinate intersection. The all 14 orthogonal LIi, LIVi … LIa , LIa projections of L 
vectors on basic 0 plane, are placed completely in (Fig. 2). The broken line VIIa/Vi  – first (I) to Va/VIIi i – third (III) 
quadrants of 0 plane are denote transient station between: VIIa ↔ Vi and Va ↔ VIIi type of enzymatic reactions, The 
magnitude of   angle about 3400.  
 
as well as that scalar L projections of these vectors on basic 0 plane were also oppositely directed 
(in the same Figs 1, 1a), or one can use (Fig. 2), convenient for scalar vector representations. of 
system shown in Figs 1, 1a) 

  

0K'm K'
m

0V'

V'

LIa
LIIIa

LVIa
LIIa LVIIa

LVi

LIVi

LIi
LIIIi

LVIi
LIIiLVIIi

LVa

LIVa

VIIa/Vi

Va/VIIi
0


P

I0II0

III0
IV0

 
  

Fig. 2  Two-dimensional (scalar) '' VKm  coordinate system.  

The symbols of kinetic parameters: such as, the same '
mK , 'V , ...0

mK are identical to those as in Fig. 1. The 
symbols of (LIi, LIVi… LIa …) projections of all three-dimensional L vectors (many of which are absent in Fig. 
1) and placed completely in Fig. 2, (14 L projections). The broken line VIIa/Vi – from first (I) to Va/VIIi i – 
third (III) quadrants of 0 plane are denote transient station between: VIIa ↔ Vi and Va ↔ VIIi type of 
enzymatic reactions. The magnitude of   angle in this Figure  is about 300.  

 

It was possible to:  

 3 

K'
m

V
'

IVi

IVa

 i

IIIi

IIIa

0

P
LIVi

LIi

LIIIa

LIa

LIIIi

LIVa

0v'

0K'm



LIa LIVa

LIIi LIIIi LIi

LIVi

l

a

LIa

LIa

LIVa

a

'IVi

'IIIa

'IIIi
'IVa



i

LVIa LIIa LVIIa

LVIiLVIIi

LVi

LVi

LVa

LVa





 
 
Fig. 1a. Three dimensional (complete) IVKm

'' coordinate system, (the same as Fig. 1), with all 14 L vectors (7 type of  
Li inhibited (i), 7 type of  La activated (a) enzymatic reactions. The 15th L0 vector of initial reaction (and it L0 
projection take place in P point of coordinate intersection. The all 14 orthogonal LIi, LIVi … LIa , LIa projections of L 
vectors on basic 0 plane, are placed completely in (Fig. 2). The broken line VIIa/Vi  – first (I) to Va/VIIi i – third (III) 
quadrants of 0 plane are denote transient station between: VIIa ↔ Vi and Va ↔ VIIi type of enzymatic reactions, The 
magnitude of   angle about 3400.  
 
as well as that scalar L projections of these vectors on basic 0 plane were also oppositely directed 
(in the same Figs 1, 1a), or one can use (Fig. 2), convenient for scalar vector representations. of 
system shown in Figs 1, 1a) 

  

0K'm K'
m

0V'

V'

LIa
LIIIa

LVIa
LIIa LVIIa

LVi

LIVi

LIi
LIIIi

LVIi
LIIiLVIIi

LVa

LIVa

VIIa/Vi

Va/VIIi
0


P

I0II0

III0
IV0

 
  

Fig. 2  Two-dimensional (scalar) '' VKm  coordinate system.  

The symbols of kinetic parameters: such as, the same '
mK , 'V , ...0

mK are identical to those as in Fig. 1. The 
symbols of (LIi, LIVi… LIa …) projections of all three-dimensional L vectors (many of which are absent in Fig. 
1) and placed completely in Fig. 2, (14 L projections). The broken line VIIa/Vi – from first (I) to Va/VIIi i – 
third (III) quadrants of 0 plane are denote transient station between: VIIa ↔ Vi and Va ↔ VIIi type of 
enzymatic reactions. The magnitude of   angle in this Figure  is about 300.  

 

It was possible to:  

 4 
A) Complete a creation of unified (symmetrical) “Parameter-based classification” of the types 

of enzymatic reactions. It includes 15 individual types of catalyzed reactions. Among them there are 

7 inhibited enzymatic reactions, 7 activated enzymatic reactions and one zero-order (I0 type) initial 

(uninhibited, i = 0 and non-activated a = 0) enzymatic reactions characterized by the position of 

zero-order L0 vector at point P )0,,( 00 VKm  of the origin of coordinates (Fig. 1). 

B) Derive equations that can be used for calculation of rate constants, They are 7 equations 

for calculations of rate constants of enzyme activation, aK  (Eqs: 9 - 15, Table 1) and new 5 

equations for calculation of rate constants of enzyme inhibition (Eqs: 1, 2, and 5 - 7, Table 1), a total 

amount of these equations accounts for 14 equations (of these, 12 were newly derived [4 – 6]); and 

(Eqs: 3 and 4, Table 1) have long been known [11 - 14]. 

 However, there are some questions that need answers. One of these questions which could 

seem insignificant at first glance can be formulated as follows: 

 It is incorrect the use any other equations (Eq.: 2 - 7, Table 1) to calculate the value of the 

rate of IiK  constant, especially (Eqs.: 3 and 4, Table 1). Such examples in publication are numerous 

[15 - 22].  

 

Let us consider the following examples.  

The Example 1. Determination of the type of inhibited reaction: The study ( iv ) of pNPP 

cleavage catalyzed by porcine alkaline phosphatase revealed that initial rates in the presence of 110-5 

М WO 2
4  decreased 0vvi   within the whole interval of concentrations of substrate cleaved (Fig. 3),  

 
 
Fig. 3. Graphs of inhibitory effect of Na2WO4 on the initial rates ( iv ) of pNPP cleavage catalyzed by  

porcine alkaline phosphatase in the coordinates of Lineweaver-Burk. Line 1 – the concentration  

Na2WO4 is 110-5 M, line (0) – the inhibitor is absent.  

    Volume 5 | Issue 2 | 111www.opastonline.comJ Gastro & Digestive Systems 2021

of these L vectors on basic σ0 plane. The magnitude of φ  angle is 
about 3400. 

Figure 1a: Three dimensional (complete) KmV I coordinate sys-
tem, (the same as Fig. 1), with all 14 L vectors (7 type of Li inhib-
ited (i), 7 type of La activated (a) enzymatic reactions. The 15th L0 
vector of initial reaction (and it L0 projection take place in P point 
of coordinate intersection. The all 14 orthogonal LIi, LIVi … LIa , LIa 
projections of L vectors on basic σ0 plane, are placed completely 
in (Fig. 2). The broken line σVIIa/Vi – first (Iσ) to σVa/VIIi i – third (IIIσ) 
quadrants of σ0 plane are denote transient station between: VIIa ↔ 
Vi and Va ↔ VIIi type of enzymatic reactions, The magnitude of  φ  
angle about 3400.

as well as that scalar L projections of these vectors on basic σ0 
plane were also oppositely directed (in the same Figs 1, 1a), or one 
can use (Fig. 2), convenient for scalar vector representations. of 
system shown in Figs 1, 1a)

Figure 2: Two-dimensional (scalar) KmV coordinate system. 

The symbols of kinetic parameters: such as, the same Km, V, K0m 
are identical to those as in Fig. 1. The symbols of (LIi, LIVi… LIa …) 
projections of all three-dimensional L vectors (many of which are 
absent in Fig. 1) and placed completely in Fig. 2, (14 L projec-
tions). The broken line σVIIa/Vi – from first (Iσ) to σVa/VIIi i – third 
(IIIσ) quadrants of σ0 plane are denote transient station between: 
VIIa ↔ Vi  and Va ↔ VIIi type of enzymatic reactions. The magni-

tude of  φ angle in this Figure is about 300. 

It was possible to: 
A. Complete a creation of unified (symmetrical) “Parameter-based 
classification” of the types of enzymatic reactions. It includes 15 
individual types of catalyzed reactions. Among them there are 7 
inhibited enzymatic reactions, 7 activated enzymatic reactions and 
one zero-order (I0 type) initial (uninhibited, i = 0 and non-acti-
vated a = 0) enzymatic reactions characterized by the position of 
zero-order L0 vector at point P (K0

m, V0, 0) of the origin of coordi-
nates (Fig. 1).

B. Derive equations that can be used for calculation of rate con-
stants, They are 7 equations for calculations of rate constants of 
enzyme activation, Ka (Eqs: 9 - 15, Table 1) and new 5 equations 
for calculation of rate constants of enzyme inhibition (Eqs: 1, 2, 
and 5 - 7, Table 1), a total amount of these equations accounts for 
14 equations (of these, 12 were newly derived); and (Eqs: 3 and 4, 
Table 1) have long been known (11-14).

However, there are some questions that need answers. One of these 
questions which could seem insignificant at first glance can be for-
mulated as follows:
It is incorrect the use any other equations (Eq.: 2 - 7, Table 1) to 
calculate the value of the rate of KLi constant, especially (Eqs.: 3 
and 4, Table 1). Such examples in publication are numerous. 

Let us consider the following examples.
Example 1. Determination of the type of inhibited reaction: 
The study (Vi) of pNPP cleavage catalyzed by porcine alkaline 
phosphatase revealed that initial rates in the presence of 1.10-5 М 
WO2-

4  decreased Vi < V0 within the whole interval of concentra-
tions of substrate cleaved (Fig. 3).

Figure 3: Graphs of inhibitory effect of Na2WO4 on the initial rates 
(Vi) of pNPP cleavage catalyzed by porcine alkaline phosphatase 
in the coordinates of Lineweaver-Burk. Line 1 – the concentration 
Na2WO4 is 1.10-5 M, line (0) – the inhibitor is absent. 

i. e. this is inhibited reaction. The construct plots in the (V-1; S-1) 
double reciprocal coordinates (Fig. 3), permitted to establish that: 
K0

m = 5.45 10-5 M, V0= 9.36 μmol/(min.μg protein) and Km = 
10.62.10-5 M, V = 5.86 μmol/(min.μg protein) experimental lines 
intersect the coordinate axes in the point: Km > K0

m, V < V0 which 
correspond to all the features of the biparametrically coordinated 
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(Ii type) of enzyme inhibition by WO2-
4 anions (Tables 1, line 1) 

and one should use (Eq. 1, Table 1) to calculate of KIi. constant of 
enzyme inhibition. Substitution of all the appropriate parameters 
in this equation 

                                                                        
                                                                        = 8.92.10-6 M, (7)	

Indicates a more strong binding of the enzyme to WO2-
4 (K

0
m / KIi 

= 5.45/0.892 = 6.11) than to the cleaved substrate.

But all attempts to calculate the constant of this type of enzyme 
inhibition using when V = V0, would yield (Kivi) = 10.54.10-6 M, 
or when Km = K0

m, would yield (KIIIi) = 16.74.10-6 M which would 
differ: in first case (KIvi/ KIi = 10.54/8.92) more than 1.2, in the sec-
ond case more than (16,7/8.92 = 1.87) times from the Kli calculated 
by Eq. (1, Table 1). This happens, because a ratio of the (V and V0) 
in the first and Km and K0

m parameters of this reaction is not taken 
into consideration.

Obviously no one another equation (Eqs. 2, 5 – 7 of Table 1), don’t 
may to be used for construction and data treatment of (Fig. 3), such 
as: by the choice of Eq. 2 in Table 1 (instead Eq. 1) – it needs to 
take into account, that in this case should be: Km< K0

m and   (Fig. 2 
in Table 1), and so on: 
by the choice of Eq. 3 – that should be: Km= K0

m, 
by the choice of Eq. 4 – that should be: V = V0, 
by the choice of Eq. 5 – that should be: V > V0, 
by the choice of Eq. 6 – that should be: Km< K0

m and tgw < tgw0.
by the choice of Eq. 7 – that should be: Km < K0

m and tgw < tgw0. 
In experimental practice the examples of using the Eqs. 4 and 3 
(and other equations of Table 1) for the treatment of data analo-
gous to Fig. 3 (or he same Fig. 1, Table 1) numerous (15-22). 

Example 2. Determination of the type of activated reaction: 
It was shown that initial rates Va of pNPP cleavage catalyzed by 
canine alkaline phosphatase in the presence of 1.10-3 М Guo in-
creased Va > V0within the whole interval of concentrations of the 
substrate cleaved (Fig. 3).
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Figure 4: Activating effect of guanosine (Guo) on the initial rates 
(Va) of pNPP cleavage catalyzed by canine alkaline phosphatase 
in the coordinates of Lineweaver-Burk. Line 1 – the concentration 

of Guo is 1 10-3 M, line (0) – the activator is absent. Which have 
all the features of the unassociative activation, lla type, of enzyme 
(Table 1, line 14). 

The study allowed to establish that K0
m = 4.69.10-5 М, V0 = 2.921 

μmol/(min.μg protein), K0
m = 5.67.10-5 М, V = 3.527 μmol/(min.

μg protein). Plotting of dependencies in the above coordinates re-
vealed that the experimental line 1 of activated reaction is located 
below and parallel to the line (0) of initial (nonactivated, a = 0) 
reaction at the ratio of parameters: Km > K0

m, V > V0 (with correla-
tion Km / V = K0

m /V0) i.e., these lines would never intersect (Fig. 
4). As is easily seen from Table 1 (line 14), this corresponds to all 
the features of the unassociative, lla type, of activation and to cal-
culate a course of change in Vlla as (a) function of S, (Eq. 14, Table 
1) must be used for calculation of the Klla constant of activation. 
Substitution of the obtained from (Fig. 3) parameters in Eq. (14) 
yields to:

                                                                        = 9.07.10-4 М, (8) 

That shows that the binding of this enzyme to guanosine (Klla / K
0
m 

= 90.7/4.69 = 19) is by 19.3 times lower than to the substrate. But 
attempt to calculate the constant of this type of enzyme activation 
using when V = V0, would yield (Klla) = 5.79.10-3 M, or when Km = 
K0

m, would yield (Klla) = 4.48.10-3 M. (Klla / Klla = 57.9/9.07) more 
than 6.37, in the second case more than (44.8,7/9.07 = 4.94) times 
from the Klla calculated by Eq. (14, Table 1). This happens, because 
a ratio of the (V and V0) in the first and Km and K0

m parameters of 
this reaction is not taken into consideration.
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and one should use (Eq. 1, Table 1) to calculate of KIi. constant of 
enzyme inhibition. Substitution of all the appropriate parameters 
in this equation 
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Indicates a more strong binding of the enzyme to WO2-
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= 5.45/0.892 = 6.11) than to the cleaved substrate.
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by Eq. (1, Table 1). This happens, because a ratio of the (V and V0) 
in the first and Km and K0
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may to be used for construction and data treatment of (Fig. 3), such 
as: by the choice of Eq. 2 in Table 1 (instead Eq. 1) – it needs to 
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by the choice of Eq. 5 – that should be: V > V0, 
by the choice of Eq. 6 – that should be: Km< K0
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by the choice of Eq. 7 – that should be: Km < K0
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In experimental practice the examples of using the Eqs. 4 and 3 
(and other equations of Table 1) for the treatment of data analo-
gous to Fig. 3 (or he same Fig. 1, Table 1) numerous (15-22). 

Example 2. Determination of the type of activated reaction: 
It was shown that initial rates Va of pNPP cleavage catalyzed by 
canine alkaline phosphatase in the presence of 1.10-3 М Guo in-
creased Va > V0within the whole interval of concentrations of the 
substrate cleaved (Fig. 3).
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In experimental practice the examples of using the Eqs. 4 and 3 (and other equations of Table 

1) for the treatment of data analogous to Fig. 3 (or he same Fig. 1, Table 1) numerous [15 - 22].  

 

The example 2. Determination of the type of activated reaction: It was shown that initial 

rates av  of pNPP cleavage catalyzed by canine alkaline phosphatase in the presence of 110-3 М Guo 

increased 0vva  within the whole interval of concentrations of the substrate cleaved (Fig. 3),  
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Fig. 4. Activating effect of guanosine (Guo) on the initial rates ( av ) of pNPP cleavage catalyzed by canine  

alkaline phosphatase in the coordinates of Lineweaver-Burk. Line 1 – the concentration of Guo is 1 10-3 M,  

line (0) – the activator is absent. Which have all the features of the unassociative activation, aII  type, of  

enzyme  (Table 1, line 14).  

 

The study allowed to establish that 0
mK  = 4.6910-5 М, 0V  = 2.921 mol/(ming protein), 

'
mK  5.6710-5 М, 'V  = 3.527 mol/(ming protein). Plotting of dependencies in the above 
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Figure 4: Activating effect of guanosine (Guo) on the initial rates 
(Va) of pNPP cleavage catalyzed by canine alkaline phosphatase 
in the coordinates of Lineweaver-Burk. Line 1 – the concentration 

of Guo is 1 10-3 M, line (0) – the activator is absent. Which have 
all the features of the unassociative activation, lla type, of enzyme 
(Table 1, line 14). 

The study allowed to establish that K0
m = 4.69.10-5 М, V0 = 2.921 

μmol/(min.μg protein), K0
m = 5.67.10-5 М, V = 3.527 μmol/(min.

μg protein). Plotting of dependencies in the above coordinates re-
vealed that the experimental line 1 of activated reaction is located 
below and parallel to the line (0) of initial (nonactivated, a = 0) 
reaction at the ratio of parameters: Km > K0

m, V > V0 (with correla-
tion Km / V = K0

m /V0) i.e., these lines would never intersect (Fig. 
4). As is easily seen from Table 1 (line 14), this corresponds to all 
the features of the unassociative, lla type, of activation and to cal-
culate a course of change in Vlla as (a) function of S, (Eq. 14, Table 
1) must be used for calculation of the Klla constant of activation. 
Substitution of the obtained from (Fig. 3) parameters in Eq. (14) 
yields to:

                                                                        = 9.07.10-4 М, (8) 

That shows that the binding of this enzyme to guanosine (Klla / K
0
m 

= 90.7/4.69 = 19) is by 19.3 times lower than to the substrate. But 
attempt to calculate the constant of this type of enzyme activation 
using when V = V0, would yield (Klla) = 5.79.10-3 M, or when Km = 
K0

m, would yield (Klla) = 4.48.10-3 M. (Klla / Klla = 57.9/9.07) more 
than 6.37, in the second case more than (44.8,7/9.07 = 4.94) times 
from the Klla calculated by Eq. (14, Table 1). This happens, because 
a ratio of the (V and V0) in the first and Km and K0

m parameters of 
this reaction is not taken into consideration.
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Table 1: Parametric classification of the types of enzymatic reactions

No Effect Type of 
effect

Correlation between the   and   parame-
ters

Graphs in the (v-1;S-1) coordinates
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11

12

13

14

15

Va
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IIIa

IIa

Ia
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m, Vʹ<VO  
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1
0
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1
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0
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Table 2: Equations for calculation of the Ki and Ka constants

Type of effect New name of the types of 
enzymatic reactions

Traditional name Corrected equation for calculation of  the Ki and 
Ka constants 

Ii

IIi

IIIi

IVi

Vi

VIi

biparametrically coordinated 
inhibition
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catalytic inhibition
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