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Abstract
The author found that magnetic fields can be measured using the ampere force on a small current element, or using a small 
loop current coil. Using a small loop coil current measurement actually measures the average magnetic field on the loop. 
Under quasi-static or magnetic quasi-static conditions, the average magnetic field measured on the loop and the magnetic field 
measured using a linear current element are the same. Two definitions are equivalent. There are also two methods for measuring 
magnetic fields for changing currents or alternating electromagnetic fields using a small coil and a linear current element. The 
magnetic field obtained from the measurement of alternating magnetic field by a small coil on the loop under quasi-static or 
magnetic quasi-static conditions is the same as that obtained from the measurement of linear current element. We usually say 
that a magnetic field is the curl of a vector potential. More precisely, the average magnetic field defined on the loop is the curl 
of the vector potential. Regardless of whether the average magnetic field is under quasi-static conditions or under magnetic 
quasi-static conditions, it remains the same as the magnetic field measured by the linear current element. Therefore, we can say 
that a magnetic field is the curl of a vector potential. But this no longer holds true in the case of radiated electromagnetic fields. 
For radiated electromagnetic fields, it refers to the retarded electromagnetic field. The average electromagnetic field measured 
on the loop and the magnetic field measured by the linear current element are different. Therefore, for electromagnetic waves, 
it is incorrect for the curl of the magnetic vector potential to be the magnetic field. The curl of the magnetic vector potential 
corresponds to the average magnetic field on the loop. This article describes the author’s discovery. The author’s discovery stems 
from the mutual energy theorem proposed by the author in 1987. People argue that this theorem is not an energy theorem, but 
a reciprocity theorem. In 2017, the author successfully proved that this theorem is indeed the energy theorem and developed it 
into the law of conservation of energy. The author further proposed the theorem of mutual energy flow. The author believes that 
mutual energy flow transfer the electromagnetic energy and it is the photon. The author believes that self energy flow does not 
transfer energy and should radiate reactive power. That is to say, electromagnetic waves should be reactive power. This indicates 
that the electric and magnetic fields of electromagnetic waves should maintain a 90 degree phase difference, rather than being 
in phase. We know that according to Maxwell’s electromagnetic theory, the electric and magnetic fields of electromagnetic waves 
are in phase. This indicates that the energy conservation law and the mutual energy flow theorem proposed by the author conflict 
with Maxwell’s electromagnetic theory. Thus, a loophole in Maxwell’s electromagnetic theory was discovered. This vulnerability 
is a confusion between the average magnetic field measured on a circular coil and the magnetic field measured with a straight 
wire. The average magnetic field on a loop is completely different from the magnetic field on a straight wire. The original 
definition of a magnetic field was defined by a linear current element or straight wire. This has led to a problem with the definition 
of the magnetic field for radiating electromagnetic waves in Maxwell’s electromagnetic theory. This issue requires us to revise 
some of Maxwell’s radiation electromagnetic field theory.
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1. Introduction
After nearly 40 years of effort, the author ultimately revealed 
serious loopholes in Maxwell’s classical electromagnetic theory. 
Although it was ultimately discovered that it was a problem with 
the definition of magnetic fields, the author has established a new 

electromagnetic theory during this process. The characteristic of 
this electromagnetic theory is to acknowledge that 1) advanced 
waves are objective physical phenomena, so any current 
produces half retarded waves and half advanced waves; The 
retarded wave and the advanced wave superimpose on each 
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other on the surface of the current, rather than canceling out; 2) 
Electromagnetic waves propagate in the field of the charge itself, 
rather than in the ether or field belonging to space. Therefore, 
electromagnetic waves cannot propagate independently in 
space without their source, nor can they overflow the universe. 
Therefore, the mutual energy theorem is actually the law of 
conservation of energy; 3) Electromagnetic field theory refers 
to the retardation (or advancement) of the electromagnetic 
field rather than the retardation (or advancement) of the vector 
potential; 4) The mutual energy flow possesses all the properties 
of photons, therefore photons are mutual energy flows. The 

energy flow in electromagnetic field theory is the mutual energy 
flow rather than the self energy flow represented by the Poynting 
vector. The following author introduces the development process 
of this new electromagnetic theory.

1.1 Mutual Energy Theorem
The author completed a paper on the mutual energy theorem 
during his graduate studies at Xidian University in P. R. of China 
in 1987 [1]. The formula for the mutual energy theorem is as 
follows:,
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 And established the concept of inner product on surfaces Γ,  
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Using this inner product, the author completed the spherical 
wave expansion, plane wave expansion of electromagnetic 
waves and the resulting Huygens principle [1-3]. These papers 
have sparked strong debates in Xidian University. Some teachers 
believe that this theorem cannot be called the energy theorem 
and can only be called the reciprocity theorem. The author hopes 
to prove from Poynting’s theorem that this theorem is indeed 
an energy theorem. It is widely recognized that Poynting’s 
theorem is the energy theorem. If this theorem can be proven 
from Poynting’s theorem, then of course, this theorem is also 
the energy theorem. But the author was unable to complete this 
proof at that time.

1.2 The Mutual Energy Theorem is The Energy Theorem
The author later worked in the field of medical imagings. 30 years 
have passed in a blink of an eye, and as the author is about to 
retire, he has returned to the topic of the electromagnetic mutual 
energy theorem. The first thing the author needs to solve is 
whether this theorem is an energy theorem. At this time, the times 
had advanced, and the author found the reciprocity theorem of 
de Hoop’s cross correlation [4]. This theorem happens to be the 
inverse Fourier transform of the mutual energy theorem published 
by the author. This theorem was published slightly later than the 
author, at the end of 1987. De Hoop positions this theorem as the 
reciprocity theorem. It seems that this theorem should indeed be 
called the reciprocity theorem. The author found Welch’s time-
domain reciprocity theorem published in 1960 in the citation of 
the de Hoop paper [5]. The time-domain reciprocity theorem 
is the core part of the de Hoop cross correlation reciprocity 
theorem, and can also be seen as the inverse Fourier transform 
of the author’s mutual energy theorem. Therefore, the mutual 
energy theorem proposed by the author and two reciprocity 
theorems can be regarded as one theorem. The author found 
that it is easy to prove from the time domain that Welch and 
de Hoop’s reciprocity theorem is a sub-theorem of Poynting’s 
theorem. This actually proves that the mutual energy theorem 
is also a sub-theorem of Poynting’s theorem. Before 1987, the 
author attempted to prove the theorem of mutual energy from 
the complex Poynting theorem, but failed. In fact, the complex 
Poynting theorem is not a Fourier transform of the time-domain 

Poynting theorem. The complex Poynting theorem and Poynting 
theorem are two independent theorems. To prove that the mutual 
energy theorem is the energy theorem, we need to start from 
the time-domain Poynting theorem to prove Welch or de Hoop’s 
time-domain reciprocity theorem, and then perform the Fourier 
transform to obtain the mutual energy theorem. Therefore, the 
mutual energy theorem should be the energy theorem.

However, the author also discovered the “new reciprocity 
theorem” published by Rumsey in 1963 and the “second Lorentz 
reciprocity theorem” published by Petrusenko in 2009 [6, 7]. 
These reciprocity theorems are actually the same as the author’s 
published mutual energy theorem [1]. So why do Welch, 
Rumsey, de Hoop, and Petrusenko position this theorem as a 
reciprocity theorem? The author still faces the problem. Only 
the author believes that this theorem is the energy theorem. The 
author noticed that this theorem involves advanced waves. The 
two fields in this theorem correspond to subscript 1 and subscript 
2, respectively. One is a retarded wave, and the other must be an 
advanced wave. Advanced waves violate causal relationships. 
Not recognized in the engineering community. This may be 
the fundamental reason why Welch, Rumesy, de Hoop, and 
Petrusenko have positioned this theorem as a reciprocity 
theorem.

1.3 Existence of advanced waves
The author began searching for papers on advanced waves, and 
the first thing that caught attention was Wheeler and Feynman’s 
absorber theory [8, 9]. The absorber theory is based on the action 
at a distance theory [10-12]. Another foundation of Wheeler and 
Feynman’s absorber theory is Dirac’s self force theory [13]. 
This self force theory advocates that current not only generates 
retarded waves, but generates half retarded and half advanced 
waves. Cramer established a quantum mechanical transactional 
interpretation based on Wheeler Feynman’s absorber theory [14, 
15]. Furthermore, Stephenson’s views on advanced waves also 
had a significant impact on the author [16]. Wheeler, Feynman, 
Dirac, Stephenson, Cramer, and others all advocate that advanced 
waves are an objective existence in physics. After studying these 
theories about advanced waves, the author believes that their 
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view that advanced waves exist objectively in physics is correct.

1.4 Mutual Energy Flow Theorem

In 2017, the author published the Mutual Energy Flow Theorem 
[17], 

 
1.3  Existence of advanced waves 
 
The author began searching for papers on advanced waves, and the first thing that 

caught attention was Wheeler and Feynman’s absorber theory *8, 9+. The absorber theory is 
based on the action at a distance theory [10, 11, 12]. Another foundation of Wheeler and 
Feynman’s absorber theory is Dirac’s self force theory *13+. This self force theory advocates that 
current not only generates retarded waves, but generates half retarded and half advanced 
waves. Cramer established a quantum mechanical transactional interpretation [14, 15] based 
on Wheeler Feynman’s absorption theory. Furthermore, Stephenson’s views on advanced 
waves [16] also had a significant impact on the author. Wheeler, Feynman, Dirac, Stephenson, 
Cramer, and others all advocate that advanced waves are an objective existence in physics. 
After studying these theories about advanced waves, the author believes that their view that 
advanced waves exist objectively in physics is correct. 

 
1.4  Mutual energy flow theorem 
 
In 2017, the author published the Mutual Energy Flow Theorem [17],  
 −∫ 𝑉𝑉1

𝑬𝑬2∗ ⋅ 𝑱𝑱1𝑑𝑑𝑑𝑑 = (𝜉𝜉1, 𝜉𝜉2) = ∫ 𝑉𝑉2
𝑬𝑬1 ⋅ 𝑱𝑱2∗𝑑𝑑𝑑𝑑 (2) 

  
 (𝜉𝜉1, 𝜉𝜉2) = ∯ (𝑬𝑬1 × 𝑯𝑯2

∗ + 𝑬𝑬2∗ × 𝑯𝑯1)Γ ⋅ �̂�𝑛𝑑𝑑Γ (3) 
Γ is a close surface surrounding the two currents.  And it is believed that only mutual energy 
flow can transfer energy, while self energy flow 

 
 ∯ (𝑬𝑬𝑖𝑖 × 𝑯𝑯𝑖𝑖

∗)Γ ⋅ �̂�𝑛𝑑𝑑Γ = 0 (4) 
 can not transmit energy. 

 
1.5  Localized energy conservation law 
 
Because if both mutual energy flow and self energy transfer energy, two different types 

of photons will appear, namely the photons obtained from the collapse of self energy flow and 
the photons from mutual energy flow. If the self energy flow does not contribute to the transfer 
of energy, then the following law of energy conservation holds [17]. 

 
 ∑ 𝑁𝑁

𝑖𝑖=1 ∑ 𝑁𝑁
𝑗𝑗=1,𝑗𝑗≠𝑖𝑖 ∫ ∞

𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑 ∫ 𝑉𝑉 𝑬𝑬𝑖𝑖 ⋅ 𝑱𝑱𝑗𝑗𝑑𝑑𝑑𝑑 = 0 (5) 
 This law of conservation of energy, combined with the theorem of mutual energy flow, 
becomes a localized law of conservation of energy. The necessary condition for this law of 
conservation of energy to hold is that the self energy flow does not contribute to the transfer of 
energy. So of course, we have to ask where the self-energy flow has gone. Because according to 
Maxwell’s electromagnetic theory, the self energy flow is not zero. Therefore, the author 
proposes the concept of reverse collapse. The self energy flow collapses in the opposite 
direction [17]. Reverse collapse is obtained from the Maxwell equation with time reversal. 

 

 
1.3  Existence of advanced waves 
 
The author began searching for papers on advanced waves, and the first thing that 

caught attention was Wheeler and Feynman’s absorber theory *8, 9+. The absorber theory is 
based on the action at a distance theory [10, 11, 12]. Another foundation of Wheeler and 
Feynman’s absorber theory is Dirac’s self force theory *13+. This self force theory advocates that 
current not only generates retarded waves, but generates half retarded and half advanced 
waves. Cramer established a quantum mechanical transactional interpretation [14, 15] based 
on Wheeler Feynman’s absorption theory. Furthermore, Stephenson’s views on advanced 
waves [16] also had a significant impact on the author. Wheeler, Feynman, Dirac, Stephenson, 
Cramer, and others all advocate that advanced waves are an objective existence in physics. 
After studying these theories about advanced waves, the author believes that their view that 
advanced waves exist objectively in physics is correct. 

 
1.4  Mutual energy flow theorem 
 
In 2017, the author published the Mutual Energy Flow Theorem [17],  
 −∫ 𝑉𝑉1

𝑬𝑬2∗ ⋅ 𝑱𝑱1𝑑𝑑𝑑𝑑 = (𝜉𝜉1, 𝜉𝜉2) = ∫ 𝑉𝑉2
𝑬𝑬1 ⋅ 𝑱𝑱2∗𝑑𝑑𝑑𝑑 (2) 

  
 (𝜉𝜉1, 𝜉𝜉2) = ∯ (𝑬𝑬1 × 𝑯𝑯2

∗ + 𝑬𝑬2∗ × 𝑯𝑯1)Γ ⋅ �̂�𝑛𝑑𝑑Γ (3) 
Γ is a close surface surrounding the two currents.  And it is believed that only mutual energy 
flow can transfer energy, while self energy flow 

 
 ∯ (𝑬𝑬𝑖𝑖 × 𝑯𝑯𝑖𝑖

∗)Γ ⋅ �̂�𝑛𝑑𝑑Γ = 0 (4) 
 can not transmit energy. 

 
1.5  Localized energy conservation law 
 
Because if both mutual energy flow and self energy transfer energy, two different types 

of photons will appear, namely the photons obtained from the collapse of self energy flow and 
the photons from mutual energy flow. If the self energy flow does not contribute to the transfer 
of energy, then the following law of energy conservation holds [17]. 

 
 ∑ 𝑁𝑁

𝑖𝑖=1 ∑ 𝑁𝑁
𝑗𝑗=1,𝑗𝑗≠𝑖𝑖 ∫ ∞

𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑 ∫ 𝑉𝑉 𝑬𝑬𝑖𝑖 ⋅ 𝑱𝑱𝑗𝑗𝑑𝑑𝑑𝑑 = 0 (5) 
 This law of conservation of energy, combined with the theorem of mutual energy flow, 
becomes a localized law of conservation of energy. The necessary condition for this law of 
conservation of energy to hold is that the self energy flow does not contribute to the transfer of 
energy. So of course, we have to ask where the self-energy flow has gone. Because according to 
Maxwell’s electromagnetic theory, the self energy flow is not zero. Therefore, the author 
proposes the concept of reverse collapse. The self energy flow collapses in the opposite 
direction [17]. Reverse collapse is obtained from the Maxwell equation with time reversal. 

 

 
1.3  Existence of advanced waves 
 
The author began searching for papers on advanced waves, and the first thing that 

caught attention was Wheeler and Feynman’s absorber theory *8, 9+. The absorber theory is 
based on the action at a distance theory [10, 11, 12]. Another foundation of Wheeler and 
Feynman’s absorber theory is Dirac’s self force theory *13+. This self force theory advocates that 
current not only generates retarded waves, but generates half retarded and half advanced 
waves. Cramer established a quantum mechanical transactional interpretation [14, 15] based 
on Wheeler Feynman’s absorption theory. Furthermore, Stephenson’s views on advanced 
waves [16] also had a significant impact on the author. Wheeler, Feynman, Dirac, Stephenson, 
Cramer, and others all advocate that advanced waves are an objective existence in physics. 
After studying these theories about advanced waves, the author believes that their view that 
advanced waves exist objectively in physics is correct. 

 
1.4  Mutual energy flow theorem 
 
In 2017, the author published the Mutual Energy Flow Theorem [17],  
 −∫ 𝑉𝑉1

𝑬𝑬2∗ ⋅ 𝑱𝑱1𝑑𝑑𝑑𝑑 = (𝜉𝜉1, 𝜉𝜉2) = ∫ 𝑉𝑉2
𝑬𝑬1 ⋅ 𝑱𝑱2∗𝑑𝑑𝑑𝑑 (2) 

  
 (𝜉𝜉1, 𝜉𝜉2) = ∯ (𝑬𝑬1 × 𝑯𝑯2

∗ + 𝑬𝑬2∗ × 𝑯𝑯1)Γ ⋅ �̂�𝑛𝑑𝑑Γ (3) 
Γ is a close surface surrounding the two currents.  And it is believed that only mutual energy 
flow can transfer energy, while self energy flow 

 
 ∯ (𝑬𝑬𝑖𝑖 × 𝑯𝑯𝑖𝑖

∗)Γ ⋅ �̂�𝑛𝑑𝑑Γ = 0 (4) 
 can not transmit energy. 

 
1.5  Localized energy conservation law 
 
Because if both mutual energy flow and self energy transfer energy, two different types 

of photons will appear, namely the photons obtained from the collapse of self energy flow and 
the photons from mutual energy flow. If the self energy flow does not contribute to the transfer 
of energy, then the following law of energy conservation holds [17]. 

 
 ∑ 𝑁𝑁

𝑖𝑖=1 ∑ 𝑁𝑁
𝑗𝑗=1,𝑗𝑗≠𝑖𝑖 ∫ ∞

𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑 ∫ 𝑉𝑉 𝑬𝑬𝑖𝑖 ⋅ 𝑱𝑱𝑗𝑗𝑑𝑑𝑑𝑑 = 0 (5) 
 This law of conservation of energy, combined with the theorem of mutual energy flow, 
becomes a localized law of conservation of energy. The necessary condition for this law of 
conservation of energy to hold is that the self energy flow does not contribute to the transfer of 
energy. So of course, we have to ask where the self-energy flow has gone. Because according to 
Maxwell’s electromagnetic theory, the self energy flow is not zero. Therefore, the author 
proposes the concept of reverse collapse. The self energy flow collapses in the opposite 
direction [17]. Reverse collapse is obtained from the Maxwell equation with time reversal. 

 

Γ is a close surface surrounding the two currents.  And it is believed that only mutual energy flow can transfer energy, while self 
energy flow

 can not transmit energy.

1.5 Localized Energy Conservation Law
Because if both mutual energy flow and self energy transfer 
energy, two different types of photons will appear, namely the 

photons obtained from the collapse of self energy flow and the 
photons from mutual energy flow. If the self energy flow does 
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This law of conservation of energy, combined with the theorem 
of mutual energy flow, becomes a localized law of conservation 
of energy. The necessary condition for this law of conservation 
of energy to hold is that the self energy flow does not contribute 
to the transfer of energy. So of course, we have to ask where 
the self-energy flow has gone. Because according to Maxwell’s 
electromagnetic theory, the self energy flow is not zero. 
Therefore, the author proposes the concept of reverse collapse. 
The self energy flow collapses in the opposite direction [17]. 
Reverse collapse is obtained from the Maxwell equation with 
time reversal.

1.6 Reactive Power Wave
The reverse collapse of self energy flow is actually a problem. 
To achieve reverse collapse, it is necessary to establish a time 
reversal wave. With time reversal waves, in fact, time reversal 
waves can also form the mutual energy flow of time reversal 
waves. The mutual energy flow of this time reversal wave may 
also offset the mutual energy flow, leaving only zero solutions. 
Zero solution is certainly not what the author wants. Therefore, 
the author also proposes the concept of reactive power. The 
author found that if the self energy flow is reactive power, the 
self energy flow itself does not transfer energy, so there is no 
need for the reverse collapse of the self energy flow. But the 
self energy flow calculated according to Maxwell’s field is not 
reactive power. According to Maxwell’s electromagnetic theory, 
the electric and magnetic fields of electromagnetic waves are in 
phase. This indicates that electromagnetic waves are of active 
power. That is to say, the self energy flow is the active power.

The author studied the working principle of transformers. It 
was found that the self energy flow generated by the primary 
and secondary coils of the transformer is reactive power. 
Transformers operate under quasi-static magnetic conditions. 
The author found that under quasi-static or magnetic quasi-
static conditions, the self energy flow composed of electric 

and magnetic fields is reactive power. Since quasi-static and 
magnetic quasi-static electromagnetic fields are reactive 
power, why does radiated electromagnetic fields become active 
power? The author is thinking that if the secondary coil of the 
transformer is moved far away from the primary coil, the primary 
coil of the transformer will become a transmitting antenna, and 
the secondary coil will become a receiving antenna. The author 
is asking himself, from two coils tightly together, which is a 
transformer, to the secondary coil moving further away, there 
is no qualitative change at this time. Why does the self energy 
flow transition from reactive power to active power? Why is 
the electromagnetic field of the primary and secondary coils of 
a transformer reactive power, but the electromagnetic field of 
the transmitting and receiving antennas active power. At what 
distance did the primary and secondary coils of the transformer 
transition to the antenna and receiving antenna? After a series 
of studies The author found that the primary and secondary 
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1.7 Radiation Does Not Overflow From The Universe
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one defined according to the original definitions of Ampere 
force or Lorentz force. One is the definition of magnetic field 
developed by Maxwell, which is to calculate the average 
value of the magnetic field on a circular path. The author 
needs to prove that these two definitions of magnetic fields are 
completely identical under quasi-static electromagnetic field 
conditions. But when it comes to radiated electromagnetic 
fields, which are retarded electromagnetic fields, these two types 

of magnetic fields are defined differently. The author found that 
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of conservation of energy, and the concept of radiation not 
overflowing the universe, is correct.
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 ∇ ⋅ 𝑬𝑬𝑠𝑠 = 𝜌𝜌/𝜖𝜖0 (6) 

 𝜌𝜌 is the charge density. 𝜖𝜖0 is the vacuum dielectric constant. 𝑬𝑬𝑠𝑠 is an electrostatic field, 
and the subscript 𝑠𝑠 is used to indicate that this electric field is a static electric field.  

 𝑬𝑬𝑠𝑠 ≜ −∇𝜙𝜙 (7) 
 The symbol ≜  means defined. 𝜙𝜙  is the electrostatic potential. In the author’s 
electromagnetic theory, it is still believed that Gaussian law (6) holds. 

 
2.2  Neumman’s law of electromagnetic induction 
 
The author also believes that Neumman’s law of electromagnetic induction is valid, that 

is, 
 
 ℰ2,1 = − 𝜕𝜕

𝜕𝜕𝜕𝜕
𝜇𝜇0
4𝜋𝜋 ∮ 𝐶𝐶2 ∮ 𝐶𝐶1

𝐼𝐼1𝑑𝑑𝒍𝒍1⋅𝑑𝑑𝒍𝒍2
𝑟𝑟  (8) 

  
 ℰ2,1 ≜ ∮ 𝐶𝐶2

𝑬𝑬1 ⋅ 𝑑𝑑𝒍𝒍 (9) 
ℰ2,1 is the induced electromotive force generated on coil 2 by the current 𝐼𝐼1 on coil 1. 𝑬𝑬1 is 
The electric field of the current 𝐼𝐼1 of coil 1. 𝐶𝐶1 , 𝐶𝐶2 are two coils, the primary coil and the 
secondary coil. ∮ 𝐶𝐶1

is closed line intgral on 𝐶𝐶1. 
 
2.3  Vector potential 
 
In the author’s electromagnetic theory, vector potential still holds, 
 
 𝑨𝑨1 =

𝜇𝜇0
4𝜋𝜋 ∮ 𝐶𝐶1

𝐼𝐼1
𝑟𝑟 𝑑𝑑𝒍𝒍1 (10) 

 
Consider,  
 ∫ 𝐶𝐶 ⋯ 𝐼𝐼𝑑𝑑𝒍𝒍 → ∫ 𝑉𝑉 ⋯ 𝑱𝑱𝑑𝑑𝑑𝑑 (11) 

 
there is,  
 𝑨𝑨1 =

𝜇𝜇0
4𝜋𝜋 ∫ 𝑉𝑉

𝑱𝑱1
𝑟𝑟 𝑑𝑑𝑑𝑑 (12) 

 
The subscript in the above equation can be omitted,  
 𝑨𝑨 = 𝜇𝜇0

4𝜋𝜋 ∫ 𝑉𝑉
𝑱𝑱
𝑟𝑟 𝑑𝑑𝑑𝑑 (13) 

 
The above equation is the vector potential. The curl of a vector potential is,  
 ∇ × 𝑨𝑨 = 𝜇𝜇0

4𝜋𝜋 ∫ 𝑉𝑉 ∇
1
𝑟𝑟 × 𝑱𝑱𝑑𝑑𝑑𝑑 

 
 = 𝜇𝜇0

4𝜋𝜋 ∫ 𝑉𝑉 𝑱𝑱 ×
𝒓𝒓
𝑟𝑟3 𝑑𝑑𝑑𝑑 (14) 
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ρ is the charge density. ϵ0 is the vacuum dielectric constant. Es is an electrostatic field, and the subscript s is used to indicate that this 
electric field is a static electric field.

The symbol ≜ means defined. ϕ is the electrostatic potential. 
In the author’s electromagnetic theory, it is still believed that 
Gaussian law (6) holds.

2.2 Neumman’s Law of Electromagnetic Induction
The author also believes that Neumman’s law of electromagnetic 
induction is valid, that is,

E2,1 is the induced electromotive force generated on coil 2 by the 
current I1 on coil 1. E1 is The electric field of the current I1 of coil 
1. C1 , C2 are two coils, the primary coil and the secondary coil. 
∮c1

 is closed line intgral on C1.

2.3 Vector Potential
In the author’s electromagnetic theory, vector potential still 
holds,

Consider, 

there is,
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𝜕𝜕𝜕𝜕 𝑨𝑨 is acceptable, so when encountering Ohm’s law, it can be 
written as,  

 𝑱𝑱 = 𝜍𝜍𝑬𝑬 (25) 

2.4  Faraday’s Law 
 
Obtained from (8, 10), 
 
 ℰ2,1 = − 𝜕𝜕

𝜕𝜕𝜕𝜕 ∮ 𝐶𝐶2
𝑨𝑨𝑑𝑑𝒍𝒍2 (15) 

 
Consider (9),  
 ∮ 𝐶𝐶2

𝑬𝑬1 ⋅ 𝑑𝑑𝒍𝒍 = − 𝜕𝜕
𝜕𝜕𝜕𝜕 ∮ 𝐶𝐶2

𝑨𝑨1𝑑𝑑𝒍𝒍 (16) 
 

Or  
 ∮ 𝐶𝐶2

𝑬𝑬1 ⋅ 𝑑𝑑𝒍𝒍 = −∮ 𝐶𝐶2
𝜕𝜕
𝜕𝜕𝜕𝜕 𝑨𝑨1𝑑𝑑𝒍𝒍 (17) 

 
Or  
 ∮ 𝐶𝐶2

(𝑬𝑬1 +
𝜕𝜕
𝜕𝜕𝜕𝜕 𝑨𝑨1) ⋅ 𝑑𝑑𝒍𝒍 = 0 (18) 

 
Or  
 ∯ ∇ × (𝑬𝑬1 +

𝜕𝜕
𝜕𝜕𝜕𝜕 𝑨𝑨1) ⋅ �̂�𝑛𝑑𝑑ΓΓ = 0 (19) 

 
Or  
 ∇ × (𝑬𝑬1 +

𝜕𝜕
𝜕𝜕𝜕𝜕 𝑨𝑨1) = 0 (20) 

 
Or  
 𝑬𝑬1 +

𝜕𝜕
𝜕𝜕𝜕𝜕 𝑨𝑨1 = −∇𝜙𝜙1 (21) 

 
Or  
 𝑬𝑬1 = −∇𝜙𝜙1 −

𝜕𝜕
𝜕𝜕𝜕𝜕 𝑨𝑨1 (22) 

 
Subscripts can be omitted,  
 𝑬𝑬 = −∇𝜙𝜙 − 𝜕𝜕

𝜕𝜕𝜕𝜕 𝑨𝑨 (23) 
 

The above equation is Faraday’s law. The above equation is also one of the Maxwell 
equations defined by Maxwell himself. Scientists of the same period as Maxwell, such as 
Kirchhoff and Lorenz, did not define electric and magnetic fields, so they would give the 
following Ohm’s law,  

 𝑱𝑱 = 𝜍𝜍(−∇𝜙𝜙 − 𝜕𝜕
𝜕𝜕𝜕𝜕 𝑨𝑨) (24) 

 Similarly, they do not define ∇ × 𝑨𝑨 as a magnetic field. The author believes that Maxwell’s 
definition of 𝑬𝑬 ≜ −∇𝜙𝜙 − 𝜕𝜕

𝜕𝜕𝜕𝜕 𝑨𝑨 is acceptable, so when encountering Ohm’s law, it can be 
written as,  

 𝑱𝑱 = 𝜍𝜍𝑬𝑬 (25) 

2.4  Faraday’s Law 
 
Obtained from (8, 10), 
 
 ℰ2,1 = − 𝜕𝜕

𝜕𝜕𝜕𝜕 ∮ 𝐶𝐶2
𝑨𝑨𝑑𝑑𝒍𝒍2 (15) 

 
Consider (9),  
 ∮ 𝐶𝐶2

𝑬𝑬1 ⋅ 𝑑𝑑𝒍𝒍 = − 𝜕𝜕
𝜕𝜕𝜕𝜕 ∮ 𝐶𝐶2

𝑨𝑨1𝑑𝑑𝒍𝒍 (16) 
 

Or  
 ∮ 𝐶𝐶2

𝑬𝑬1 ⋅ 𝑑𝑑𝒍𝒍 = −∮ 𝐶𝐶2
𝜕𝜕
𝜕𝜕𝜕𝜕 𝑨𝑨1𝑑𝑑𝒍𝒍 (17) 

 
Or  
 ∮ 𝐶𝐶2

(𝑬𝑬1 +
𝜕𝜕
𝜕𝜕𝜕𝜕 𝑨𝑨1) ⋅ 𝑑𝑑𝒍𝒍 = 0 (18) 

 
Or  
 ∯ ∇ × (𝑬𝑬1 +

𝜕𝜕
𝜕𝜕𝜕𝜕 𝑨𝑨1) ⋅ �̂�𝑛𝑑𝑑ΓΓ = 0 (19) 

 
Or  
 ∇ × (𝑬𝑬1 +

𝜕𝜕
𝜕𝜕𝜕𝜕 𝑨𝑨1) = 0 (20) 

 
Or  
 𝑬𝑬1 +

𝜕𝜕
𝜕𝜕𝜕𝜕 𝑨𝑨1 = −∇𝜙𝜙1 (21) 

 
Or  
 𝑬𝑬1 = −∇𝜙𝜙1 −

𝜕𝜕
𝜕𝜕𝜕𝜕 𝑨𝑨1 (22) 

 
Subscripts can be omitted,  
 𝑬𝑬 = −∇𝜙𝜙 − 𝜕𝜕

𝜕𝜕𝜕𝜕 𝑨𝑨 (23) 
 

The above equation is Faraday’s law. The above equation is also one of the Maxwell 
equations defined by Maxwell himself. Scientists of the same period as Maxwell, such as 
Kirchhoff and Lorenz, did not define electric and magnetic fields, so they would give the 
following Ohm’s law,  

 𝑱𝑱 = 𝜍𝜍(−∇𝜙𝜙 − 𝜕𝜕
𝜕𝜕𝜕𝜕 𝑨𝑨) (24) 

 Similarly, they do not define ∇ × 𝑨𝑨 as a magnetic field. The author believes that Maxwell’s 
definition of 𝑬𝑬 ≜ −∇𝜙𝜙 − 𝜕𝜕

𝜕𝜕𝜕𝜕 𝑨𝑨 is acceptable, so when encountering Ohm’s law, it can be 
written as,  

 𝑱𝑱 = 𝜍𝜍𝑬𝑬 (25) 

2.4  Faraday’s Law 
 
Obtained from (8, 10), 
 
 ℰ2,1 = − 𝜕𝜕

𝜕𝜕𝜕𝜕 ∮ 𝐶𝐶2
𝑨𝑨𝑑𝑑𝒍𝒍2 (15) 

 
Consider (9),  
 ∮ 𝐶𝐶2

𝑬𝑬1 ⋅ 𝑑𝑑𝒍𝒍 = − 𝜕𝜕
𝜕𝜕𝜕𝜕 ∮ 𝐶𝐶2

𝑨𝑨1𝑑𝑑𝒍𝒍 (16) 
 

Or  
 ∮ 𝐶𝐶2

𝑬𝑬1 ⋅ 𝑑𝑑𝒍𝒍 = −∮ 𝐶𝐶2
𝜕𝜕
𝜕𝜕𝜕𝜕 𝑨𝑨1𝑑𝑑𝒍𝒍 (17) 

 
Or  
 ∮ 𝐶𝐶2

(𝑬𝑬1 +
𝜕𝜕
𝜕𝜕𝜕𝜕 𝑨𝑨1) ⋅ 𝑑𝑑𝒍𝒍 = 0 (18) 

 
Or  
 ∯ ∇ × (𝑬𝑬1 +

𝜕𝜕
𝜕𝜕𝜕𝜕 𝑨𝑨1) ⋅ �̂�𝑛𝑑𝑑ΓΓ = 0 (19) 

 
Or  
 ∇ × (𝑬𝑬1 +

𝜕𝜕
𝜕𝜕𝜕𝜕 𝑨𝑨1) = 0 (20) 

 
Or  
 𝑬𝑬1 +

𝜕𝜕
𝜕𝜕𝜕𝜕 𝑨𝑨1 = −∇𝜙𝜙1 (21) 

 
Or  
 𝑬𝑬1 = −∇𝜙𝜙1 −

𝜕𝜕
𝜕𝜕𝜕𝜕 𝑨𝑨1 (22) 

 
Subscripts can be omitted,  
 𝑬𝑬 = −∇𝜙𝜙 − 𝜕𝜕

𝜕𝜕𝜕𝜕 𝑨𝑨 (23) 
 

The above equation is Faraday’s law. The above equation is also one of the Maxwell 
equations defined by Maxwell himself. Scientists of the same period as Maxwell, such as 
Kirchhoff and Lorenz, did not define electric and magnetic fields, so they would give the 
following Ohm’s law,  

 𝑱𝑱 = 𝜍𝜍(−∇𝜙𝜙 − 𝜕𝜕
𝜕𝜕𝜕𝜕 𝑨𝑨) (24) 

 Similarly, they do not define ∇ × 𝑨𝑨 as a magnetic field. The author believes that Maxwell’s 
definition of 𝑬𝑬 ≜ −∇𝜙𝜙 − 𝜕𝜕

𝜕𝜕𝜕𝜕 𝑨𝑨 is acceptable, so when encountering Ohm’s law, it can be 
written as,  

 𝑱𝑱 = 𝜍𝜍𝑬𝑬 (25) 

2.4  Faraday’s Law 
 
Obtained from (8, 10), 
 
 ℰ2,1 = − 𝜕𝜕

𝜕𝜕𝜕𝜕 ∮ 𝐶𝐶2
𝑨𝑨𝑑𝑑𝒍𝒍2 (15) 

 
Consider (9),  
 ∮ 𝐶𝐶2

𝑬𝑬1 ⋅ 𝑑𝑑𝒍𝒍 = − 𝜕𝜕
𝜕𝜕𝜕𝜕 ∮ 𝐶𝐶2

𝑨𝑨1𝑑𝑑𝒍𝒍 (16) 
 

Or  
 ∮ 𝐶𝐶2

𝑬𝑬1 ⋅ 𝑑𝑑𝒍𝒍 = −∮ 𝐶𝐶2
𝜕𝜕
𝜕𝜕𝜕𝜕 𝑨𝑨1𝑑𝑑𝒍𝒍 (17) 

 
Or  
 ∮ 𝐶𝐶2

(𝑬𝑬1 +
𝜕𝜕
𝜕𝜕𝜕𝜕 𝑨𝑨1) ⋅ 𝑑𝑑𝒍𝒍 = 0 (18) 

 
Or  
 ∯ ∇ × (𝑬𝑬1 +

𝜕𝜕
𝜕𝜕𝜕𝜕 𝑨𝑨1) ⋅ �̂�𝑛𝑑𝑑ΓΓ = 0 (19) 

 
Or  
 ∇ × (𝑬𝑬1 +

𝜕𝜕
𝜕𝜕𝜕𝜕 𝑨𝑨1) = 0 (20) 

 
Or  
 𝑬𝑬1 +

𝜕𝜕
𝜕𝜕𝜕𝜕 𝑨𝑨1 = −∇𝜙𝜙1 (21) 

 
Or  
 𝑬𝑬1 = −∇𝜙𝜙1 −

𝜕𝜕
𝜕𝜕𝜕𝜕 𝑨𝑨1 (22) 

 
Subscripts can be omitted,  
 𝑬𝑬 = −∇𝜙𝜙 − 𝜕𝜕

𝜕𝜕𝜕𝜕 𝑨𝑨 (23) 
 

The above equation is Faraday’s law. The above equation is also one of the Maxwell 
equations defined by Maxwell himself. Scientists of the same period as Maxwell, such as 
Kirchhoff and Lorenz, did not define electric and magnetic fields, so they would give the 
following Ohm’s law,  

 𝑱𝑱 = 𝜍𝜍(−∇𝜙𝜙 − 𝜕𝜕
𝜕𝜕𝜕𝜕 𝑨𝑨) (24) 

 Similarly, they do not define ∇ × 𝑨𝑨 as a magnetic field. The author believes that Maxwell’s 
definition of 𝑬𝑬 ≜ −∇𝜙𝜙 − 𝜕𝜕

𝜕𝜕𝜕𝜕 𝑨𝑨 is acceptable, so when encountering Ohm’s law, it can be 
written as,  

 𝑱𝑱 = 𝜍𝜍𝑬𝑬 (25) 

2.4  Faraday’s Law 
 
Obtained from (8, 10), 
 
 ℰ2,1 = − 𝜕𝜕

𝜕𝜕𝜕𝜕 ∮ 𝐶𝐶2
𝑨𝑨𝑑𝑑𝒍𝒍2 (15) 

 
Consider (9),  
 ∮ 𝐶𝐶2

𝑬𝑬1 ⋅ 𝑑𝑑𝒍𝒍 = − 𝜕𝜕
𝜕𝜕𝜕𝜕 ∮ 𝐶𝐶2

𝑨𝑨1𝑑𝑑𝒍𝒍 (16) 
 

Or  
 ∮ 𝐶𝐶2

𝑬𝑬1 ⋅ 𝑑𝑑𝒍𝒍 = −∮ 𝐶𝐶2
𝜕𝜕
𝜕𝜕𝜕𝜕 𝑨𝑨1𝑑𝑑𝒍𝒍 (17) 

 
Or  
 ∮ 𝐶𝐶2

(𝑬𝑬1 +
𝜕𝜕
𝜕𝜕𝜕𝜕 𝑨𝑨1) ⋅ 𝑑𝑑𝒍𝒍 = 0 (18) 

 
Or  
 ∯ ∇ × (𝑬𝑬1 +

𝜕𝜕
𝜕𝜕𝜕𝜕 𝑨𝑨1) ⋅ �̂�𝑛𝑑𝑑ΓΓ = 0 (19) 

 
Or  
 ∇ × (𝑬𝑬1 +

𝜕𝜕
𝜕𝜕𝜕𝜕 𝑨𝑨1) = 0 (20) 

 
Or  
 𝑬𝑬1 +

𝜕𝜕
𝜕𝜕𝜕𝜕 𝑨𝑨1 = −∇𝜙𝜙1 (21) 

 
Or  
 𝑬𝑬1 = −∇𝜙𝜙1 −

𝜕𝜕
𝜕𝜕𝜕𝜕 𝑨𝑨1 (22) 

 
Subscripts can be omitted,  
 𝑬𝑬 = −∇𝜙𝜙 − 𝜕𝜕

𝜕𝜕𝜕𝜕 𝑨𝑨 (23) 
 

The above equation is Faraday’s law. The above equation is also one of the Maxwell 
equations defined by Maxwell himself. Scientists of the same period as Maxwell, such as 
Kirchhoff and Lorenz, did not define electric and magnetic fields, so they would give the 
following Ohm’s law,  

 𝑱𝑱 = 𝜍𝜍(−∇𝜙𝜙 − 𝜕𝜕
𝜕𝜕𝜕𝜕 𝑨𝑨) (24) 

 Similarly, they do not define ∇ × 𝑨𝑨 as a magnetic field. The author believes that Maxwell’s 
definition of 𝑬𝑬 ≜ −∇𝜙𝜙 − 𝜕𝜕

𝜕𝜕𝜕𝜕 𝑨𝑨 is acceptable, so when encountering Ohm’s law, it can be 
written as,  

 𝑱𝑱 = 𝜍𝜍𝑬𝑬 (25) 

Consider (9), 

Or 

Or 

Or 

Or 

Or 

Or 

Subscripts can be omitted,

The above equation is Faraday’s law. The above equation is 
also one of the Maxwell equations defined by Maxwell himself. 
Scientists of the same period as Maxwell, such as Kirchhoff 

and Lorenz, did not define electric and magnetic fields, so they 
would give the following Ohm’s law,

Similarly, they do not define ∇×A as a magnetic field. The author 
believes that Maxwell’s definition of                               is 

acceptable, so when encountering Ohm’s law, it can be written 
as,

2.4  Faraday’s Law 
 
Obtained from (8, 10), 
 
 ℰ2,1 = − 𝜕𝜕

𝜕𝜕𝜕𝜕 ∮ 𝐶𝐶2
𝑨𝑨𝑑𝑑𝒍𝒍2 (15) 

 
Consider (9),  
 ∮ 𝐶𝐶2

𝑬𝑬1 ⋅ 𝑑𝑑𝒍𝒍 = − 𝜕𝜕
𝜕𝜕𝜕𝜕 ∮ 𝐶𝐶2

𝑨𝑨1𝑑𝑑𝒍𝒍 (16) 
 

Or  
 ∮ 𝐶𝐶2

𝑬𝑬1 ⋅ 𝑑𝑑𝒍𝒍 = −∮ 𝐶𝐶2
𝜕𝜕
𝜕𝜕𝜕𝜕 𝑨𝑨1𝑑𝑑𝒍𝒍 (17) 

 
Or  
 ∮ 𝐶𝐶2

(𝑬𝑬1 +
𝜕𝜕
𝜕𝜕𝜕𝜕 𝑨𝑨1) ⋅ 𝑑𝑑𝒍𝒍 = 0 (18) 

 
Or  
 ∯ ∇ × (𝑬𝑬1 +

𝜕𝜕
𝜕𝜕𝜕𝜕 𝑨𝑨1) ⋅ �̂�𝑛𝑑𝑑ΓΓ = 0 (19) 

 
Or  
 ∇ × (𝑬𝑬1 +

𝜕𝜕
𝜕𝜕𝜕𝜕 𝑨𝑨1) = 0 (20) 

 
Or  
 𝑬𝑬1 +

𝜕𝜕
𝜕𝜕𝜕𝜕 𝑨𝑨1 = −∇𝜙𝜙1 (21) 

 
Or  
 𝑬𝑬1 = −∇𝜙𝜙1 −

𝜕𝜕
𝜕𝜕𝜕𝜕 𝑨𝑨1 (22) 

 
Subscripts can be omitted,  
 𝑬𝑬 = −∇𝜙𝜙 − 𝜕𝜕

𝜕𝜕𝜕𝜕 𝑨𝑨 (23) 
 

The above equation is Faraday’s law. The above equation is also one of the Maxwell 
equations defined by Maxwell himself. Scientists of the same period as Maxwell, such as 
Kirchhoff and Lorenz, did not define electric and magnetic fields, so they would give the 
following Ohm’s law,  

 𝑱𝑱 = 𝜍𝜍(−∇𝜙𝜙 − 𝜕𝜕
𝜕𝜕𝜕𝜕 𝑨𝑨) (24) 

 Similarly, they do not define ∇ × 𝑨𝑨 as a magnetic field. The author believes that Maxwell’s 
definition of 𝑬𝑬 ≜ −∇𝜙𝜙 − 𝜕𝜕

𝜕𝜕𝜕𝜕 𝑨𝑨 is acceptable, so when encountering Ohm’s law, it can be 
written as,  

 𝑱𝑱 = 𝜍𝜍𝑬𝑬 (25) 
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2.4  Faraday’s Law 
 
Obtained from (8, 10), 
 
 ℰ2,1 = − 𝜕𝜕

𝜕𝜕𝜕𝜕 ∮ 𝐶𝐶2
𝑨𝑨𝑑𝑑𝒍𝒍2 (15) 

 
Consider (9),  
 ∮ 𝐶𝐶2

𝑬𝑬1 ⋅ 𝑑𝑑𝒍𝒍 = − 𝜕𝜕
𝜕𝜕𝜕𝜕 ∮ 𝐶𝐶2

𝑨𝑨1𝑑𝑑𝒍𝒍 (16) 
 

Or  
 ∮ 𝐶𝐶2

𝑬𝑬1 ⋅ 𝑑𝑑𝒍𝒍 = −∮ 𝐶𝐶2
𝜕𝜕
𝜕𝜕𝜕𝜕 𝑨𝑨1𝑑𝑑𝒍𝒍 (17) 

 
Or  
 ∮ 𝐶𝐶2

(𝑬𝑬1 +
𝜕𝜕
𝜕𝜕𝜕𝜕 𝑨𝑨1) ⋅ 𝑑𝑑𝒍𝒍 = 0 (18) 

 
Or  
 ∯ ∇ × (𝑬𝑬1 +

𝜕𝜕
𝜕𝜕𝜕𝜕 𝑨𝑨1) ⋅ �̂�𝑛𝑑𝑑ΓΓ = 0 (19) 

 
Or  
 ∇ × (𝑬𝑬1 +

𝜕𝜕
𝜕𝜕𝜕𝜕 𝑨𝑨1) = 0 (20) 

 
Or  
 𝑬𝑬1 +

𝜕𝜕
𝜕𝜕𝜕𝜕 𝑨𝑨1 = −∇𝜙𝜙1 (21) 

 
Or  
 𝑬𝑬1 = −∇𝜙𝜙1 −

𝜕𝜕
𝜕𝜕𝜕𝜕 𝑨𝑨1 (22) 

 
Subscripts can be omitted,  
 𝑬𝑬 = −∇𝜙𝜙 − 𝜕𝜕

𝜕𝜕𝜕𝜕 𝑨𝑨 (23) 
 

The above equation is Faraday’s law. The above equation is also one of the Maxwell 
equations defined by Maxwell himself. Scientists of the same period as Maxwell, such as 
Kirchhoff and Lorenz, did not define electric and magnetic fields, so they would give the 
following Ohm’s law,  

 𝑱𝑱 = 𝜍𝜍(−∇𝜙𝜙 − 𝜕𝜕
𝜕𝜕𝜕𝜕 𝑨𝑨) (24) 

 Similarly, they do not define ∇ × 𝑨𝑨 as a magnetic field. The author believes that Maxwell’s 
definition of 𝑬𝑬 ≜ −∇𝜙𝜙 − 𝜕𝜕

𝜕𝜕𝜕𝜕 𝑨𝑨 is acceptable, so when encountering Ohm’s law, it can be 
written as,  

 𝑱𝑱 = 𝜍𝜍𝑬𝑬 (25) 
2.5 Biot-Savart Law
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It is worth mentioning that the derivation method for the divergence of vector 

potentials mentioned above was completed by Kirchhoff in 1857 [32]. However, what Kirchhoff 
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For Kirchhoff, Lorenz, the ∇ × A in the equation (53) will not 
be written as B. Because they do not introduce the concepts of 
electric and magnetic fields at all [32, 33]. Only dealing with 

vector potentials and scalars potential.
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This current continuity equation is also Kirchhoff’s contribution 
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In the next chapter, we will discuss in detail the problem with the formula (56).

2.9 Solutions to Quasi-Static Equations
The solution to the quasi-static equation is,
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It is indeed an electric field, which can be called an induced electric field, but it is worth 

mentioning the electrostatic field,  
 𝑬𝑬𝑠𝑠 ≜ −∇𝜙𝜙 (63) 

 
It may also be problematic in situations of radiated electromagnetic fields. However, 

this article does not discuss this issue. This issue needs to be addressed in future papers. The 
author suddenly realized that Kirchhoff and Lorenz were very clever in not defining electric and 
magnetic fields. In the next chapter, we will discuss the problem with the formula (56). 

 
3  Define and measure magnetic fields according to Ampere 

force and Lorentz force 
 
We discussed the measurement of magnetic fields in the paper *29+. This chapter 

continues to discuss this topic. See figure 1. 
 

 
 

Figure  1: Assuming that the magnetic field is 𝑯𝑯1 = 𝐻𝐻1�̂�𝑦, The current element is 𝐼𝐼2𝑑𝑑𝒍𝒍2 =
𝐼𝐼2𝑑𝑑𝑑𝑑�̂�𝑧. The force acting on this current element is the ampere force 𝑭𝑭2,1. 
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 𝑑𝑑𝑭𝑭2,1 is the ampere force. This force is a force from 1 to 2. From linear current to body 
current, 
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𝜕𝜕
𝜕𝜕𝜕𝜕 𝑬𝑬𝑠𝑠 (53) 
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 ∇ × 𝑬𝑬 = − 𝜕𝜕
𝜕𝜕𝜕𝜕 𝑩𝑩 (58) 

 
In the next chapter, we will discuss in detail the problem with the formula (56). 
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4𝜋𝜋 ∫ 𝑉𝑉
𝑱𝑱
𝑟𝑟 𝑑𝑑𝑑𝑑 (59) 

  
 𝜙𝜙 = 1

4𝜋𝜋𝜖𝜖0
∫ 𝑉𝑉

𝜌𝜌
𝑟𝑟 𝑑𝑑𝑑𝑑 (60) 

  
 𝑬𝑬 = −∇𝜙𝜙 − 𝜕𝜕

𝜕𝜕𝜕𝜕 𝑨𝑨 (61) 
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𝜕𝜕𝜕𝜕 𝑨𝑨 (62) 
It is indeed an electric field, which can be called an induced electric field, but it is worth mentioning the electrostatic field,

It may also be problematic in situations of radiated 
electromagnetic fields. However, this article does not discuss 
this issue. This issue needs to be addressed in future papers. The 
author suddenly realized that Kirchhoff and Lorenz were very 
clever in not defining electric and magnetic fields. In the next 
chapter, we will discuss the problem with the formula (56).

3. Define and Measure Magnetic Fields According to Ampere 
Force and Lorentz Force
We discussed the measurement of magnetic fields in the paper 
[29]. This chapter continues to discuss this topic. See figure 1.

Figure 1: Assuming That the Magnetic Field is H1= H1 ŷ, The Current Element is I2 dl2= I2 dlẑ. The Force Acting on This Current 
Element is The Ampere Force F2,1.

3.1 Ampere Force
B1 is the magnetic field of the current element I1 dl1. This magnetic field is present in the current element I2 dl2 The force is,

 dF2,1 is the ampere force. This force is a force from 1 to 2. From linear current to body current,
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𝑑𝑑𝑑𝑑 = 𝜌𝜌2𝑣𝑣2 × 𝑩𝑩1 (67) 

 
𝒇𝒇2,1 is the Lorentz force, which is the force on 𝜌𝜌2𝑣𝑣2 in the magnetic field 𝑩𝑩1. Because 

it is a force per unit volume, this force is a type of stress. 
 
3.2  Definition of magnetic field based on the average ampere force on 

the loop 
 
To measure the magnetic field, we assume that for the magnetic field 𝑩𝑩1, the direction 

is known. If we don’t know the direction of the magnetic field, we will measure a component of 
magnetic field in a certain direction,  
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 = 𝐼𝐼2𝑑𝑑𝒍𝒍2(𝑩𝑩1 ⋅ 𝐼𝐼2𝑑𝑑𝒍𝒍2) − 𝑩𝑩1(𝐼𝐼2𝑑𝑑𝒍𝒍2 ⋅ 𝐼𝐼2𝑑𝑑𝒍𝒍2) 

 
 = −𝑩𝑩1(𝐼𝐼2𝑑𝑑𝒍𝒍2 ⋅ 𝐼𝐼2𝑑𝑑𝒍𝒍2) (70) 

 
The above equation considers the formula (69) and the following vector mathematical 

formulas,  
 𝒂𝒂 × (𝒃𝒃 × 𝒄𝒄) = 𝒃𝒃(𝒄𝒄 ⋅ 𝒂𝒂) − 𝒄𝒄(𝒂𝒂 ⋅ 𝒃𝒃) (71) 

 
The formula (70) can be rewritten as,  
 𝑩𝑩1(𝐼𝐼2𝑑𝑑𝒍𝒍2 ⋅ 𝐼𝐼2𝑑𝑑𝒍𝒍2) = −𝐼𝐼2𝑑𝑑𝒍𝒍2 × 𝑑𝑑𝑭𝑭2,1 (72) 

 
Or  
 𝑩𝑩1 =

1
(𝐼𝐼2𝑑𝑑𝒍𝒍2⋅𝐼𝐼2𝑑𝑑𝒍𝒍2)

𝑑𝑑𝑭𝑭2,1 × 𝐼𝐼2𝑑𝑑𝒍𝒍2 
 

 = 1
𝐼𝐼2(𝑑𝑑𝒍𝒍2⋅𝑑𝑑𝒍𝒍2)

𝑑𝑑𝑭𝑭2,1 × 𝑑𝑑𝒍𝒍2 
 

 = 1
𝐼𝐼2|𝑑𝑑𝒍𝒍2|2

𝑑𝑑𝑭𝑭2,1 × 𝑑𝑑𝒍𝒍2 
 

 = 𝑑𝑑𝑭𝑭2,1
𝐼𝐼2|𝑑𝑑𝒍𝒍2|

× 𝑑𝑑𝒍𝒍2
|𝑑𝑑𝒍𝒍2|

 (73) 
 

f2,1 is the Lorentz force, which is the force on ρ2 v2 in the magnetic 
field B1. Because it is a force per unit volume, this force is a type 
of stress.

3.2 Definition of Magnetic Field Based on The Average 
Ampere Force on the Loop
To measure the magnetic field, we assume that for the magnetic 
field B1, the direction is known. If we don’t know the direction 
of the magnetic field, we will measure a component of magnetic 
field in a certain direction, 

We take 
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Consider (64), there is,

 𝑑𝑑𝑭𝑭2,1 = 𝜌𝜌2𝑣𝑣2𝑑𝑑𝑑𝑑 × 𝑩𝑩1 (66) 
 

Hence, there is, 
 
 𝒇𝒇2,1 ≜

𝑑𝑑𝑭𝑭2,1
𝑑𝑑𝑑𝑑 = 𝜌𝜌2𝑣𝑣2 × 𝑩𝑩1 (67) 

 
𝒇𝒇2,1 is the Lorentz force, which is the force on 𝜌𝜌2𝑣𝑣2 in the magnetic field 𝑩𝑩1. Because 

it is a force per unit volume, this force is a type of stress. 
 
3.2  Definition of magnetic field based on the average ampere force on 

the loop 
 
To measure the magnetic field, we assume that for the magnetic field 𝑩𝑩1, the direction 

is known. If we don’t know the direction of the magnetic field, we will measure a component of 
magnetic field in a certain direction,  

 𝑩𝑩1 = 𝐵𝐵1�̂�𝑦 (68) 
 We take  

 𝐼𝐼2𝑑𝑑𝒍𝒍2 ⊥ 𝑩𝑩1 (69) 
 

Consider (64), there is,  
 𝐼𝐼2𝑑𝑑𝒍𝒍2 × 𝑑𝑑𝑭𝑭2,1 = 𝐼𝐼2𝑑𝑑𝒍𝒍2 × (𝐼𝐼2𝑑𝑑𝒍𝒍2 × 𝑩𝑩1) 

 
 = 𝐼𝐼2𝑑𝑑𝒍𝒍2(𝑩𝑩1 ⋅ 𝐼𝐼2𝑑𝑑𝒍𝒍2) − 𝑩𝑩1(𝐼𝐼2𝑑𝑑𝒍𝒍2 ⋅ 𝐼𝐼2𝑑𝑑𝒍𝒍2) 

 
 = −𝑩𝑩1(𝐼𝐼2𝑑𝑑𝒍𝒍2 ⋅ 𝐼𝐼2𝑑𝑑𝒍𝒍2) (70) 

 
The above equation considers the formula (69) and the following vector mathematical 

formulas,  
 𝒂𝒂 × (𝒃𝒃 × 𝒄𝒄) = 𝒃𝒃(𝒄𝒄 ⋅ 𝒂𝒂) − 𝒄𝒄(𝒂𝒂 ⋅ 𝒃𝒃) (71) 

 
The formula (70) can be rewritten as,  
 𝑩𝑩1(𝐼𝐼2𝑑𝑑𝒍𝒍2 ⋅ 𝐼𝐼2𝑑𝑑𝒍𝒍2) = −𝐼𝐼2𝑑𝑑𝒍𝒍2 × 𝑑𝑑𝑭𝑭2,1 (72) 

 
Or  
 𝑩𝑩1 =

1
(𝐼𝐼2𝑑𝑑𝒍𝒍2⋅𝐼𝐼2𝑑𝑑𝒍𝒍2)

𝑑𝑑𝑭𝑭2,1 × 𝐼𝐼2𝑑𝑑𝒍𝒍2 
 

 = 1
𝐼𝐼2(𝑑𝑑𝒍𝒍2⋅𝑑𝑑𝒍𝒍2)

𝑑𝑑𝑭𝑭2,1 × 𝑑𝑑𝒍𝒍2 
 

 = 1
𝐼𝐼2|𝑑𝑑𝒍𝒍2|2

𝑑𝑑𝑭𝑭2,1 × 𝑑𝑑𝒍𝒍2 
 

 = 𝑑𝑑𝑭𝑭2,1
𝐼𝐼2|𝑑𝑑𝒍𝒍2|

× 𝑑𝑑𝒍𝒍2
|𝑑𝑑𝒍𝒍2|

 (73) 
 

 𝑑𝑑𝑭𝑭2,1 = 𝜌𝜌2𝑣𝑣2𝑑𝑑𝑑𝑑 × 𝑩𝑩1 (66) 
 

Hence, there is, 
 
 𝒇𝒇2,1 ≜

𝑑𝑑𝑭𝑭2,1
𝑑𝑑𝑑𝑑 = 𝜌𝜌2𝑣𝑣2 × 𝑩𝑩1 (67) 

 
𝒇𝒇2,1 is the Lorentz force, which is the force on 𝜌𝜌2𝑣𝑣2 in the magnetic field 𝑩𝑩1. Because 

it is a force per unit volume, this force is a type of stress. 
 
3.2  Definition of magnetic field based on the average ampere force on 

the loop 
 
To measure the magnetic field, we assume that for the magnetic field 𝑩𝑩1, the direction 

is known. If we don’t know the direction of the magnetic field, we will measure a component of 
magnetic field in a certain direction,  

 𝑩𝑩1 = 𝐵𝐵1�̂�𝑦 (68) 
 We take  

 𝐼𝐼2𝑑𝑑𝒍𝒍2 ⊥ 𝑩𝑩1 (69) 
 

Consider (64), there is,  
 𝐼𝐼2𝑑𝑑𝒍𝒍2 × 𝑑𝑑𝑭𝑭2,1 = 𝐼𝐼2𝑑𝑑𝒍𝒍2 × (𝐼𝐼2𝑑𝑑𝒍𝒍2 × 𝑩𝑩1) 

 
 = 𝐼𝐼2𝑑𝑑𝒍𝒍2(𝑩𝑩1 ⋅ 𝐼𝐼2𝑑𝑑𝒍𝒍2) − 𝑩𝑩1(𝐼𝐼2𝑑𝑑𝒍𝒍2 ⋅ 𝐼𝐼2𝑑𝑑𝒍𝒍2) 

 
 = −𝑩𝑩1(𝐼𝐼2𝑑𝑑𝒍𝒍2 ⋅ 𝐼𝐼2𝑑𝑑𝒍𝒍2) (70) 

 
The above equation considers the formula (69) and the following vector mathematical 

formulas,  
 𝒂𝒂 × (𝒃𝒃 × 𝒄𝒄) = 𝒃𝒃(𝒄𝒄 ⋅ 𝒂𝒂) − 𝒄𝒄(𝒂𝒂 ⋅ 𝒃𝒃) (71) 

 
The formula (70) can be rewritten as,  
 𝑩𝑩1(𝐼𝐼2𝑑𝑑𝒍𝒍2 ⋅ 𝐼𝐼2𝑑𝑑𝒍𝒍2) = −𝐼𝐼2𝑑𝑑𝒍𝒍2 × 𝑑𝑑𝑭𝑭2,1 (72) 

 
Or  
 𝑩𝑩1 =

1
(𝐼𝐼2𝑑𝑑𝒍𝒍2⋅𝐼𝐼2𝑑𝑑𝒍𝒍2)

𝑑𝑑𝑭𝑭2,1 × 𝐼𝐼2𝑑𝑑𝒍𝒍2 
 

 = 1
𝐼𝐼2(𝑑𝑑𝒍𝒍2⋅𝑑𝑑𝒍𝒍2)

𝑑𝑑𝑭𝑭2,1 × 𝑑𝑑𝒍𝒍2 
 

 = 1
𝐼𝐼2|𝑑𝑑𝒍𝒍2|2

𝑑𝑑𝑭𝑭2,1 × 𝑑𝑑𝒍𝒍2 
 

 = 𝑑𝑑𝑭𝑭2,1
𝐼𝐼2|𝑑𝑑𝒍𝒍2|

× 𝑑𝑑𝒍𝒍2
|𝑑𝑑𝒍𝒍2|

 (73) 
 

 𝑑𝑑𝑭𝑭2,1 = 𝜌𝜌2𝑣𝑣2𝑑𝑑𝑑𝑑 × 𝑩𝑩1 (66) 
 

Hence, there is, 
 
 𝒇𝒇2,1 ≜

𝑑𝑑𝑭𝑭2,1
𝑑𝑑𝑑𝑑 = 𝜌𝜌2𝑣𝑣2 × 𝑩𝑩1 (67) 

 
𝒇𝒇2,1 is the Lorentz force, which is the force on 𝜌𝜌2𝑣𝑣2 in the magnetic field 𝑩𝑩1. Because 

it is a force per unit volume, this force is a type of stress. 
 
3.2  Definition of magnetic field based on the average ampere force on 

the loop 
 
To measure the magnetic field, we assume that for the magnetic field 𝑩𝑩1, the direction 

is known. If we don’t know the direction of the magnetic field, we will measure a component of 
magnetic field in a certain direction,  

 𝑩𝑩1 = 𝐵𝐵1�̂�𝑦 (68) 
 We take  

 𝐼𝐼2𝑑𝑑𝒍𝒍2 ⊥ 𝑩𝑩1 (69) 
 

Consider (64), there is,  
 𝐼𝐼2𝑑𝑑𝒍𝒍2 × 𝑑𝑑𝑭𝑭2,1 = 𝐼𝐼2𝑑𝑑𝒍𝒍2 × (𝐼𝐼2𝑑𝑑𝒍𝒍2 × 𝑩𝑩1) 

 
 = 𝐼𝐼2𝑑𝑑𝒍𝒍2(𝑩𝑩1 ⋅ 𝐼𝐼2𝑑𝑑𝒍𝒍2) − 𝑩𝑩1(𝐼𝐼2𝑑𝑑𝒍𝒍2 ⋅ 𝐼𝐼2𝑑𝑑𝒍𝒍2) 

 
 = −𝑩𝑩1(𝐼𝐼2𝑑𝑑𝒍𝒍2 ⋅ 𝐼𝐼2𝑑𝑑𝒍𝒍2) (70) 

 
The above equation considers the formula (69) and the following vector mathematical 

formulas,  
 𝒂𝒂 × (𝒃𝒃 × 𝒄𝒄) = 𝒃𝒃(𝒄𝒄 ⋅ 𝒂𝒂) − 𝒄𝒄(𝒂𝒂 ⋅ 𝒃𝒃) (71) 

 
The formula (70) can be rewritten as,  
 𝑩𝑩1(𝐼𝐼2𝑑𝑑𝒍𝒍2 ⋅ 𝐼𝐼2𝑑𝑑𝒍𝒍2) = −𝐼𝐼2𝑑𝑑𝒍𝒍2 × 𝑑𝑑𝑭𝑭2,1 (72) 
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(𝐼𝐼2𝑑𝑑𝒍𝒍2⋅𝐼𝐼2𝑑𝑑𝒍𝒍2)

𝑑𝑑𝑭𝑭2,1 × 𝐼𝐼2𝑑𝑑𝒍𝒍2 
 

 = 1
𝐼𝐼2(𝑑𝑑𝒍𝒍2⋅𝑑𝑑𝒍𝒍2)

𝑑𝑑𝑭𝑭2,1 × 𝑑𝑑𝒍𝒍2 
 

 = 1
𝐼𝐼2|𝑑𝑑𝒍𝒍2|2

𝑑𝑑𝑭𝑭2,1 × 𝑑𝑑𝒍𝒍2 
 

 = 𝑑𝑑𝑭𝑭2,1
𝐼𝐼2|𝑑𝑑𝒍𝒍2|

× 𝑑𝑑𝒍𝒍2
|𝑑𝑑𝒍𝒍2|

 (73) 
 

 𝑑𝑑𝑭𝑭2,1 = 𝜌𝜌2𝑣𝑣2𝑑𝑑𝑑𝑑 × 𝑩𝑩1 (66) 
 

Hence, there is, 
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𝑑𝑑𝑭𝑭2,1
𝑑𝑑𝑑𝑑 = 𝜌𝜌2𝑣𝑣2 × 𝑩𝑩1 (67) 

 
𝒇𝒇2,1 is the Lorentz force, which is the force on 𝜌𝜌2𝑣𝑣2 in the magnetic field 𝑩𝑩1. Because 

it is a force per unit volume, this force is a type of stress. 
 
3.2  Definition of magnetic field based on the average ampere force on 

the loop 
 
To measure the magnetic field, we assume that for the magnetic field 𝑩𝑩1, the direction 

is known. If we don’t know the direction of the magnetic field, we will measure a component of 
magnetic field in a certain direction,  

 𝑩𝑩1 = 𝐵𝐵1�̂�𝑦 (68) 
 We take  

 𝐼𝐼2𝑑𝑑𝒍𝒍2 ⊥ 𝑩𝑩1 (69) 
 

Consider (64), there is,  
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The above equation considers the formula (69) and the following vector mathematical 

formulas,  
 𝒂𝒂 × (𝒃𝒃 × 𝒄𝒄) = 𝒃𝒃(𝒄𝒄 ⋅ 𝒂𝒂) − 𝒄𝒄(𝒂𝒂 ⋅ 𝒃𝒃) (71) 

 
The formula (70) can be rewritten as,  
 𝑩𝑩1(𝐼𝐼2𝑑𝑑𝒍𝒍2 ⋅ 𝐼𝐼2𝑑𝑑𝒍𝒍2) = −𝐼𝐼2𝑑𝑑𝒍𝒍2 × 𝑑𝑑𝑭𝑭2,1 (72) 

 
Or  
 𝑩𝑩1 =

1
(𝐼𝐼2𝑑𝑑𝒍𝒍2⋅𝐼𝐼2𝑑𝑑𝒍𝒍2)
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 = 1
𝐼𝐼2|𝑑𝑑𝒍𝒍2|2

𝑑𝑑𝑭𝑭2,1 × 𝑑𝑑𝒍𝒍2 
 

 = 𝑑𝑑𝑭𝑭2,1
𝐼𝐼2|𝑑𝑑𝒍𝒍2|

× 𝑑𝑑𝒍𝒍2
|𝑑𝑑𝒍𝒍2|

 (73) 
 

The above equation considers the formula (69) and the following vector mathematical formulas,

The formula (70) can be rewritten as,

Or 

Therefore, the magnitude of the magnetic field,Therefore, the magnitude of the magnetic field,  
 𝐵𝐵1 =

𝑑𝑑𝐹𝐹2,1
𝐼𝐼2|𝑑𝑑𝒍𝒍2|

 (74) 
 

The above formula is very important, and it is necessary for us to conduct dimensional 
analysis to verify its correctness,  

 [𝐵𝐵1] = 𝑀𝑀𝑇𝑇−2𝐴𝐴−1 (75) 
  

 [ 𝑑𝑑𝐹𝐹2,1𝐼𝐼2|𝑑𝑑𝒍𝒍2|
] = 𝑀𝑀𝑀𝑀𝑇𝑇2

𝐴𝐴𝑀𝑀 = 𝑀𝑀𝑇𝑇2𝐴𝐴−1 (76) 
 

Hence, there is,  
 [𝐵𝐵1] = [ 𝑑𝑑𝐹𝐹2,1𝐼𝐼2|𝑑𝑑𝒍𝒍2|

] (77) 
 

Therefore, the dimension of the formula (73) is correct. Obtained from formula (74) the 
following,  

 ∫ 𝐶𝐶2
𝐵𝐵1𝑑𝑑𝑑𝑑 = ∫ 𝐶𝐶2

𝑑𝑑𝐹𝐹2,1
𝐼𝐼2|𝑑𝑑𝒍𝒍2|

𝑑𝑑𝑑𝑑 (78) 
 𝐶𝐶2 is a circular loop. consider,  

 ∫ 𝐶𝐶2
𝐵𝐵1𝑑𝑑𝑑𝑑 = ∫ 𝐶𝐶2

𝐵𝐵1𝑑𝑑𝑑𝑑 (79) 
 

𝐵𝐵1 is the average magnetic field on the loop.  
 𝐵𝐵1 ∫ 𝐶𝐶2

𝑑𝑑𝑑𝑑 = ∫ 𝐶𝐶2
𝐵𝐵1𝑑𝑑𝑑𝑑 (80) 

 
Or  
 𝐵𝐵1𝐿𝐿2 = ∫ 𝐶𝐶2

𝐵𝐵1𝑑𝑑𝑑𝑑 (81) 
 

among them,  
 𝐿𝐿2 ≜ ∫ 𝐶𝐶2

𝑑𝑑𝑑𝑑 (82) 
  

 𝐵𝐵1 =
1
𝑀𝑀2
∫ 𝐶𝐶2

𝐵𝐵1𝑑𝑑𝑑𝑑 (83) 
 

Or, 
 
 𝐵𝐵1 =

1
𝑀𝑀2
∫ 𝐶𝐶2

𝑑𝑑𝐹𝐹2,1
𝐼𝐼2|𝑑𝑑𝒍𝒍2|

 (84) 
 

define, 
 
 𝑓𝑓2,1 ≜

𝑑𝑑𝐹𝐹2,1
𝐼𝐼2|𝑑𝑑𝒍𝒍2|

 (85) 
 𝐹𝐹2,1 is the ampere force on the current 𝐼𝐼2 and length 𝑑𝑑𝒍𝒍2, the average force is,  

 𝐵𝐵1 =
1
𝑀𝑀2
∫ 𝐶𝐶2

𝑓𝑓2,1𝑑𝑑𝑑𝑑 (86) 
 

Therefore, the magnitude of the magnetic field,  
 𝐵𝐵1 =

𝑑𝑑𝐹𝐹2,1
𝐼𝐼2|𝑑𝑑𝒍𝒍2|

 (74) 
 

The above formula is very important, and it is necessary for us to conduct dimensional 
analysis to verify its correctness,  

 [𝐵𝐵1] = 𝑀𝑀𝑇𝑇−2𝐴𝐴−1 (75) 
  

 [ 𝑑𝑑𝐹𝐹2,1𝐼𝐼2|𝑑𝑑𝒍𝒍2|
] = 𝑀𝑀𝑀𝑀𝑇𝑇2

𝐴𝐴𝑀𝑀 = 𝑀𝑀𝑇𝑇2𝐴𝐴−1 (76) 
 

Hence, there is,  
 [𝐵𝐵1] = [ 𝑑𝑑𝐹𝐹2,1𝐼𝐼2|𝑑𝑑𝒍𝒍2|

] (77) 
 

Therefore, the dimension of the formula (73) is correct. Obtained from formula (74) the 
following,  

 ∫ 𝐶𝐶2
𝐵𝐵1𝑑𝑑𝑑𝑑 = ∫ 𝐶𝐶2

𝑑𝑑𝐹𝐹2,1
𝐼𝐼2|𝑑𝑑𝒍𝒍2|

𝑑𝑑𝑑𝑑 (78) 
 𝐶𝐶2 is a circular loop. consider,  

 ∫ 𝐶𝐶2
𝐵𝐵1𝑑𝑑𝑑𝑑 = ∫ 𝐶𝐶2

𝐵𝐵1𝑑𝑑𝑑𝑑 (79) 
 

𝐵𝐵1 is the average magnetic field on the loop.  
 𝐵𝐵1 ∫ 𝐶𝐶2

𝑑𝑑𝑑𝑑 = ∫ 𝐶𝐶2
𝐵𝐵1𝑑𝑑𝑑𝑑 (80) 

 
Or  
 𝐵𝐵1𝐿𝐿2 = ∫ 𝐶𝐶2

𝐵𝐵1𝑑𝑑𝑑𝑑 (81) 
 

among them,  
 𝐿𝐿2 ≜ ∫ 𝐶𝐶2

𝑑𝑑𝑑𝑑 (82) 
  

 𝐵𝐵1 =
1
𝑀𝑀2
∫ 𝐶𝐶2

𝐵𝐵1𝑑𝑑𝑑𝑑 (83) 
 

Or, 
 
 𝐵𝐵1 =

1
𝑀𝑀2
∫ 𝐶𝐶2

𝑑𝑑𝐹𝐹2,1
𝐼𝐼2|𝑑𝑑𝒍𝒍2|

 (84) 
 

define, 
 
 𝑓𝑓2,1 ≜

𝑑𝑑𝐹𝐹2,1
𝐼𝐼2|𝑑𝑑𝒍𝒍2|

 (85) 
 𝐹𝐹2,1 is the ampere force on the current 𝐼𝐼2 and length 𝑑𝑑𝒍𝒍2, the average force is,  

 𝐵𝐵1 =
1
𝑀𝑀2
∫ 𝐶𝐶2

𝑓𝑓2,1𝑑𝑑𝑑𝑑 (86) 
 

Therefore, the magnitude of the magnetic field,  
 𝐵𝐵1 =

𝑑𝑑𝐹𝐹2,1
𝐼𝐼2|𝑑𝑑𝒍𝒍2|

 (74) 
 

The above formula is very important, and it is necessary for us to conduct dimensional 
analysis to verify its correctness,  

 [𝐵𝐵1] = 𝑀𝑀𝑇𝑇−2𝐴𝐴−1 (75) 
  

 [ 𝑑𝑑𝐹𝐹2,1𝐼𝐼2|𝑑𝑑𝒍𝒍2|
] = 𝑀𝑀𝑀𝑀𝑇𝑇2

𝐴𝐴𝑀𝑀 = 𝑀𝑀𝑇𝑇2𝐴𝐴−1 (76) 
 

Hence, there is,  
 [𝐵𝐵1] = [ 𝑑𝑑𝐹𝐹2,1𝐼𝐼2|𝑑𝑑𝒍𝒍2|

] (77) 
 

Therefore, the dimension of the formula (73) is correct. Obtained from formula (74) the 
following,  

 ∫ 𝐶𝐶2
𝐵𝐵1𝑑𝑑𝑑𝑑 = ∫ 𝐶𝐶2

𝑑𝑑𝐹𝐹2,1
𝐼𝐼2|𝑑𝑑𝒍𝒍2|

𝑑𝑑𝑑𝑑 (78) 
 𝐶𝐶2 is a circular loop. consider,  

 ∫ 𝐶𝐶2
𝐵𝐵1𝑑𝑑𝑑𝑑 = ∫ 𝐶𝐶2

𝐵𝐵1𝑑𝑑𝑑𝑑 (79) 
 

𝐵𝐵1 is the average magnetic field on the loop.  
 𝐵𝐵1 ∫ 𝐶𝐶2

𝑑𝑑𝑑𝑑 = ∫ 𝐶𝐶2
𝐵𝐵1𝑑𝑑𝑑𝑑 (80) 

 
Or  
 𝐵𝐵1𝐿𝐿2 = ∫ 𝐶𝐶2

𝐵𝐵1𝑑𝑑𝑑𝑑 (81) 
 

among them,  
 𝐿𝐿2 ≜ ∫ 𝐶𝐶2

𝑑𝑑𝑑𝑑 (82) 
  

 𝐵𝐵1 =
1
𝑀𝑀2
∫ 𝐶𝐶2

𝐵𝐵1𝑑𝑑𝑑𝑑 (83) 
 

Or, 
 
 𝐵𝐵1 =

1
𝑀𝑀2
∫ 𝐶𝐶2

𝑑𝑑𝐹𝐹2,1
𝐼𝐼2|𝑑𝑑𝒍𝒍2|

 (84) 
 

define, 
 
 𝑓𝑓2,1 ≜

𝑑𝑑𝐹𝐹2,1
𝐼𝐼2|𝑑𝑑𝒍𝒍2|

 (85) 
 𝐹𝐹2,1 is the ampere force on the current 𝐼𝐼2 and length 𝑑𝑑𝒍𝒍2, the average force is,  

 𝐵𝐵1 =
1
𝑀𝑀2
∫ 𝐶𝐶2

𝑓𝑓2,1𝑑𝑑𝑑𝑑 (86) 
 

Therefore, the magnitude of the magnetic field,  
 𝐵𝐵1 =

𝑑𝑑𝐹𝐹2,1
𝐼𝐼2|𝑑𝑑𝒍𝒍2|

 (74) 
 

The above formula is very important, and it is necessary for us to conduct dimensional 
analysis to verify its correctness,  

 [𝐵𝐵1] = 𝑀𝑀𝑇𝑇−2𝐴𝐴−1 (75) 
  

 [ 𝑑𝑑𝐹𝐹2,1𝐼𝐼2|𝑑𝑑𝒍𝒍2|
] = 𝑀𝑀𝑀𝑀𝑇𝑇2

𝐴𝐴𝑀𝑀 = 𝑀𝑀𝑇𝑇2𝐴𝐴−1 (76) 
 

Hence, there is,  
 [𝐵𝐵1] = [ 𝑑𝑑𝐹𝐹2,1𝐼𝐼2|𝑑𝑑𝒍𝒍2|

] (77) 
 

Therefore, the dimension of the formula (73) is correct. Obtained from formula (74) the 
following,  

 ∫ 𝐶𝐶2
𝐵𝐵1𝑑𝑑𝑑𝑑 = ∫ 𝐶𝐶2

𝑑𝑑𝐹𝐹2,1
𝐼𝐼2|𝑑𝑑𝒍𝒍2|

𝑑𝑑𝑑𝑑 (78) 
 𝐶𝐶2 is a circular loop. consider,  

 ∫ 𝐶𝐶2
𝐵𝐵1𝑑𝑑𝑑𝑑 = ∫ 𝐶𝐶2

𝐵𝐵1𝑑𝑑𝑑𝑑 (79) 
 

𝐵𝐵1 is the average magnetic field on the loop.  
 𝐵𝐵1 ∫ 𝐶𝐶2

𝑑𝑑𝑑𝑑 = ∫ 𝐶𝐶2
𝐵𝐵1𝑑𝑑𝑑𝑑 (80) 

 
Or  
 𝐵𝐵1𝐿𝐿2 = ∫ 𝐶𝐶2

𝐵𝐵1𝑑𝑑𝑑𝑑 (81) 
 

among them,  
 𝐿𝐿2 ≜ ∫ 𝐶𝐶2

𝑑𝑑𝑑𝑑 (82) 
  

 𝐵𝐵1 =
1
𝑀𝑀2
∫ 𝐶𝐶2

𝐵𝐵1𝑑𝑑𝑑𝑑 (83) 
 

Or, 
 
 𝐵𝐵1 =

1
𝑀𝑀2
∫ 𝐶𝐶2

𝑑𝑑𝐹𝐹2,1
𝐼𝐼2|𝑑𝑑𝒍𝒍2|

 (84) 
 

define, 
 
 𝑓𝑓2,1 ≜

𝑑𝑑𝐹𝐹2,1
𝐼𝐼2|𝑑𝑑𝒍𝒍2|

 (85) 
 𝐹𝐹2,1 is the ampere force on the current 𝐼𝐼2 and length 𝑑𝑑𝒍𝒍2, the average force is,  

 𝐵𝐵1 =
1
𝑀𝑀2
∫ 𝐶𝐶2

𝑓𝑓2,1𝑑𝑑𝑑𝑑 (86) 
 

Therefore, the magnitude of the magnetic field,  
 𝐵𝐵1 =

𝑑𝑑𝐹𝐹2,1
𝐼𝐼2|𝑑𝑑𝒍𝒍2|

 (74) 
 

The above formula is very important, and it is necessary for us to conduct dimensional 
analysis to verify its correctness,  

 [𝐵𝐵1] = 𝑀𝑀𝑇𝑇−2𝐴𝐴−1 (75) 
  

 [ 𝑑𝑑𝐹𝐹2,1𝐼𝐼2|𝑑𝑑𝒍𝒍2|
] = 𝑀𝑀𝑀𝑀𝑇𝑇2

𝐴𝐴𝑀𝑀 = 𝑀𝑀𝑇𝑇2𝐴𝐴−1 (76) 
 

Hence, there is,  
 [𝐵𝐵1] = [ 𝑑𝑑𝐹𝐹2,1𝐼𝐼2|𝑑𝑑𝒍𝒍2|

] (77) 
 

Therefore, the dimension of the formula (73) is correct. Obtained from formula (74) the 
following,  

 ∫ 𝐶𝐶2
𝐵𝐵1𝑑𝑑𝑑𝑑 = ∫ 𝐶𝐶2

𝑑𝑑𝐹𝐹2,1
𝐼𝐼2|𝑑𝑑𝒍𝒍2|

𝑑𝑑𝑑𝑑 (78) 
 𝐶𝐶2 is a circular loop. consider,  

 ∫ 𝐶𝐶2
𝐵𝐵1𝑑𝑑𝑑𝑑 = ∫ 𝐶𝐶2

𝐵𝐵1𝑑𝑑𝑑𝑑 (79) 
 

𝐵𝐵1 is the average magnetic field on the loop.  
 𝐵𝐵1 ∫ 𝐶𝐶2

𝑑𝑑𝑑𝑑 = ∫ 𝐶𝐶2
𝐵𝐵1𝑑𝑑𝑑𝑑 (80) 

 
Or  
 𝐵𝐵1𝐿𝐿2 = ∫ 𝐶𝐶2

𝐵𝐵1𝑑𝑑𝑑𝑑 (81) 
 

among them,  
 𝐿𝐿2 ≜ ∫ 𝐶𝐶2

𝑑𝑑𝑑𝑑 (82) 
  

 𝐵𝐵1 =
1
𝑀𝑀2
∫ 𝐶𝐶2

𝐵𝐵1𝑑𝑑𝑑𝑑 (83) 
 

Or, 
 
 𝐵𝐵1 =

1
𝑀𝑀2
∫ 𝐶𝐶2

𝑑𝑑𝐹𝐹2,1
𝐼𝐼2|𝑑𝑑𝒍𝒍2|

 (84) 
 

define, 
 
 𝑓𝑓2,1 ≜

𝑑𝑑𝐹𝐹2,1
𝐼𝐼2|𝑑𝑑𝒍𝒍2|

 (85) 
 𝐹𝐹2,1 is the ampere force on the current 𝐼𝐼2 and length 𝑑𝑑𝒍𝒍2, the average force is,  

 𝐵𝐵1 =
1
𝑀𝑀2
∫ 𝐶𝐶2

𝑓𝑓2,1𝑑𝑑𝑑𝑑 (86) 
 

Therefore, the magnitude of the magnetic field,  
 𝐵𝐵1 =

𝑑𝑑𝐹𝐹2,1
𝐼𝐼2|𝑑𝑑𝒍𝒍2|

 (74) 
 

The above formula is very important, and it is necessary for us to conduct dimensional 
analysis to verify its correctness,  

 [𝐵𝐵1] = 𝑀𝑀𝑇𝑇−2𝐴𝐴−1 (75) 
  

 [ 𝑑𝑑𝐹𝐹2,1𝐼𝐼2|𝑑𝑑𝒍𝒍2|
] = 𝑀𝑀𝑀𝑀𝑇𝑇2

𝐴𝐴𝑀𝑀 = 𝑀𝑀𝑇𝑇2𝐴𝐴−1 (76) 
 

Hence, there is,  
 [𝐵𝐵1] = [ 𝑑𝑑𝐹𝐹2,1𝐼𝐼2|𝑑𝑑𝒍𝒍2|

] (77) 
 

Therefore, the dimension of the formula (73) is correct. Obtained from formula (74) the 
following,  

 ∫ 𝐶𝐶2
𝐵𝐵1𝑑𝑑𝑑𝑑 = ∫ 𝐶𝐶2

𝑑𝑑𝐹𝐹2,1
𝐼𝐼2|𝑑𝑑𝒍𝒍2|

𝑑𝑑𝑑𝑑 (78) 
 𝐶𝐶2 is a circular loop. consider,  

 ∫ 𝐶𝐶2
𝐵𝐵1𝑑𝑑𝑑𝑑 = ∫ 𝐶𝐶2

𝐵𝐵1𝑑𝑑𝑑𝑑 (79) 
 

𝐵𝐵1 is the average magnetic field on the loop.  
 𝐵𝐵1 ∫ 𝐶𝐶2

𝑑𝑑𝑑𝑑 = ∫ 𝐶𝐶2
𝐵𝐵1𝑑𝑑𝑑𝑑 (80) 

 
Or  
 𝐵𝐵1𝐿𝐿2 = ∫ 𝐶𝐶2

𝐵𝐵1𝑑𝑑𝑑𝑑 (81) 
 

among them,  
 𝐿𝐿2 ≜ ∫ 𝐶𝐶2

𝑑𝑑𝑑𝑑 (82) 
  

 𝐵𝐵1 =
1
𝑀𝑀2
∫ 𝐶𝐶2

𝐵𝐵1𝑑𝑑𝑑𝑑 (83) 
 

Or, 
 
 𝐵𝐵1 =

1
𝑀𝑀2
∫ 𝐶𝐶2

𝑑𝑑𝐹𝐹2,1
𝐼𝐼2|𝑑𝑑𝒍𝒍2|

 (84) 
 

define, 
 
 𝑓𝑓2,1 ≜

𝑑𝑑𝐹𝐹2,1
𝐼𝐼2|𝑑𝑑𝒍𝒍2|

 (85) 
 𝐹𝐹2,1 is the ampere force on the current 𝐼𝐼2 and length 𝑑𝑑𝒍𝒍2, the average force is,  

 𝐵𝐵1 =
1
𝑀𝑀2
∫ 𝐶𝐶2

𝑓𝑓2,1𝑑𝑑𝑑𝑑 (86) 
 

Therefore, the magnitude of the magnetic field,  
 𝐵𝐵1 =

𝑑𝑑𝐹𝐹2,1
𝐼𝐼2|𝑑𝑑𝒍𝒍2|

 (74) 
 

The above formula is very important, and it is necessary for us to conduct dimensional 
analysis to verify its correctness,  

 [𝐵𝐵1] = 𝑀𝑀𝑇𝑇−2𝐴𝐴−1 (75) 
  

 [ 𝑑𝑑𝐹𝐹2,1𝐼𝐼2|𝑑𝑑𝒍𝒍2|
] = 𝑀𝑀𝑀𝑀𝑇𝑇2

𝐴𝐴𝑀𝑀 = 𝑀𝑀𝑇𝑇2𝐴𝐴−1 (76) 
 

Hence, there is,  
 [𝐵𝐵1] = [ 𝑑𝑑𝐹𝐹2,1𝐼𝐼2|𝑑𝑑𝒍𝒍2|

] (77) 
 

Therefore, the dimension of the formula (73) is correct. Obtained from formula (74) the 
following,  

 ∫ 𝐶𝐶2
𝐵𝐵1𝑑𝑑𝑑𝑑 = ∫ 𝐶𝐶2

𝑑𝑑𝐹𝐹2,1
𝐼𝐼2|𝑑𝑑𝒍𝒍2|

𝑑𝑑𝑑𝑑 (78) 
 𝐶𝐶2 is a circular loop. consider,  

 ∫ 𝐶𝐶2
𝐵𝐵1𝑑𝑑𝑑𝑑 = ∫ 𝐶𝐶2

𝐵𝐵1𝑑𝑑𝑑𝑑 (79) 
 

𝐵𝐵1 is the average magnetic field on the loop.  
 𝐵𝐵1 ∫ 𝐶𝐶2

𝑑𝑑𝑑𝑑 = ∫ 𝐶𝐶2
𝐵𝐵1𝑑𝑑𝑑𝑑 (80) 

 
Or  
 𝐵𝐵1𝐿𝐿2 = ∫ 𝐶𝐶2

𝐵𝐵1𝑑𝑑𝑑𝑑 (81) 
 

among them,  
 𝐿𝐿2 ≜ ∫ 𝐶𝐶2

𝑑𝑑𝑑𝑑 (82) 
  

 𝐵𝐵1 =
1
𝑀𝑀2
∫ 𝐶𝐶2

𝐵𝐵1𝑑𝑑𝑑𝑑 (83) 
 

Or, 
 
 𝐵𝐵1 =

1
𝑀𝑀2
∫ 𝐶𝐶2

𝑑𝑑𝐹𝐹2,1
𝐼𝐼2|𝑑𝑑𝒍𝒍2|

 (84) 
 

define, 
 
 𝑓𝑓2,1 ≜

𝑑𝑑𝐹𝐹2,1
𝐼𝐼2|𝑑𝑑𝒍𝒍2|

 (85) 
 𝐹𝐹2,1 is the ampere force on the current 𝐼𝐼2 and length 𝑑𝑑𝒍𝒍2, the average force is,  

 𝐵𝐵1 =
1
𝑀𝑀2
∫ 𝐶𝐶2

𝑓𝑓2,1𝑑𝑑𝑑𝑑 (86) 
 

The above formula is very important, and it is necessary for us to conduct dimensional analysis to verify its correctness,

Hence, there is, 

Therefore, the dimension of the formula (73) is correct. Obtained from formula (74) the following,

 C2 is a circular loop. consider,

B1 is the average magnetic field on the loop.¯

Or 
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among them,

Therefore, the magnitude of the magnetic field,  
 𝐵𝐵1 =

𝑑𝑑𝐹𝐹2,1
𝐼𝐼2|𝑑𝑑𝒍𝒍2|

 (74) 
 

The above formula is very important, and it is necessary for us to conduct dimensional 
analysis to verify its correctness,  

 [𝐵𝐵1] = 𝑀𝑀𝑇𝑇−2𝐴𝐴−1 (75) 
  

 [ 𝑑𝑑𝐹𝐹2,1𝐼𝐼2|𝑑𝑑𝒍𝒍2|
] = 𝑀𝑀𝑀𝑀𝑇𝑇2

𝐴𝐴𝑀𝑀 = 𝑀𝑀𝑇𝑇2𝐴𝐴−1 (76) 
 

Hence, there is,  
 [𝐵𝐵1] = [ 𝑑𝑑𝐹𝐹2,1𝐼𝐼2|𝑑𝑑𝒍𝒍2|

] (77) 
 

Therefore, the dimension of the formula (73) is correct. Obtained from formula (74) the 
following,  

 ∫ 𝐶𝐶2
𝐵𝐵1𝑑𝑑𝑑𝑑 = ∫ 𝐶𝐶2

𝑑𝑑𝐹𝐹2,1
𝐼𝐼2|𝑑𝑑𝒍𝒍2|

𝑑𝑑𝑑𝑑 (78) 
 𝐶𝐶2 is a circular loop. consider,  

 ∫ 𝐶𝐶2
𝐵𝐵1𝑑𝑑𝑑𝑑 = ∫ 𝐶𝐶2

𝐵𝐵1𝑑𝑑𝑑𝑑 (79) 
 

𝐵𝐵1 is the average magnetic field on the loop.  
 𝐵𝐵1 ∫ 𝐶𝐶2
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Figure  2: We know that the magnetic field is 𝑯𝑯1 The current element is 𝐼𝐼2𝑑𝑑𝒍𝒍2 The force 

acting on this current element is the ampere force 𝑑𝑑𝑭𝑭2,1. 
  
From the figure 2, it can be seen that the magnetic field above is actually the average 

value defined on the loop. Therefore, the following equation should be used to represent it 
more reasonably. 

 
 𝐵𝐵1 ≜

1
𝐿𝐿2
∫ 𝐶𝐶2

𝑓𝑓2,1𝑑𝑑𝑑𝑑 =
1
𝐿𝐿2
∑ 𝑁𝑁
𝑖𝑖=1 𝑓𝑓𝑖𝑖2,1Δ𝑑𝑑 (87) 

 
If this 𝑓𝑓2,1 is constant, there is, 
 
 𝐵𝐵1 ≜ 𝑓𝑓2,1

1
𝐿𝐿2
∫ 𝐶𝐶2

𝑑𝑑𝑑𝑑 = 𝑓𝑓2,1 
The schematic diagram of the average force is shown in Figure 2. We know that, 

 
 𝐵𝐵1 = 𝑓𝑓2,1 (88) 

 If the magnetic field is constant, that is, the direction of the magnetic field is independent of 
the current element used to measure the magnetic field, we can define and measure it using a 
small current element (88), or we can define the magnetic field using the average method 
according to the formula (87). The two are the same. That is,  

 𝐵𝐵1 = 𝐵𝐵1 (89) 
 
3.3  Hall effect measurement of magnetic field 
 
The Hall element can use the Hall effect to measure the magnitude of the magnetic field. 

The schematic diagram of the Hall effect element is shown in Figure 3. 
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Figure 2: We Know That the Magnetic Field is H1 The Current Element is I2 dl2 The Force Acting on This Current Element is The 
Ampere Force dF2,1.

From the figure 2, it can be seen that the magnetic field above 
is actually the average value defined on the loop. Therefore, 

the following equation should be used to represent it more 
reasonably.

If this f2,1 is constant, there is,

The schematic diagram of the average force is shown in Figure 2. We know that,

If the magnetic field is constant, that is, the direction of the 
magnetic field is independent of the current element used to 
measure the magnetic field, we can define and measure it using 

a small current element (88), or we can define the magnetic field 
using the average method according to the formula (87). The two 
are the same. That is,
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3.3 Hall Effect Measurement of Magnetic Field
The Hall element can use the Hall effect to measure the magnitude of the magnetic field. The schematic diagram of the Hall effect 
element is shown in Figure 3.

 
 

Figure  3: This picture shows the Hall effect component. The Hall effect has a current direction, 
if indicated by a red arrow. And the direction of the Lorentz force.  

  
The Hall element can be represented by the following symbols: a red arrow indicates the 

direction of current, a blue arrow indicates the direction of ampere force, and a cross indicates 
the direction of magnetic field. 

 
Figure  4: This diagram is a simplified representation of the Hall effect element. The Hall effect 

has a current direction, if indicated by a red arrow. Use blue for the direction of force. The 
direction of the magnetic field is represented by a cross. 

  
We can certainly measure the magnetic field using the Hall effect, assuming that the 

measured magnetic field is  
 𝐻𝐻1𝑖𝑖 (90) 
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4. Measurement of Magnetic Field Using Induced Electro-
motive Force
We also have a method for measuring magnetic fields 
for alternating currents, which is the method of induced 
electromotive force. Placing a coil in an alternating magnetic 
field can measure the magnitude of the magnetic field.
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 𝑨𝑨1 ≜

𝜇𝜇0
4𝜋𝜋 ∮ 𝐶𝐶1

𝐼𝐼1𝑑𝑑𝒍𝒍1
𝑟𝑟 → 𝜇𝜇0

4𝜋𝜋 ∫ 𝑉𝑉
𝑱𝑱1
𝑟𝑟 𝑑𝑑𝑑𝑑 (94) 

 
Hence, there is,  
 ℰ2,1𝑂𝑂 = − 𝜕𝜕

𝜕𝜕𝜕𝜕 ∮ 𝐶𝐶2
𝑨𝑨1 ⋅ 𝑑𝑑𝒍𝒍2 (95) 

 
The definition of induced electromotive force is,  
 ℰ2,1𝑂𝑂 ≜ ∮ 𝐶𝐶2

𝑬𝑬1 ⋅ 𝑑𝑑𝑑𝑑 (96) 
 

Hence, there is,  
 ∮ 𝐶𝐶2

𝑬𝑬1 ⋅ 𝑑𝑑𝑑𝑑 = − 𝜕𝜕
𝜕𝜕𝜕𝜕 ∮ 𝐶𝐶2

𝑨𝑨1 ⋅ 𝑑𝑑𝒍𝒍2 (97) 
 

Or  
 ∮ 𝐶𝐶2

𝑬𝑬1 ⋅ 𝑑𝑑𝑑𝑑 = −∮ 𝐶𝐶2
𝜕𝜕
𝜕𝜕𝜕𝜕 𝑨𝑨1 ⋅ 𝑑𝑑𝒍𝒍2 (98) 

 
Or,  
 ∮ 𝐶𝐶2

(𝑬𝑬1 +
𝜕𝜕
𝜕𝜕𝜕𝜕 𝑨𝑨1) ⋅ 𝑑𝑑𝑑𝑑 = 0 (99) 

 
Or,  
 ∯ ∇ × (𝑬𝑬1 +

𝜕𝜕
𝜕𝜕𝜕𝜕 𝑨𝑨1) ⋅ �̂�𝑛𝑑𝑑ΓΓ = 0 (100) 

 
Or,  
 ∇ × (𝑬𝑬1 +

𝜕𝜕
𝜕𝜕𝜕𝜕 𝑨𝑨1) = 0 (101) 

 
Omit subscripts,  
 ∇ × (𝑬𝑬 + 𝜕𝜕

𝜕𝜕𝜕𝜕 𝑨𝑨) = 0 (102) 
 

Or  
 𝑬𝑬 + 𝜕𝜕

𝜕𝜕𝜕𝜕 𝑨𝑨 = −∇𝜙𝜙 (103) 
 

Or  
 𝑬𝑬 = − 𝜕𝜕

𝜕𝜕𝜕𝜕 𝑨𝑨 − ∇𝜙𝜙 (104) 
 

Or  
 ∇ × 𝑬𝑬 = − 𝜕𝜕

𝜕𝜕𝜕𝜕 ∇ × 𝑨𝑨 (105) 
 

Notice that,  

 ℰ2,1𝑂𝑂 = − 𝜕𝜕
𝜕𝜕𝜕𝜕

𝜇𝜇0
4𝜋𝜋 ∮ 𝐶𝐶2 ∮ 𝐶𝐶1

𝐼𝐼1𝑑𝑑𝒍𝒍1⋅𝑑𝑑𝒍𝒍2
𝑟𝑟  (93) 

 
The superscript 𝑂𝑂 indicates that coil 2 is a circular circuit. Define vector potential,  
 𝑨𝑨1 ≜

𝜇𝜇0
4𝜋𝜋 ∮ 𝐶𝐶1

𝐼𝐼1𝑑𝑑𝒍𝒍1
𝑟𝑟 → 𝜇𝜇0

4𝜋𝜋 ∫ 𝑉𝑉
𝑱𝑱1
𝑟𝑟 𝑑𝑑𝑑𝑑 (94) 

 
Hence, there is,  
 ℰ2,1𝑂𝑂 = − 𝜕𝜕

𝜕𝜕𝜕𝜕 ∮ 𝐶𝐶2
𝑨𝑨1 ⋅ 𝑑𝑑𝒍𝒍2 (95) 

 
The definition of induced electromotive force is,  
 ℰ2,1𝑂𝑂 ≜ ∮ 𝐶𝐶2

𝑬𝑬1 ⋅ 𝑑𝑑𝑑𝑑 (96) 
 

Hence, there is,  
 ∮ 𝐶𝐶2

𝑬𝑬1 ⋅ 𝑑𝑑𝑑𝑑 = − 𝜕𝜕
𝜕𝜕𝜕𝜕 ∮ 𝐶𝐶2

𝑨𝑨1 ⋅ 𝑑𝑑𝒍𝒍2 (97) 
 

Or  
 ∮ 𝐶𝐶2

𝑬𝑬1 ⋅ 𝑑𝑑𝑑𝑑 = −∮ 𝐶𝐶2
𝜕𝜕
𝜕𝜕𝜕𝜕 𝑨𝑨1 ⋅ 𝑑𝑑𝒍𝒍2 (98) 

 
Or,  
 ∮ 𝐶𝐶2

(𝑬𝑬1 +
𝜕𝜕
𝜕𝜕𝜕𝜕 𝑨𝑨1) ⋅ 𝑑𝑑𝑑𝑑 = 0 (99) 

 
Or,  
 ∯ ∇ × (𝑬𝑬1 +

𝜕𝜕
𝜕𝜕𝜕𝜕 𝑨𝑨1) ⋅ �̂�𝑛𝑑𝑑ΓΓ = 0 (100) 

 
Or,  
 ∇ × (𝑬𝑬1 +

𝜕𝜕
𝜕𝜕𝜕𝜕 𝑨𝑨1) = 0 (101) 

 
Omit subscripts,  
 ∇ × (𝑬𝑬 + 𝜕𝜕

𝜕𝜕𝜕𝜕 𝑨𝑨) = 0 (102) 
 

Or  
 𝑬𝑬 + 𝜕𝜕

𝜕𝜕𝜕𝜕 𝑨𝑨 = −∇𝜙𝜙 (103) 
 

Or  
 𝑬𝑬 = − 𝜕𝜕

𝜕𝜕𝜕𝜕 𝑨𝑨 − ∇𝜙𝜙 (104) 
 

Or  
 ∇ × 𝑬𝑬 = − 𝜕𝜕

𝜕𝜕𝜕𝜕 ∇ × 𝑨𝑨 (105) 
 

Notice that,  

 ℰ2,1𝑂𝑂 = − 𝜕𝜕
𝜕𝜕𝜕𝜕

𝜇𝜇0
4𝜋𝜋 ∮ 𝐶𝐶2 ∮ 𝐶𝐶1

𝐼𝐼1𝑑𝑑𝒍𝒍1⋅𝑑𝑑𝒍𝒍2
𝑟𝑟  (93) 

 
The superscript 𝑂𝑂 indicates that coil 2 is a circular circuit. Define vector potential,  
 𝑨𝑨1 ≜

𝜇𝜇0
4𝜋𝜋 ∮ 𝐶𝐶1

𝐼𝐼1𝑑𝑑𝒍𝒍1
𝑟𝑟 → 𝜇𝜇0

4𝜋𝜋 ∫ 𝑉𝑉
𝑱𝑱1
𝑟𝑟 𝑑𝑑𝑑𝑑 (94) 

 
Hence, there is,  
 ℰ2,1𝑂𝑂 = − 𝜕𝜕

𝜕𝜕𝜕𝜕 ∮ 𝐶𝐶2
𝑨𝑨1 ⋅ 𝑑𝑑𝒍𝒍2 (95) 

 
The definition of induced electromotive force is,  
 ℰ2,1𝑂𝑂 ≜ ∮ 𝐶𝐶2

𝑬𝑬1 ⋅ 𝑑𝑑𝑑𝑑 (96) 
 

Hence, there is,  
 ∮ 𝐶𝐶2

𝑬𝑬1 ⋅ 𝑑𝑑𝑑𝑑 = − 𝜕𝜕
𝜕𝜕𝜕𝜕 ∮ 𝐶𝐶2

𝑨𝑨1 ⋅ 𝑑𝑑𝒍𝒍2 (97) 
 

Or  
 ∮ 𝐶𝐶2

𝑬𝑬1 ⋅ 𝑑𝑑𝑑𝑑 = −∮ 𝐶𝐶2
𝜕𝜕
𝜕𝜕𝜕𝜕 𝑨𝑨1 ⋅ 𝑑𝑑𝒍𝒍2 (98) 

 
Or,  
 ∮ 𝐶𝐶2

(𝑬𝑬1 +
𝜕𝜕
𝜕𝜕𝜕𝜕 𝑨𝑨1) ⋅ 𝑑𝑑𝑑𝑑 = 0 (99) 

 
Or,  
 ∯ ∇ × (𝑬𝑬1 +

𝜕𝜕
𝜕𝜕𝜕𝜕 𝑨𝑨1) ⋅ �̂�𝑛𝑑𝑑ΓΓ = 0 (100) 

 
Or,  
 ∇ × (𝑬𝑬1 +

𝜕𝜕
𝜕𝜕𝜕𝜕 𝑨𝑨1) = 0 (101) 

 
Omit subscripts,  
 ∇ × (𝑬𝑬 + 𝜕𝜕

𝜕𝜕𝜕𝜕 𝑨𝑨) = 0 (102) 
 

Or  
 𝑬𝑬 + 𝜕𝜕

𝜕𝜕𝜕𝜕 𝑨𝑨 = −∇𝜙𝜙 (103) 
 

Or  
 𝑬𝑬 = − 𝜕𝜕

𝜕𝜕𝜕𝜕 𝑨𝑨 − ∇𝜙𝜙 (104) 
 

Or  
 ∇ × 𝑬𝑬 = − 𝜕𝜕

𝜕𝜕𝜕𝜕 ∇ × 𝑨𝑨 (105) 
 

Notice that,  

 ℰ2,1𝑂𝑂 = − 𝜕𝜕
𝜕𝜕𝜕𝜕

𝜇𝜇0
4𝜋𝜋 ∮ 𝐶𝐶2 ∮ 𝐶𝐶1

𝐼𝐼1𝑑𝑑𝒍𝒍1⋅𝑑𝑑𝒍𝒍2
𝑟𝑟  (93) 

 
The superscript 𝑂𝑂 indicates that coil 2 is a circular circuit. Define vector potential,  
 𝑨𝑨1 ≜

𝜇𝜇0
4𝜋𝜋 ∮ 𝐶𝐶1

𝐼𝐼1𝑑𝑑𝒍𝒍1
𝑟𝑟 → 𝜇𝜇0

4𝜋𝜋 ∫ 𝑉𝑉
𝑱𝑱1
𝑟𝑟 𝑑𝑑𝑑𝑑 (94) 

 
Hence, there is,  
 ℰ2,1𝑂𝑂 = − 𝜕𝜕

𝜕𝜕𝜕𝜕 ∮ 𝐶𝐶2
𝑨𝑨1 ⋅ 𝑑𝑑𝒍𝒍2 (95) 

 
The definition of induced electromotive force is,  
 ℰ2,1𝑂𝑂 ≜ ∮ 𝐶𝐶2

𝑬𝑬1 ⋅ 𝑑𝑑𝑑𝑑 (96) 
 

Hence, there is,  
 ∮ 𝐶𝐶2

𝑬𝑬1 ⋅ 𝑑𝑑𝑑𝑑 = − 𝜕𝜕
𝜕𝜕𝜕𝜕 ∮ 𝐶𝐶2

𝑨𝑨1 ⋅ 𝑑𝑑𝒍𝒍2 (97) 
 

Or  
 ∮ 𝐶𝐶2

𝑬𝑬1 ⋅ 𝑑𝑑𝑑𝑑 = −∮ 𝐶𝐶2
𝜕𝜕
𝜕𝜕𝜕𝜕 𝑨𝑨1 ⋅ 𝑑𝑑𝒍𝒍2 (98) 

 
Or,  
 ∮ 𝐶𝐶2

(𝑬𝑬1 +
𝜕𝜕
𝜕𝜕𝜕𝜕 𝑨𝑨1) ⋅ 𝑑𝑑𝑑𝑑 = 0 (99) 

 
Or,  
 ∯ ∇ × (𝑬𝑬1 +

𝜕𝜕
𝜕𝜕𝜕𝜕 𝑨𝑨1) ⋅ �̂�𝑛𝑑𝑑ΓΓ = 0 (100) 

 
Or,  
 ∇ × (𝑬𝑬1 +

𝜕𝜕
𝜕𝜕𝜕𝜕 𝑨𝑨1) = 0 (101) 

 
Omit subscripts,  
 ∇ × (𝑬𝑬 + 𝜕𝜕

𝜕𝜕𝜕𝜕 𝑨𝑨) = 0 (102) 
 

Or  
 𝑬𝑬 + 𝜕𝜕

𝜕𝜕𝜕𝜕 𝑨𝑨 = −∇𝜙𝜙 (103) 
 

Or  
 𝑬𝑬 = − 𝜕𝜕

𝜕𝜕𝜕𝜕 𝑨𝑨 − ∇𝜙𝜙 (104) 
 

Or  
 ∇ × 𝑬𝑬 = − 𝜕𝜕

𝜕𝜕𝜕𝜕 ∇ × 𝑨𝑨 (105) 
 

Notice that,  

 ℰ2,1𝑂𝑂 = − 𝜕𝜕
𝜕𝜕𝜕𝜕

𝜇𝜇0
4𝜋𝜋 ∮ 𝐶𝐶2 ∮ 𝐶𝐶1

𝐼𝐼1𝑑𝑑𝒍𝒍1⋅𝑑𝑑𝒍𝒍2
𝑟𝑟  (93) 

 
The superscript 𝑂𝑂 indicates that coil 2 is a circular circuit. Define vector potential,  
 𝑨𝑨1 ≜

𝜇𝜇0
4𝜋𝜋 ∮ 𝐶𝐶1

𝐼𝐼1𝑑𝑑𝒍𝒍1
𝑟𝑟 → 𝜇𝜇0

4𝜋𝜋 ∫ 𝑉𝑉
𝑱𝑱1
𝑟𝑟 𝑑𝑑𝑑𝑑 (94) 

 
Hence, there is,  
 ℰ2,1𝑂𝑂 = − 𝜕𝜕

𝜕𝜕𝜕𝜕 ∮ 𝐶𝐶2
𝑨𝑨1 ⋅ 𝑑𝑑𝒍𝒍2 (95) 

 
The definition of induced electromotive force is,  
 ℰ2,1𝑂𝑂 ≜ ∮ 𝐶𝐶2

𝑬𝑬1 ⋅ 𝑑𝑑𝑑𝑑 (96) 
 

Hence, there is,  
 ∮ 𝐶𝐶2

𝑬𝑬1 ⋅ 𝑑𝑑𝑑𝑑 = − 𝜕𝜕
𝜕𝜕𝜕𝜕 ∮ 𝐶𝐶2

𝑨𝑨1 ⋅ 𝑑𝑑𝒍𝒍2 (97) 
 

Or  
 ∮ 𝐶𝐶2

𝑬𝑬1 ⋅ 𝑑𝑑𝑑𝑑 = −∮ 𝐶𝐶2
𝜕𝜕
𝜕𝜕𝜕𝜕 𝑨𝑨1 ⋅ 𝑑𝑑𝒍𝒍2 (98) 

 
Or,  
 ∮ 𝐶𝐶2

(𝑬𝑬1 +
𝜕𝜕
𝜕𝜕𝜕𝜕 𝑨𝑨1) ⋅ 𝑑𝑑𝑑𝑑 = 0 (99) 

 
Or,  
 ∯ ∇ × (𝑬𝑬1 +

𝜕𝜕
𝜕𝜕𝜕𝜕 𝑨𝑨1) ⋅ �̂�𝑛𝑑𝑑ΓΓ = 0 (100) 

 
Or,  
 ∇ × (𝑬𝑬1 +

𝜕𝜕
𝜕𝜕𝜕𝜕 𝑨𝑨1) = 0 (101) 

 
Omit subscripts,  
 ∇ × (𝑬𝑬 + 𝜕𝜕

𝜕𝜕𝜕𝜕 𝑨𝑨) = 0 (102) 
 

Or  
 𝑬𝑬 + 𝜕𝜕

𝜕𝜕𝜕𝜕 𝑨𝑨 = −∇𝜙𝜙 (103) 
 

Or  
 𝑬𝑬 = − 𝜕𝜕

𝜕𝜕𝜕𝜕 𝑨𝑨 − ∇𝜙𝜙 (104) 
 

Or  
 ∇ × 𝑬𝑬 = − 𝜕𝜕

𝜕𝜕𝜕𝜕 ∇ × 𝑨𝑨 (105) 
 

Notice that,  

The superscript O indicates that coil 2 is a circular circuit. Define vector potential,

Hence, there is,

The definition of induced electromotive force is,

Hence, there is,

Or 

Or, 

Or, 

Or, 

Omit subscripts,

∬r
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Or 

 ℰ2,1𝑂𝑂 = − 𝜕𝜕
𝜕𝜕𝜕𝜕

𝜇𝜇0
4𝜋𝜋 ∮ 𝐶𝐶2 ∮ 𝐶𝐶1

𝐼𝐼1𝑑𝑑𝒍𝒍1⋅𝑑𝑑𝒍𝒍2
𝑟𝑟  (93) 

 
The superscript 𝑂𝑂 indicates that coil 2 is a circular circuit. Define vector potential,  
 𝑨𝑨1 ≜

𝜇𝜇0
4𝜋𝜋 ∮ 𝐶𝐶1

𝐼𝐼1𝑑𝑑𝒍𝒍1
𝑟𝑟 → 𝜇𝜇0

4𝜋𝜋 ∫ 𝑉𝑉
𝑱𝑱1
𝑟𝑟 𝑑𝑑𝑑𝑑 (94) 

 
Hence, there is,  
 ℰ2,1𝑂𝑂 = − 𝜕𝜕

𝜕𝜕𝜕𝜕 ∮ 𝐶𝐶2
𝑨𝑨1 ⋅ 𝑑𝑑𝒍𝒍2 (95) 

 
The definition of induced electromotive force is,  
 ℰ2,1𝑂𝑂 ≜ ∮ 𝐶𝐶2

𝑬𝑬1 ⋅ 𝑑𝑑𝑑𝑑 (96) 
 

Hence, there is,  
 ∮ 𝐶𝐶2

𝑬𝑬1 ⋅ 𝑑𝑑𝑑𝑑 = − 𝜕𝜕
𝜕𝜕𝜕𝜕 ∮ 𝐶𝐶2

𝑨𝑨1 ⋅ 𝑑𝑑𝒍𝒍2 (97) 
 

Or  
 ∮ 𝐶𝐶2

𝑬𝑬1 ⋅ 𝑑𝑑𝑑𝑑 = −∮ 𝐶𝐶2
𝜕𝜕
𝜕𝜕𝜕𝜕 𝑨𝑨1 ⋅ 𝑑𝑑𝒍𝒍2 (98) 

 
Or,  
 ∮ 𝐶𝐶2

(𝑬𝑬1 +
𝜕𝜕
𝜕𝜕𝜕𝜕 𝑨𝑨1) ⋅ 𝑑𝑑𝑑𝑑 = 0 (99) 

 
Or,  
 ∯ ∇ × (𝑬𝑬1 +

𝜕𝜕
𝜕𝜕𝜕𝜕 𝑨𝑨1) ⋅ �̂�𝑛𝑑𝑑ΓΓ = 0 (100) 

 
Or,  
 ∇ × (𝑬𝑬1 +

𝜕𝜕
𝜕𝜕𝜕𝜕 𝑨𝑨1) = 0 (101) 

 
Omit subscripts,  
 ∇ × (𝑬𝑬 + 𝜕𝜕

𝜕𝜕𝜕𝜕 𝑨𝑨) = 0 (102) 
 

Or  
 𝑬𝑬 + 𝜕𝜕

𝜕𝜕𝜕𝜕 𝑨𝑨 = −∇𝜙𝜙 (103) 
 

Or  
 𝑬𝑬 = − 𝜕𝜕

𝜕𝜕𝜕𝜕 𝑨𝑨 − ∇𝜙𝜙 (104) 
 

Or  
 ∇ × 𝑬𝑬 = − 𝜕𝜕

𝜕𝜕𝜕𝜕 ∇ × 𝑨𝑨 (105) 
 

Notice that,  

 ℰ2,1𝑂𝑂 = − 𝜕𝜕
𝜕𝜕𝜕𝜕

𝜇𝜇0
4𝜋𝜋 ∮ 𝐶𝐶2 ∮ 𝐶𝐶1

𝐼𝐼1𝑑𝑑𝒍𝒍1⋅𝑑𝑑𝒍𝒍2
𝑟𝑟  (93) 

 
The superscript 𝑂𝑂 indicates that coil 2 is a circular circuit. Define vector potential,  
 𝑨𝑨1 ≜

𝜇𝜇0
4𝜋𝜋 ∮ 𝐶𝐶1

𝐼𝐼1𝑑𝑑𝒍𝒍1
𝑟𝑟 → 𝜇𝜇0

4𝜋𝜋 ∫ 𝑉𝑉
𝑱𝑱1
𝑟𝑟 𝑑𝑑𝑑𝑑 (94) 

 
Hence, there is,  
 ℰ2,1𝑂𝑂 = − 𝜕𝜕

𝜕𝜕𝜕𝜕 ∮ 𝐶𝐶2
𝑨𝑨1 ⋅ 𝑑𝑑𝒍𝒍2 (95) 

 
The definition of induced electromotive force is,  
 ℰ2,1𝑂𝑂 ≜ ∮ 𝐶𝐶2

𝑬𝑬1 ⋅ 𝑑𝑑𝑑𝑑 (96) 
 

Hence, there is,  
 ∮ 𝐶𝐶2

𝑬𝑬1 ⋅ 𝑑𝑑𝑑𝑑 = − 𝜕𝜕
𝜕𝜕𝜕𝜕 ∮ 𝐶𝐶2

𝑨𝑨1 ⋅ 𝑑𝑑𝒍𝒍2 (97) 
 

Or  
 ∮ 𝐶𝐶2

𝑬𝑬1 ⋅ 𝑑𝑑𝑑𝑑 = −∮ 𝐶𝐶2
𝜕𝜕
𝜕𝜕𝜕𝜕 𝑨𝑨1 ⋅ 𝑑𝑑𝒍𝒍2 (98) 

 
Or,  
 ∮ 𝐶𝐶2

(𝑬𝑬1 +
𝜕𝜕
𝜕𝜕𝜕𝜕 𝑨𝑨1) ⋅ 𝑑𝑑𝑑𝑑 = 0 (99) 

 
Or,  
 ∯ ∇ × (𝑬𝑬1 +

𝜕𝜕
𝜕𝜕𝜕𝜕 𝑨𝑨1) ⋅ �̂�𝑛𝑑𝑑ΓΓ = 0 (100) 

 
Or,  
 ∇ × (𝑬𝑬1 +

𝜕𝜕
𝜕𝜕𝜕𝜕 𝑨𝑨1) = 0 (101) 

 
Omit subscripts,  
 ∇ × (𝑬𝑬 + 𝜕𝜕

𝜕𝜕𝜕𝜕 𝑨𝑨) = 0 (102) 
 

Or  
 𝑬𝑬 + 𝜕𝜕

𝜕𝜕𝜕𝜕 𝑨𝑨 = −∇𝜙𝜙 (103) 
 

Or  
 𝑬𝑬 = − 𝜕𝜕

𝜕𝜕𝜕𝜕 𝑨𝑨 − ∇𝜙𝜙 (104) 
 

Or  
 ∇ × 𝑬𝑬 = − 𝜕𝜕

𝜕𝜕𝜕𝜕 ∇ × 𝑨𝑨 (105) 
 

Notice that,  

 ℰ2,1𝑂𝑂 = − 𝜕𝜕
𝜕𝜕𝜕𝜕

𝜇𝜇0
4𝜋𝜋 ∮ 𝐶𝐶2 ∮ 𝐶𝐶1

𝐼𝐼1𝑑𝑑𝒍𝒍1⋅𝑑𝑑𝒍𝒍2
𝑟𝑟  (93) 
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𝜇𝜇0
4𝜋𝜋 ∮ 𝐶𝐶1

𝐼𝐼1𝑑𝑑𝒍𝒍1
𝑟𝑟 → 𝜇𝜇0

4𝜋𝜋 ∫ 𝑉𝑉
𝑱𝑱1
𝑟𝑟 𝑑𝑑𝑑𝑑 (94) 

 
Hence, there is,  
 ℰ2,1𝑂𝑂 = − 𝜕𝜕

𝜕𝜕𝜕𝜕 ∮ 𝐶𝐶2
𝑨𝑨1 ⋅ 𝑑𝑑𝒍𝒍2 (95) 

 
The definition of induced electromotive force is,  
 ℰ2,1𝑂𝑂 ≜ ∮ 𝐶𝐶2

𝑬𝑬1 ⋅ 𝑑𝑑𝑑𝑑 (96) 
 

Hence, there is,  
 ∮ 𝐶𝐶2

𝑬𝑬1 ⋅ 𝑑𝑑𝑑𝑑 = − 𝜕𝜕
𝜕𝜕𝜕𝜕 ∮ 𝐶𝐶2

𝑨𝑨1 ⋅ 𝑑𝑑𝒍𝒍2 (97) 
 

Or  
 ∮ 𝐶𝐶2

𝑬𝑬1 ⋅ 𝑑𝑑𝑑𝑑 = −∮ 𝐶𝐶2
𝜕𝜕
𝜕𝜕𝜕𝜕 𝑨𝑨1 ⋅ 𝑑𝑑𝒍𝒍2 (98) 

 
Or,  
 ∮ 𝐶𝐶2

(𝑬𝑬1 +
𝜕𝜕
𝜕𝜕𝜕𝜕 𝑨𝑨1) ⋅ 𝑑𝑑𝑑𝑑 = 0 (99) 

 
Or,  
 ∯ ∇ × (𝑬𝑬1 +

𝜕𝜕
𝜕𝜕𝜕𝜕 𝑨𝑨1) ⋅ �̂�𝑛𝑑𝑑ΓΓ = 0 (100) 

 
Or,  
 ∇ × (𝑬𝑬1 +

𝜕𝜕
𝜕𝜕𝜕𝜕 𝑨𝑨1) = 0 (101) 

 
Omit subscripts,  
 ∇ × (𝑬𝑬 + 𝜕𝜕

𝜕𝜕𝜕𝜕 𝑨𝑨) = 0 (102) 
 

Or  
 𝑬𝑬 + 𝜕𝜕

𝜕𝜕𝜕𝜕 𝑨𝑨 = −∇𝜙𝜙 (103) 
 

Or  
 𝑬𝑬 = − 𝜕𝜕

𝜕𝜕𝜕𝜕 𝑨𝑨 − ∇𝜙𝜙 (104) 
 

Or  
 ∇ × 𝑬𝑬 = − 𝜕𝜕

𝜕𝜕𝜕𝜕 ∇ × 𝑨𝑨 (105) 
 

Notice that,  

Or 

Or 

Notice that,

 ∇ × 𝑨𝑨 ≜ lim
Δ𝑆𝑆→0

∮ 𝐶𝐶𝑨𝑨⋅𝑑𝑑𝒍𝒍
Δ𝑆𝑆  

The curl of a vector potential ∇ × 𝑨𝑨 is defined on a loop, which we will first denote as  
 𝑮𝑮 = ∇ × 𝑨𝑨 (106) 

 
Taking the curl of a vector potential is equal to taking a line integral over a loop. 

Therefore, the average value is taken on the loop, so we do not use the magnetic field 𝑩𝑩 to 
represent it, but use 𝑩𝑩 = 𝑮𝑮 to represent it. 

 
 ∇ × 𝑬𝑬 = − 𝜕𝜕

𝜕𝜕𝜕𝜕 𝑮𝑮 (107) 
  

 ∮ 𝐶𝐶2
𝑬𝑬 ⋅ 𝑑𝑑𝒍𝒍 = − 𝜕𝜕

𝜕𝜕𝜕𝜕∯ 𝑮𝑮 ⋅ �̂�𝑛𝑑𝑑ΓΓ  (108) 
  

 ∮ 𝐶𝐶2
𝑬𝑬 ⋅ 𝑑𝑑𝒍𝒍 = −𝑗𝑗𝜔𝜔∯ 𝑮𝑮 ⋅ �̂�𝑛𝑑𝑑ΓΓ  (109) 

  
 ∯ 𝑮𝑮 ⋅ �̂�𝑛𝑑𝑑ΓΓ = 1

−𝑗𝑗𝜔𝜔 ∮ 𝐶𝐶2
𝑬𝑬 ⋅ 𝑑𝑑𝒍𝒍 (110) 

  
 𝑮𝑮 ⋅ �̂�𝑛 = 1

−𝑗𝑗𝜔𝜔
1
Δ𝑆𝑆 ∮ 𝐶𝐶2

𝑬𝑬 ⋅ 𝑑𝑑𝒍𝒍 (111) 
 

wherein  
 Δ𝑆𝑆 = ∯ 𝑑𝑑ΓΓ  (112) 

 
 
 lim

Δ𝑆𝑆→0
𝑮𝑮 ⋅ �̂�𝑛 = 1

−𝑗𝑗𝜔𝜔 lim
Δ𝑆𝑆→0

1
Δ𝑆𝑆 ∮ 𝐶𝐶2

𝑬𝑬 ⋅ 𝑑𝑑𝒍𝒍 (113) 
 

Or  
 𝑩𝑩 ⋅ �̂�𝑛 = 1

−𝑗𝑗𝜔𝜔 lim
Δ𝑆𝑆→0

1
Δ𝑆𝑆 ∮ 𝐶𝐶2

𝑬𝑬 ⋅ 𝑑𝑑𝒍𝒍 (114) 

 We use the 𝑩𝑩 instead of 𝑩𝑩 in the above equation because there is a circular coil 𝐶𝐶2 on the 
integral of the right side of the equation. Such a measurement actually takes the average value 
on the loop. Therefore, the average magnetic field is obtained.  

 𝑩𝑩 ⋅ �̂�𝑛 = 1
−𝑗𝑗𝜔𝜔 ∇ × 𝑬𝑬 ⋅ �̂�𝑛 (115) 

  
 𝑩𝑩 = 1

−𝑗𝑗𝜔𝜔 ∇ × 𝑬𝑬 (116) 
 

Consider �̂�𝑛 = �̂�𝑦, formula (114)  

 𝐵𝐵 = 𝑩𝑩 ⋅ �̂�𝑦 = 1
−𝑗𝑗𝜔𝜔 lim

Δ𝑆𝑆→0
∮ 𝐶𝐶𝑬𝑬⋅𝑑𝑑𝒍𝒍
|Δ𝑆𝑆|  (117) 

 
Note that we actually calculated the average magnetic field for a loop, which is  

 ∇ × 𝑨𝑨 ≜ lim
Δ𝑆𝑆→0

∮ 𝐶𝐶𝑨𝑨⋅𝑑𝑑𝒍𝒍
Δ𝑆𝑆  

The curl of a vector potential ∇ × 𝑨𝑨 is defined on a loop, which we will first denote as  
 𝑮𝑮 = ∇ × 𝑨𝑨 (106) 

 
Taking the curl of a vector potential is equal to taking a line integral over a loop. 

Therefore, the average value is taken on the loop, so we do not use the magnetic field 𝑩𝑩 to 
represent it, but use 𝑩𝑩 = 𝑮𝑮 to represent it. 

 
 ∇ × 𝑬𝑬 = − 𝜕𝜕

𝜕𝜕𝜕𝜕 𝑮𝑮 (107) 
  

 ∮ 𝐶𝐶2
𝑬𝑬 ⋅ 𝑑𝑑𝒍𝒍 = − 𝜕𝜕

𝜕𝜕𝜕𝜕∯ 𝑮𝑮 ⋅ �̂�𝑛𝑑𝑑ΓΓ  (108) 
  

 ∮ 𝐶𝐶2
𝑬𝑬 ⋅ 𝑑𝑑𝒍𝒍 = −𝑗𝑗𝜔𝜔∯ 𝑮𝑮 ⋅ �̂�𝑛𝑑𝑑ΓΓ  (109) 

  
 ∯ 𝑮𝑮 ⋅ �̂�𝑛𝑑𝑑ΓΓ = 1

−𝑗𝑗𝜔𝜔 ∮ 𝐶𝐶2
𝑬𝑬 ⋅ 𝑑𝑑𝒍𝒍 (110) 

  
 𝑮𝑮 ⋅ �̂�𝑛 = 1

−𝑗𝑗𝜔𝜔
1
Δ𝑆𝑆 ∮ 𝐶𝐶2

𝑬𝑬 ⋅ 𝑑𝑑𝒍𝒍 (111) 
 

wherein  
 Δ𝑆𝑆 = ∯ 𝑑𝑑ΓΓ  (112) 

 
 
 lim

Δ𝑆𝑆→0
𝑮𝑮 ⋅ �̂�𝑛 = 1

−𝑗𝑗𝜔𝜔 lim
Δ𝑆𝑆→0

1
Δ𝑆𝑆 ∮ 𝐶𝐶2

𝑬𝑬 ⋅ 𝑑𝑑𝒍𝒍 (113) 
 

Or  
 𝑩𝑩 ⋅ �̂�𝑛 = 1

−𝑗𝑗𝜔𝜔 lim
Δ𝑆𝑆→0

1
Δ𝑆𝑆 ∮ 𝐶𝐶2

𝑬𝑬 ⋅ 𝑑𝑑𝒍𝒍 (114) 

 We use the 𝑩𝑩 instead of 𝑩𝑩 in the above equation because there is a circular coil 𝐶𝐶2 on the 
integral of the right side of the equation. Such a measurement actually takes the average value 
on the loop. Therefore, the average magnetic field is obtained.  

 𝑩𝑩 ⋅ �̂�𝑛 = 1
−𝑗𝑗𝜔𝜔 ∇ × 𝑬𝑬 ⋅ �̂�𝑛 (115) 

  
 𝑩𝑩 = 1

−𝑗𝑗𝜔𝜔 ∇ × 𝑬𝑬 (116) 
 

Consider �̂�𝑛 = �̂�𝑦, formula (114)  

 𝐵𝐵 = 𝑩𝑩 ⋅ �̂�𝑦 = 1
−𝑗𝑗𝜔𝜔 lim

Δ𝑆𝑆→0
∮ 𝐶𝐶𝑬𝑬⋅𝑑𝑑𝒍𝒍
|Δ𝑆𝑆|  (117) 

 
Note that we actually calculated the average magnetic field for a loop, which is  

 ∇ × 𝑨𝑨 ≜ lim
Δ𝑆𝑆→0

∮ 𝐶𝐶𝑨𝑨⋅𝑑𝑑𝒍𝒍
Δ𝑆𝑆  

The curl of a vector potential ∇ × 𝑨𝑨 is defined on a loop, which we will first denote as  
 𝑮𝑮 = ∇ × 𝑨𝑨 (106) 

 
Taking the curl of a vector potential is equal to taking a line integral over a loop. 

Therefore, the average value is taken on the loop, so we do not use the magnetic field 𝑩𝑩 to 
represent it, but use 𝑩𝑩 = 𝑮𝑮 to represent it. 

 
 ∇ × 𝑬𝑬 = − 𝜕𝜕

𝜕𝜕𝜕𝜕 𝑮𝑮 (107) 
  

 ∮ 𝐶𝐶2
𝑬𝑬 ⋅ 𝑑𝑑𝒍𝒍 = − 𝜕𝜕

𝜕𝜕𝜕𝜕∯ 𝑮𝑮 ⋅ �̂�𝑛𝑑𝑑ΓΓ  (108) 
  

 ∮ 𝐶𝐶2
𝑬𝑬 ⋅ 𝑑𝑑𝒍𝒍 = −𝑗𝑗𝜔𝜔∯ 𝑮𝑮 ⋅ �̂�𝑛𝑑𝑑ΓΓ  (109) 

  
 ∯ 𝑮𝑮 ⋅ �̂�𝑛𝑑𝑑ΓΓ = 1

−𝑗𝑗𝜔𝜔 ∮ 𝐶𝐶2
𝑬𝑬 ⋅ 𝑑𝑑𝒍𝒍 (110) 

  
 𝑮𝑮 ⋅ �̂�𝑛 = 1

−𝑗𝑗𝜔𝜔
1
Δ𝑆𝑆 ∮ 𝐶𝐶2

𝑬𝑬 ⋅ 𝑑𝑑𝒍𝒍 (111) 
 

wherein  
 Δ𝑆𝑆 = ∯ 𝑑𝑑ΓΓ  (112) 

 
 
 lim

Δ𝑆𝑆→0
𝑮𝑮 ⋅ �̂�𝑛 = 1

−𝑗𝑗𝜔𝜔 lim
Δ𝑆𝑆→0

1
Δ𝑆𝑆 ∮ 𝐶𝐶2

𝑬𝑬 ⋅ 𝑑𝑑𝒍𝒍 (113) 
 

Or  
 𝑩𝑩 ⋅ �̂�𝑛 = 1

−𝑗𝑗𝜔𝜔 lim
Δ𝑆𝑆→0

1
Δ𝑆𝑆 ∮ 𝐶𝐶2

𝑬𝑬 ⋅ 𝑑𝑑𝒍𝒍 (114) 

 We use the 𝑩𝑩 instead of 𝑩𝑩 in the above equation because there is a circular coil 𝐶𝐶2 on the 
integral of the right side of the equation. Such a measurement actually takes the average value 
on the loop. Therefore, the average magnetic field is obtained.  

 𝑩𝑩 ⋅ �̂�𝑛 = 1
−𝑗𝑗𝜔𝜔 ∇ × 𝑬𝑬 ⋅ �̂�𝑛 (115) 

  
 𝑩𝑩 = 1

−𝑗𝑗𝜔𝜔 ∇ × 𝑬𝑬 (116) 
 

Consider �̂�𝑛 = �̂�𝑦, formula (114)  

 𝐵𝐵 = 𝑩𝑩 ⋅ �̂�𝑦 = 1
−𝑗𝑗𝜔𝜔 lim

Δ𝑆𝑆→0
∮ 𝐶𝐶𝑬𝑬⋅𝑑𝑑𝒍𝒍
|Δ𝑆𝑆|  (117) 

 
Note that we actually calculated the average magnetic field for a loop, which is  

 ∇ × 𝑨𝑨 ≜ lim
Δ𝑆𝑆→0

∮ 𝐶𝐶𝑨𝑨⋅𝑑𝑑𝒍𝒍
Δ𝑆𝑆  

The curl of a vector potential ∇ × 𝑨𝑨 is defined on a loop, which we will first denote as  
 𝑮𝑮 = ∇ × 𝑨𝑨 (106) 

 
Taking the curl of a vector potential is equal to taking a line integral over a loop. 

Therefore, the average value is taken on the loop, so we do not use the magnetic field 𝑩𝑩 to 
represent it, but use 𝑩𝑩 = 𝑮𝑮 to represent it. 

 
 ∇ × 𝑬𝑬 = − 𝜕𝜕

𝜕𝜕𝜕𝜕 𝑮𝑮 (107) 
  

 ∮ 𝐶𝐶2
𝑬𝑬 ⋅ 𝑑𝑑𝒍𝒍 = − 𝜕𝜕

𝜕𝜕𝜕𝜕∯ 𝑮𝑮 ⋅ �̂�𝑛𝑑𝑑ΓΓ  (108) 
  

 ∮ 𝐶𝐶2
𝑬𝑬 ⋅ 𝑑𝑑𝒍𝒍 = −𝑗𝑗𝜔𝜔∯ 𝑮𝑮 ⋅ �̂�𝑛𝑑𝑑ΓΓ  (109) 

  
 ∯ 𝑮𝑮 ⋅ �̂�𝑛𝑑𝑑ΓΓ = 1

−𝑗𝑗𝜔𝜔 ∮ 𝐶𝐶2
𝑬𝑬 ⋅ 𝑑𝑑𝒍𝒍 (110) 

  
 𝑮𝑮 ⋅ �̂�𝑛 = 1

−𝑗𝑗𝜔𝜔
1
Δ𝑆𝑆 ∮ 𝐶𝐶2

𝑬𝑬 ⋅ 𝑑𝑑𝒍𝒍 (111) 
 

wherein  
 Δ𝑆𝑆 = ∯ 𝑑𝑑ΓΓ  (112) 

 
 
 lim

Δ𝑆𝑆→0
𝑮𝑮 ⋅ �̂�𝑛 = 1

−𝑗𝑗𝜔𝜔 lim
Δ𝑆𝑆→0

1
Δ𝑆𝑆 ∮ 𝐶𝐶2

𝑬𝑬 ⋅ 𝑑𝑑𝒍𝒍 (113) 
 

Or  
 𝑩𝑩 ⋅ �̂�𝑛 = 1

−𝑗𝑗𝜔𝜔 lim
Δ𝑆𝑆→0

1
Δ𝑆𝑆 ∮ 𝐶𝐶2

𝑬𝑬 ⋅ 𝑑𝑑𝒍𝒍 (114) 

 We use the 𝑩𝑩 instead of 𝑩𝑩 in the above equation because there is a circular coil 𝐶𝐶2 on the 
integral of the right side of the equation. Such a measurement actually takes the average value 
on the loop. Therefore, the average magnetic field is obtained.  

 𝑩𝑩 ⋅ �̂�𝑛 = 1
−𝑗𝑗𝜔𝜔 ∇ × 𝑬𝑬 ⋅ �̂�𝑛 (115) 

  
 𝑩𝑩 = 1

−𝑗𝑗𝜔𝜔 ∇ × 𝑬𝑬 (116) 
 

Consider �̂�𝑛 = �̂�𝑦, formula (114)  

 𝐵𝐵 = 𝑩𝑩 ⋅ �̂�𝑦 = 1
−𝑗𝑗𝜔𝜔 lim

Δ𝑆𝑆→0
∮ 𝐶𝐶𝑬𝑬⋅𝑑𝑑𝒍𝒍
|Δ𝑆𝑆|  (117) 

 
Note that we actually calculated the average magnetic field for a loop, which is  

 ∇ × 𝑨𝑨 ≜ lim
Δ𝑆𝑆→0

∮ 𝐶𝐶𝑨𝑨⋅𝑑𝑑𝒍𝒍
Δ𝑆𝑆  

The curl of a vector potential ∇ × 𝑨𝑨 is defined on a loop, which we will first denote as  
 𝑮𝑮 = ∇ × 𝑨𝑨 (106) 

 
Taking the curl of a vector potential is equal to taking a line integral over a loop. 

Therefore, the average value is taken on the loop, so we do not use the magnetic field 𝑩𝑩 to 
represent it, but use 𝑩𝑩 = 𝑮𝑮 to represent it. 

 
 ∇ × 𝑬𝑬 = − 𝜕𝜕

𝜕𝜕𝜕𝜕 𝑮𝑮 (107) 
  

 ∮ 𝐶𝐶2
𝑬𝑬 ⋅ 𝑑𝑑𝒍𝒍 = − 𝜕𝜕

𝜕𝜕𝜕𝜕∯ 𝑮𝑮 ⋅ �̂�𝑛𝑑𝑑ΓΓ  (108) 
  

 ∮ 𝐶𝐶2
𝑬𝑬 ⋅ 𝑑𝑑𝒍𝒍 = −𝑗𝑗𝜔𝜔∯ 𝑮𝑮 ⋅ �̂�𝑛𝑑𝑑ΓΓ  (109) 

  
 ∯ 𝑮𝑮 ⋅ �̂�𝑛𝑑𝑑ΓΓ = 1

−𝑗𝑗𝜔𝜔 ∮ 𝐶𝐶2
𝑬𝑬 ⋅ 𝑑𝑑𝒍𝒍 (110) 

  
 𝑮𝑮 ⋅ �̂�𝑛 = 1

−𝑗𝑗𝜔𝜔
1
Δ𝑆𝑆 ∮ 𝐶𝐶2

𝑬𝑬 ⋅ 𝑑𝑑𝒍𝒍 (111) 
 

wherein  
 Δ𝑆𝑆 = ∯ 𝑑𝑑ΓΓ  (112) 

 
 
 lim

Δ𝑆𝑆→0
𝑮𝑮 ⋅ �̂�𝑛 = 1

−𝑗𝑗𝜔𝜔 lim
Δ𝑆𝑆→0

1
Δ𝑆𝑆 ∮ 𝐶𝐶2

𝑬𝑬 ⋅ 𝑑𝑑𝒍𝒍 (113) 
 

Or  
 𝑩𝑩 ⋅ �̂�𝑛 = 1

−𝑗𝑗𝜔𝜔 lim
Δ𝑆𝑆→0

1
Δ𝑆𝑆 ∮ 𝐶𝐶2

𝑬𝑬 ⋅ 𝑑𝑑𝒍𝒍 (114) 

 We use the 𝑩𝑩 instead of 𝑩𝑩 in the above equation because there is a circular coil 𝐶𝐶2 on the 
integral of the right side of the equation. Such a measurement actually takes the average value 
on the loop. Therefore, the average magnetic field is obtained.  

 𝑩𝑩 ⋅ �̂�𝑛 = 1
−𝑗𝑗𝜔𝜔 ∇ × 𝑬𝑬 ⋅ �̂�𝑛 (115) 

  
 𝑩𝑩 = 1

−𝑗𝑗𝜔𝜔 ∇ × 𝑬𝑬 (116) 
 

Consider �̂�𝑛 = �̂�𝑦, formula (114)  

 𝐵𝐵 = 𝑩𝑩 ⋅ �̂�𝑦 = 1
−𝑗𝑗𝜔𝜔 lim

Δ𝑆𝑆→0
∮ 𝐶𝐶𝑬𝑬⋅𝑑𝑑𝒍𝒍
|Δ𝑆𝑆|  (117) 

 
Note that we actually calculated the average magnetic field for a loop, which is  

 ∇ × 𝑨𝑨 ≜ lim
Δ𝑆𝑆→0

∮ 𝐶𝐶𝑨𝑨⋅𝑑𝑑𝒍𝒍
Δ𝑆𝑆  

The curl of a vector potential ∇ × 𝑨𝑨 is defined on a loop, which we will first denote as  
 𝑮𝑮 = ∇ × 𝑨𝑨 (106) 

 
Taking the curl of a vector potential is equal to taking a line integral over a loop. 

Therefore, the average value is taken on the loop, so we do not use the magnetic field 𝑩𝑩 to 
represent it, but use 𝑩𝑩 = 𝑮𝑮 to represent it. 

 
 ∇ × 𝑬𝑬 = − 𝜕𝜕

𝜕𝜕𝜕𝜕 𝑮𝑮 (107) 
  

 ∮ 𝐶𝐶2
𝑬𝑬 ⋅ 𝑑𝑑𝒍𝒍 = − 𝜕𝜕

𝜕𝜕𝜕𝜕∯ 𝑮𝑮 ⋅ �̂�𝑛𝑑𝑑ΓΓ  (108) 
  

 ∮ 𝐶𝐶2
𝑬𝑬 ⋅ 𝑑𝑑𝒍𝒍 = −𝑗𝑗𝜔𝜔∯ 𝑮𝑮 ⋅ �̂�𝑛𝑑𝑑ΓΓ  (109) 

  
 ∯ 𝑮𝑮 ⋅ �̂�𝑛𝑑𝑑ΓΓ = 1

−𝑗𝑗𝜔𝜔 ∮ 𝐶𝐶2
𝑬𝑬 ⋅ 𝑑𝑑𝒍𝒍 (110) 

  
 𝑮𝑮 ⋅ �̂�𝑛 = 1

−𝑗𝑗𝜔𝜔
1
Δ𝑆𝑆 ∮ 𝐶𝐶2

𝑬𝑬 ⋅ 𝑑𝑑𝒍𝒍 (111) 
 

wherein  
 Δ𝑆𝑆 = ∯ 𝑑𝑑ΓΓ  (112) 

 
 
 lim

Δ𝑆𝑆→0
𝑮𝑮 ⋅ �̂�𝑛 = 1

−𝑗𝑗𝜔𝜔 lim
Δ𝑆𝑆→0

1
Δ𝑆𝑆 ∮ 𝐶𝐶2

𝑬𝑬 ⋅ 𝑑𝑑𝒍𝒍 (113) 
 

Or  
 𝑩𝑩 ⋅ �̂�𝑛 = 1

−𝑗𝑗𝜔𝜔 lim
Δ𝑆𝑆→0

1
Δ𝑆𝑆 ∮ 𝐶𝐶2

𝑬𝑬 ⋅ 𝑑𝑑𝒍𝒍 (114) 

 We use the 𝑩𝑩 instead of 𝑩𝑩 in the above equation because there is a circular coil 𝐶𝐶2 on the 
integral of the right side of the equation. Such a measurement actually takes the average value 
on the loop. Therefore, the average magnetic field is obtained.  

 𝑩𝑩 ⋅ �̂�𝑛 = 1
−𝑗𝑗𝜔𝜔 ∇ × 𝑬𝑬 ⋅ �̂�𝑛 (115) 

  
 𝑩𝑩 = 1

−𝑗𝑗𝜔𝜔 ∇ × 𝑬𝑬 (116) 
 

Consider �̂�𝑛 = �̂�𝑦, formula (114)  

 𝐵𝐵 = 𝑩𝑩 ⋅ �̂�𝑦 = 1
−𝑗𝑗𝜔𝜔 lim

Δ𝑆𝑆→0
∮ 𝐶𝐶𝑬𝑬⋅𝑑𝑑𝒍𝒍
|Δ𝑆𝑆|  (117) 

 
Note that we actually calculated the average magnetic field for a loop, which is  

 ∇ × 𝑨𝑨 ≜ lim
Δ𝑆𝑆→0

∮ 𝐶𝐶𝑨𝑨⋅𝑑𝑑𝒍𝒍
Δ𝑆𝑆  

The curl of a vector potential ∇ × 𝑨𝑨 is defined on a loop, which we will first denote as  
 𝑮𝑮 = ∇ × 𝑨𝑨 (106) 

 
Taking the curl of a vector potential is equal to taking a line integral over a loop. 

Therefore, the average value is taken on the loop, so we do not use the magnetic field 𝑩𝑩 to 
represent it, but use 𝑩𝑩 = 𝑮𝑮 to represent it. 

 
 ∇ × 𝑬𝑬 = − 𝜕𝜕

𝜕𝜕𝜕𝜕 𝑮𝑮 (107) 
  

 ∮ 𝐶𝐶2
𝑬𝑬 ⋅ 𝑑𝑑𝒍𝒍 = − 𝜕𝜕

𝜕𝜕𝜕𝜕∯ 𝑮𝑮 ⋅ �̂�𝑛𝑑𝑑ΓΓ  (108) 
  

 ∮ 𝐶𝐶2
𝑬𝑬 ⋅ 𝑑𝑑𝒍𝒍 = −𝑗𝑗𝜔𝜔∯ 𝑮𝑮 ⋅ �̂�𝑛𝑑𝑑ΓΓ  (109) 

  
 ∯ 𝑮𝑮 ⋅ �̂�𝑛𝑑𝑑ΓΓ = 1

−𝑗𝑗𝜔𝜔 ∮ 𝐶𝐶2
𝑬𝑬 ⋅ 𝑑𝑑𝒍𝒍 (110) 

  
 𝑮𝑮 ⋅ �̂�𝑛 = 1

−𝑗𝑗𝜔𝜔
1
Δ𝑆𝑆 ∮ 𝐶𝐶2

𝑬𝑬 ⋅ 𝑑𝑑𝒍𝒍 (111) 
 

wherein  
 Δ𝑆𝑆 = ∯ 𝑑𝑑ΓΓ  (112) 

 
 
 lim

Δ𝑆𝑆→0
𝑮𝑮 ⋅ �̂�𝑛 = 1

−𝑗𝑗𝜔𝜔 lim
Δ𝑆𝑆→0

1
Δ𝑆𝑆 ∮ 𝐶𝐶2

𝑬𝑬 ⋅ 𝑑𝑑𝒍𝒍 (113) 
 

Or  
 𝑩𝑩 ⋅ �̂�𝑛 = 1

−𝑗𝑗𝜔𝜔 lim
Δ𝑆𝑆→0

1
Δ𝑆𝑆 ∮ 𝐶𝐶2

𝑬𝑬 ⋅ 𝑑𝑑𝒍𝒍 (114) 

 We use the 𝑩𝑩 instead of 𝑩𝑩 in the above equation because there is a circular coil 𝐶𝐶2 on the 
integral of the right side of the equation. Such a measurement actually takes the average value 
on the loop. Therefore, the average magnetic field is obtained.  

 𝑩𝑩 ⋅ �̂�𝑛 = 1
−𝑗𝑗𝜔𝜔 ∇ × 𝑬𝑬 ⋅ �̂�𝑛 (115) 

  
 𝑩𝑩 = 1

−𝑗𝑗𝜔𝜔 ∇ × 𝑬𝑬 (116) 
 

Consider �̂�𝑛 = �̂�𝑦, formula (114)  

 𝐵𝐵 = 𝑩𝑩 ⋅ �̂�𝑦 = 1
−𝑗𝑗𝜔𝜔 lim

Δ𝑆𝑆→0
∮ 𝐶𝐶𝑬𝑬⋅𝑑𝑑𝒍𝒍
|Δ𝑆𝑆|  (117) 

 
Note that we actually calculated the average magnetic field for a loop, which is  

 ∇ × 𝑨𝑨 ≜ lim
Δ𝑆𝑆→0

∮ 𝐶𝐶𝑨𝑨⋅𝑑𝑑𝒍𝒍
Δ𝑆𝑆  

The curl of a vector potential ∇ × 𝑨𝑨 is defined on a loop, which we will first denote as  
 𝑮𝑮 = ∇ × 𝑨𝑨 (106) 

 
Taking the curl of a vector potential is equal to taking a line integral over a loop. 

Therefore, the average value is taken on the loop, so we do not use the magnetic field 𝑩𝑩 to 
represent it, but use 𝑩𝑩 = 𝑮𝑮 to represent it. 

 
 ∇ × 𝑬𝑬 = − 𝜕𝜕

𝜕𝜕𝜕𝜕 𝑮𝑮 (107) 
  

 ∮ 𝐶𝐶2
𝑬𝑬 ⋅ 𝑑𝑑𝒍𝒍 = − 𝜕𝜕

𝜕𝜕𝜕𝜕∯ 𝑮𝑮 ⋅ �̂�𝑛𝑑𝑑ΓΓ  (108) 
  

 ∮ 𝐶𝐶2
𝑬𝑬 ⋅ 𝑑𝑑𝒍𝒍 = −𝑗𝑗𝜔𝜔∯ 𝑮𝑮 ⋅ �̂�𝑛𝑑𝑑ΓΓ  (109) 

  
 ∯ 𝑮𝑮 ⋅ �̂�𝑛𝑑𝑑ΓΓ = 1

−𝑗𝑗𝜔𝜔 ∮ 𝐶𝐶2
𝑬𝑬 ⋅ 𝑑𝑑𝒍𝒍 (110) 

  
 𝑮𝑮 ⋅ �̂�𝑛 = 1

−𝑗𝑗𝜔𝜔
1
Δ𝑆𝑆 ∮ 𝐶𝐶2

𝑬𝑬 ⋅ 𝑑𝑑𝒍𝒍 (111) 
 

wherein  
 Δ𝑆𝑆 = ∯ 𝑑𝑑ΓΓ  (112) 

 
 
 lim

Δ𝑆𝑆→0
𝑮𝑮 ⋅ �̂�𝑛 = 1

−𝑗𝑗𝜔𝜔 lim
Δ𝑆𝑆→0

1
Δ𝑆𝑆 ∮ 𝐶𝐶2

𝑬𝑬 ⋅ 𝑑𝑑𝒍𝒍 (113) 
 

Or  
 𝑩𝑩 ⋅ �̂�𝑛 = 1

−𝑗𝑗𝜔𝜔 lim
Δ𝑆𝑆→0

1
Δ𝑆𝑆 ∮ 𝐶𝐶2

𝑬𝑬 ⋅ 𝑑𝑑𝒍𝒍 (114) 

 We use the 𝑩𝑩 instead of 𝑩𝑩 in the above equation because there is a circular coil 𝐶𝐶2 on the 
integral of the right side of the equation. Such a measurement actually takes the average value 
on the loop. Therefore, the average magnetic field is obtained.  

 𝑩𝑩 ⋅ �̂�𝑛 = 1
−𝑗𝑗𝜔𝜔 ∇ × 𝑬𝑬 ⋅ �̂�𝑛 (115) 

  
 𝑩𝑩 = 1

−𝑗𝑗𝜔𝜔 ∇ × 𝑬𝑬 (116) 
 

Consider �̂�𝑛 = �̂�𝑦, formula (114)  

 𝐵𝐵 = 𝑩𝑩 ⋅ �̂�𝑦 = 1
−𝑗𝑗𝜔𝜔 lim

Δ𝑆𝑆→0
∮ 𝐶𝐶𝑬𝑬⋅𝑑𝑑𝒍𝒍
|Δ𝑆𝑆|  (117) 

 
Note that we actually calculated the average magnetic field for a loop, which is  

 ∇ × 𝑨𝑨 ≜ lim
Δ𝑆𝑆→0

∮ 𝐶𝐶𝑨𝑨⋅𝑑𝑑𝒍𝒍
Δ𝑆𝑆  

The curl of a vector potential ∇ × 𝑨𝑨 is defined on a loop, which we will first denote as  
 𝑮𝑮 = ∇ × 𝑨𝑨 (106) 

 
Taking the curl of a vector potential is equal to taking a line integral over a loop. 

Therefore, the average value is taken on the loop, so we do not use the magnetic field 𝑩𝑩 to 
represent it, but use 𝑩𝑩 = 𝑮𝑮 to represent it. 

 
 ∇ × 𝑬𝑬 = − 𝜕𝜕

𝜕𝜕𝜕𝜕 𝑮𝑮 (107) 
  

 ∮ 𝐶𝐶2
𝑬𝑬 ⋅ 𝑑𝑑𝒍𝒍 = − 𝜕𝜕

𝜕𝜕𝜕𝜕∯ 𝑮𝑮 ⋅ �̂�𝑛𝑑𝑑ΓΓ  (108) 
  

 ∮ 𝐶𝐶2
𝑬𝑬 ⋅ 𝑑𝑑𝒍𝒍 = −𝑗𝑗𝜔𝜔∯ 𝑮𝑮 ⋅ �̂�𝑛𝑑𝑑ΓΓ  (109) 

  
 ∯ 𝑮𝑮 ⋅ �̂�𝑛𝑑𝑑ΓΓ = 1

−𝑗𝑗𝜔𝜔 ∮ 𝐶𝐶2
𝑬𝑬 ⋅ 𝑑𝑑𝒍𝒍 (110) 

  
 𝑮𝑮 ⋅ �̂�𝑛 = 1

−𝑗𝑗𝜔𝜔
1
Δ𝑆𝑆 ∮ 𝐶𝐶2

𝑬𝑬 ⋅ 𝑑𝑑𝒍𝒍 (111) 
 

wherein  
 Δ𝑆𝑆 = ∯ 𝑑𝑑ΓΓ  (112) 

 
 
 lim

Δ𝑆𝑆→0
𝑮𝑮 ⋅ �̂�𝑛 = 1

−𝑗𝑗𝜔𝜔 lim
Δ𝑆𝑆→0

1
Δ𝑆𝑆 ∮ 𝐶𝐶2

𝑬𝑬 ⋅ 𝑑𝑑𝒍𝒍 (113) 
 

Or  
 𝑩𝑩 ⋅ �̂�𝑛 = 1

−𝑗𝑗𝜔𝜔 lim
Δ𝑆𝑆→0

1
Δ𝑆𝑆 ∮ 𝐶𝐶2

𝑬𝑬 ⋅ 𝑑𝑑𝒍𝒍 (114) 

 We use the 𝑩𝑩 instead of 𝑩𝑩 in the above equation because there is a circular coil 𝐶𝐶2 on the 
integral of the right side of the equation. Such a measurement actually takes the average value 
on the loop. Therefore, the average magnetic field is obtained.  

 𝑩𝑩 ⋅ �̂�𝑛 = 1
−𝑗𝑗𝜔𝜔 ∇ × 𝑬𝑬 ⋅ �̂�𝑛 (115) 

  
 𝑩𝑩 = 1

−𝑗𝑗𝜔𝜔 ∇ × 𝑬𝑬 (116) 
 

Consider �̂�𝑛 = �̂�𝑦, formula (114)  

 𝐵𝐵 = 𝑩𝑩 ⋅ �̂�𝑦 = 1
−𝑗𝑗𝜔𝜔 lim

Δ𝑆𝑆→0
∮ 𝐶𝐶𝑬𝑬⋅𝑑𝑑𝒍𝒍
|Δ𝑆𝑆|  (117) 

 
Note that we actually calculated the average magnetic field for a loop, which is  

The curl of a vector potential ∇×A is defined on a loop, which we will first denote as

Taking the curl of a vector potential is equal to taking a line 
integral over a loop. Therefore, the average value is taken on the 

loop, so we do not use the magnetic field B to represent it, but 
use B = G to represent it.

_

where in 

Or 

We use the B instead of B in the above equation because there is 
a circular coil C2 on the integral of the right side of the equation. 

Such a measurement actually takes the average value on the 
loop. Therefore, the average magnetic field is obtained.

¯

¯

∬r

∬r

∬r

∬r
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Note that we actually calculated the average magnetic field for a loop, which is

 𝐻𝐻 = 1
−𝑗𝑗𝜇𝜇0𝜔𝜔

lim
𝑅𝑅→0

∮ 𝐶𝐶𝑬𝑬⋅𝑑𝑑𝒍𝒍
𝜋𝜋𝑅𝑅2  (118) 

 
Considering 
 

 1
𝜔𝜔𝜇𝜇0

= √𝜇𝜇0𝜖𝜖0
𝜔𝜔√𝜇𝜇0𝜖𝜖0𝜇𝜇0

= √𝜇𝜇0𝜖𝜖0
𝑘𝑘𝜇𝜇0

= √𝜇𝜇0𝜖𝜖0
𝑘𝑘𝜇𝜇0

= 1
𝑘𝑘𝜂𝜂0

= 𝜆𝜆
2𝜋𝜋𝜂𝜂0

 (119) 
 

There is, 
 
 𝐻𝐻 = 𝑗𝑗 𝜆𝜆

2𝜋𝜋𝜂𝜂0
lim
𝑅𝑅→0

∮ 𝐶𝐶𝑬𝑬⋅𝑑𝑑𝒍𝒍
𝜋𝜋𝑅𝑅2  (120) 

 
Note that we actually calculated the average magnetic field for a loop, which is 
 

 𝐻𝐻1 = 𝑗𝑗 𝜆𝜆
2𝜋𝜋𝜂𝜂0

lim
𝑅𝑅→0

∮ 𝐶𝐶2 𝑬𝑬1⋅𝑑𝑑𝒍𝒍
𝜋𝜋𝑅𝑅2  (121) 

 
From the above equation, it can be seen that 𝐻𝐻1 is the average value of the magnetic 

field measured in the loop 𝐶𝐶2 . Alternatively, 
 

 𝐻𝐻1 = 𝑗𝑗 𝜆𝜆
2𝜋𝜋𝜂𝜂0

lim
𝑅𝑅→0

ℰ2,1𝑂𝑂

𝜋𝜋𝑅𝑅2 (122) 
 

However, under quasi-static magnetic conditions, the annular average magnetic field 
and magnetic field are equal.  

 𝐻𝐻1 = 𝐻𝐻1 (123) 
 We will also provide a proof about this later. The above equation is not self explanatory. 

 
4.2  Calculating the average magnetic field based on the law of 

electromagnetic induction 
 
On the above 𝐵𝐵1 is actually the value determined by 𝐶𝐶2. It is the magnetic field 

obtained by averaging the values on the loop 𝐶𝐶2. If we already know the induced electric field, 
we can calculate the average magnetic field from it, so it can be written as 

 

 ∇ × 𝑬𝑬 = −𝜕𝜕𝑩𝑩
𝜕𝜕𝜕𝜕  (124) 

  
 ∇ × 𝑬𝑬 = −𝑗𝑗𝜔𝜔𝑩𝑩 (125) 

  
 𝑩𝑩 = 1

−𝑗𝑗𝜔𝜔 ∇ × 𝑬𝑬 (126) 
 

Therefore, we can define, 
 

 𝐻𝐻 = 1
−𝑗𝑗𝜇𝜇0𝜔𝜔

lim
𝑅𝑅→0

∮ 𝐶𝐶𝑬𝑬⋅𝑑𝑑𝒍𝒍
𝜋𝜋𝑅𝑅2  (118) 

 
Considering 
 

 1
𝜔𝜔𝜇𝜇0

= √𝜇𝜇0𝜖𝜖0
𝜔𝜔√𝜇𝜇0𝜖𝜖0𝜇𝜇0

= √𝜇𝜇0𝜖𝜖0
𝑘𝑘𝜇𝜇0

= √𝜇𝜇0𝜖𝜖0
𝑘𝑘𝜇𝜇0

= 1
𝑘𝑘𝜂𝜂0

= 𝜆𝜆
2𝜋𝜋𝜂𝜂0

 (119) 
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4.3  Measuring induced electromotive force using a straight wire 
 
Under quasi-static magnetic conditions, we can use the average magnetic field method 

on the loop to obtain the magnetic field. But of course, we can also use a straight wire to 
measure the magnetic field. The author first discovered this issue in the paper [29]. 
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The above equation is the magnetic field measured according to the linear current element. Omit subscripts,
element. Omit subscripts, 

 
 𝐻𝐻 = −𝑗𝑗 𝜆𝜆

𝜋𝜋𝑅𝑅
𝐸𝐸
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 𝐻𝐻 = −𝑗𝑗 𝐸𝐸

𝜂𝜂0
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In a special case,  
 𝑬𝑬 = 𝐸𝐸0exp(−𝑗𝑗𝑗𝑗𝑗𝑗)(−�̂�𝑧) (146) 
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 𝐻𝐻 = −𝑗𝑗 𝐸𝐸0exp(−𝑗𝑗𝑗𝑗𝑗𝑗)𝜂𝜂0
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 𝑯𝑯 = −𝑗𝑗 𝐸𝐸0exp(−𝑗𝑗𝑗𝑗𝑗𝑗)𝜂𝜂0
�̂�𝑦 (149) 

 
We see that the formulas (149) and (130) are very different. They take different values 

under radiated electromagnetic fields or electromagnetic wave conditions. But we will now 
prove that they are equal under quasi-static conditions. 

 
5  The magnetic field of electromagnetic waves 
 
For the magnetic field measurement of electromagnetic waves, we will find that the 

results obtained by the average magnetic field 𝑯𝑯 and the magnetic field 𝑯𝑯 measurement 
methods are different. We have three methods for measuring magnetic fields: (1) Ampere force 
method, and (2) Hall effect method for measuring Lorentz force. (3) The method of 
electromagnetic induction. For these three methods, we have two definitions of magnetic fields. 
The first is to measure the magnetic field using a linear current element, which measures the 
magnetic field 𝑯𝑯 according to the original definition method of the magnetic field. (2) 
Measure the average value of the magnetic field on the loop 𝑯𝑯. In this section, we assume that 
there is a plane electromagnetic wave, and we calculate the average magnetic field of the loop 
and define it according to the original magnetic field. We will find that these two magnetic 
fields are different! 
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We see that the formulas (149) and (130) are very different. 
They take different values under radiated electromagnetic fields 
or electromagnetic wave conditions. But we will now prove that 
they are equal under quasi-static conditions.

5. The Magnetic Field of Electromagnetic Waves
For the magnetic field measurement of electromagnetic waves, 
we will find that the results obtained by the average magnetic field 
H and the magnetic field H measurement methods are different. 
We have three methods for measuring magnetic fields: (1) 
Ampere force method, and (2) Hall effect method for measuring 
Lorentz force. (3) The method of electromagnetic induction. For 

these three methods, we have two definitions of magnetic fields. 
The first is to measure the magnetic field using a linear current 
element, which measures the magnetic field H according to the 
original definition method of the magnetic field. (2) Measure the 
average value of the magnetic field on the loop H. In this section, 
we assume that there is a plane electromagnetic wave, and we 
calculate the average magnetic field of the loop and define it 
according to the original magnetic field. We will find that these 
two magnetic fields are different!

5.1 Average Magnetic Field on The Loop
Assuming there is a planar electromagnetic field, 
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The above equation indicates that the average magnetic field and electric field obtained 
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The above two equations are the magnitude of the alternating magnetic field measured 
using a long linear current under quasi-static magnetic conditions. Therefore, we have two 
ways to measure the magnetic field, hypothesis  
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From this, the average magnetic field (128) can be obtained,

The above equation indicates that the average magnetic field and 
electric field obtained in the loop are in phase.

5.2 Measurement of Magnetic Field Using Straight Wires
From Eq.(143) we know the magnetic field measured on a 
straight wire is,

The above two equations are the magnitude of the alternating 
magnetic field measured using a long linear current under quasi-

static magnetic conditions. Therefore, we have two ways to 
measure the magnetic field, hypothesis

take 
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 𝑯𝑯1 = −𝑗𝑗 1

𝜂𝜂0
𝐸𝐸1exp(−𝑗𝑗𝑗𝑗𝑗𝑗)�̂�𝑦 (160) 

 
Comparing the formulas (160) and (152), we found that under the condition of radiated 

electromagnetic waves  
 𝑯𝑯1 ≠ 𝑯𝑯1 (161) 

 This indicates that the average magnetic field measured by the loop under radiation 
electromagnetic field conditions is different from the magnetic field measured by the straight 
wire. Under quasi-static conditions, these two measurement methods are the same. However, 
under radiation electromagnetic field conditions, the two methods obtain different values. At 
this point, we have to ask which method truly represents the correct magnetic field? 

 
5.3  Verification using Hall effect method 
 
Above, we use the method of calculating plane electromagnetic waves to illustrate two 

types of magnetic field definitions. One is defined on a loop wire, and the other is defined on a 
straight wire. The magnetic fields defined by these two methods are different. This already 
illustrates the problem. But if readers still don’t understand, Hall effect method can be used to 
verify. We can use a long straight wire (or a straight transmitting antenna) to generate a 
magnetic field, with high-frequency AC current flowing through the wire. Measure the average 
magnetic field 𝑯𝑯 of the loop. Measure the magnetic field 𝑯𝑯 with a separate Hall element to 
see if these two magnetic fields are the same. See Figure 7. 

For example, the frequency of an AC signal can reach 1-10MHz. At this frequency, the 
Hall element can still function properly. Of course, it may be necessary to use a amplifier. The 
blue and red components in the picture are Hall components. The blue one is used to measure 
the average magnetic field on the loop. The red color is used to measure the original magnetic 
field of on the straight wire. Both sides of the Hall element may require the addition of 
magnetic bars to increase sensitivity. If the current of the straight wire (or a linear transmitting 
antenna) is not large enough, multiple strands of wire can also be used instead. Display the 
phase difference between two signals using an oscilloscope. 
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Figure  7: Long straight wires carry high-frequency alternating current. Measure the average 
magnetic field 𝑯𝑯 on the loop and the original magnetic field 𝑯𝑯 on the straight wire using Hall 

effect devices. 
  
 
6  Author’s Electromagnetic Theory 
 
The author mentioned earlier that the fatal flaw in Maxwell’s electromagnetic theory 

lies in the confusion between the average electromagnetic field measured on the loop and the 
original definition of magnetic field. Namely,  

 𝑯𝑯 = ∇ × 𝑨𝑨 
and the formula,  

 𝑯𝑯 = 𝑯𝑯 
It only holds under quasi-static conditions and does not hold under radiation electromagnetic 
field conditions. Knowing the errors and loopholes in Maxwell’s electromagnetic theory, the 
author should also establish their own new electromagnetic theory. 

 
6.1  Axiom of radiation not overflowing the universe 
 
The author believes that the ether theory of electromagnetic waves is incorrect. 

Electromagnetic waves do not propagate in ether. The ether here belongs to space. Therefore, 
the movement of electromagnetic waves on the ether means that the source of the 
electromagnetic wave hands over the radiation energy to the ether, and then the 
electromagnetic wave propagates in the ether without the radiation source. The author 
believes that this is incorrect. 

The author believes that electromagnetic waves propagate within the electrostatic field 
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the electromagnetic wave hands over the radiation energy to 
the ether, and then the electromagnetic wave propagates in the 
ether without the radiation source. The author believes that this 
is incorrect.

The author believes that electromagnetic waves propagate 
within the electrostatic field of electrons themselves. That is 
to say, every charge, whether positive or negative, has its own 
electrostatic field. This field belongs to the charge itself. This 
field can transmit electromagnetic waves, therefore it is the ether 
of electrons themselves. Electromagnetic waves propagate in 
this field. Because this field belongs to the charge itself. The 
energy of electromagnetic waves cannot be separated from this 
charge. The author uses a whip to describe this field, where 
the charge is like carrying a whip. With a flick of the whip, 
energy is transmitted along the handle of the whip to the tip of 
the whip. But the energy on this whip cannot escape from it. 

Electromagnetic waves cannot escape from charges!

So some people may ask, how does energy transfer between 
charges occur? The whips of two charges must both be struck and 
hit exactly together. In this way, these two charges can exchange 
energy. The whip here is the electrostatic field of charge. The 
electromagnetic waves emitted by these two charges must also 
be a retarded wave and an advanced wave. The retarded wave 
must be synchronized with the advanced wave. If the whip goes 
empty, it is equivalent to a charge radiating a retarded wave, 
but this retarded wave has not found the advanced wave to 
synchronize with it. The energy of this retarded wave still needs 
to return to the radiation source of the electromagnetic wave. Just 
like a whip emptying, the energy flow on the whip must return 
from the tip of the whip to the handle. In short, electromagnetic 
waves cannot escape the charge at this time. So electromagnetic 
waves cannot overflow into the universe. Expressed as, 
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 ∫ ∞
𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑∯ (𝑬𝑬 × 𝑯𝑯) ⋅ �̂�𝑛𝑑𝑑ΓΓ = 0 (162) 

 Γ is a sphere with an infinite radius. Converted from time domain to frequency domain,  
 ℜ∯ (𝑬𝑬 × 𝑯𝑯∗) ⋅ �̂�𝑛𝑑𝑑ΓΓ = 0 (163) 

 “ℜ” means take the real part. The above equation shows the axioms of the author’s 
electromagnetic theory. This axiom means that the electromagnetic field cannot overflow the 
universe. Note that Maxwell’s electromagnetic theory does not satisfy this axiom. For any 
antenna in Maxwell’s electromagnetic theory, there are,  

 ℜ∯ (𝑬𝑬 × 𝑯𝑯∗) ⋅ �̂�𝑛𝑑𝑑ΓΓ ≠ 0 (164) 
 
6.2  Magnetic quasi-static equation 
 
Under quasi-static magnetic conditions, the Faraday’s law and Ampere’s loop law in 

Maxwell’s equation still hold, 
 
 ∇ × 𝑬𝑬 = − 𝜕𝜕

𝜕𝜕𝑡𝑡 𝑩𝑩 (165) 
 

 
 ∇ ×𝑯𝑯 = 𝑱𝑱 (166) 

 This leads to Poynting’s theorem,  
 ∇ ⋅ (𝑬𝑬 × 𝑯𝑯) = ∇ × 𝑬𝑬 ⋅ 𝑯𝑯 − 𝑬𝑬 ⋅ ∇ × 𝑯𝑯 (167) 
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the whip must return from the tip of the whip to the handle. In short, electromagnetic waves 
cannot escape the charge at this time. So electromagnetic waves cannot overflow into the 
universe. Expressed as,  

 ∫ ∞
𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑∯ (𝑬𝑬 × 𝑯𝑯) ⋅ �̂�𝑛𝑑𝑑ΓΓ = 0 (162) 

 Γ is a sphere with an infinite radius. Converted from time domain to frequency domain,  
 ℜ∯ (𝑬𝑬 × 𝑯𝑯∗) ⋅ �̂�𝑛𝑑𝑑ΓΓ = 0 (163) 

 “ℜ” means take the real part. The above equation shows the axioms of the author’s 
electromagnetic theory. This axiom means that the electromagnetic field cannot overflow the 
universe. Note that Maxwell’s electromagnetic theory does not satisfy this axiom. For any 
antenna in Maxwell’s electromagnetic theory, there are,  

 ℜ∯ (𝑬𝑬 × 𝑯𝑯∗) ⋅ �̂�𝑛𝑑𝑑ΓΓ ≠ 0 (164) 
 
6.2  Magnetic quasi-static equation 
 
Under quasi-static magnetic conditions, the Faraday’s law and Ampere’s loop law in 

Maxwell’s equation still hold, 
 
 ∇ × 𝑬𝑬 = − 𝜕𝜕

𝜕𝜕𝑡𝑡 𝑩𝑩 (165) 
 

 
 ∇ ×𝑯𝑯 = 𝑱𝑱 (166) 

 This leads to Poynting’s theorem,  
 ∇ ⋅ (𝑬𝑬 × 𝑯𝑯) = ∇ × 𝑬𝑬 ⋅ 𝑯𝑯 − 𝑬𝑬 ⋅ ∇ × 𝑯𝑯 (167) 

 
Considering (165, 166),  
 ∇ ⋅ (𝑬𝑬 × 𝑯𝑯) = − 𝜕𝜕

𝜕𝜕𝑡𝑡 𝑩𝑩 ⋅ 𝑯𝑯 − 𝑬𝑬 ⋅ 𝑱𝑱 (168) 

of electrons themselves. That is to say, every charge, whether positive or negative, has its own 
electrostatic field. This field belongs to the charge itself. This field can transmit electromagnetic 
waves, therefore it is the ether of electrons themselves. Electromagnetic waves propagate in 
this field. Because this field belongs to the charge itself. The energy of electromagnetic waves 
cannot be separated from this charge. The author uses a whip to describe this field, where the 
charge is like carrying a whip. With a flick of the whip, energy is transmitted along the handle of 
the whip to the tip of the whip. But the energy on this whip cannot escape from it. 
Electromagnetic waves cannot escape from charges! 

So some people may ask, how does energy transfer between charges occur? The whips 
of two charges must both be struck and hit exactly together. In this way, these two charges can 
exchange energy. The whip here is the electrostatic field of charge. The electromagnetic waves 
emitted by these two charges must also be a retarded wave and an advanced wave. The 
retarded wave must be synchronized with the advanced wave. If the whip is empty, it is 
equivalent to a charge radiating a retarded wave, but this retarded wave has not found the 
advanced wave to synchronize with it. The energy of this retarded wave still needs to return to 
the radiation source of the electromagnetic wave. Just like a whip emptying, the energy flow on 
the whip must return from the tip of the whip to the handle. In short, electromagnetic waves 
cannot escape the charge at this time. So electromagnetic waves cannot overflow into the 
universe. Expressed as,  

 ∫ ∞
𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑∯ (𝑬𝑬 × 𝑯𝑯) ⋅ �̂�𝑛𝑑𝑑ΓΓ = 0 (162) 

 Γ is a sphere with an infinite radius. Converted from time domain to frequency domain,  
 ℜ∯ (𝑬𝑬 × 𝑯𝑯∗) ⋅ �̂�𝑛𝑑𝑑ΓΓ = 0 (163) 

 “ℜ” means take the real part. The above equation shows the axioms of the author’s 
electromagnetic theory. This axiom means that the electromagnetic field cannot overflow the 
universe. Note that Maxwell’s electromagnetic theory does not satisfy this axiom. For any 
antenna in Maxwell’s electromagnetic theory, there are,  

 ℜ∯ (𝑬𝑬 × 𝑯𝑯∗) ⋅ �̂�𝑛𝑑𝑑ΓΓ ≠ 0 (164) 
 
6.2  Magnetic quasi-static equation 
 
Under quasi-static magnetic conditions, the Faraday’s law and Ampere’s loop law in 

Maxwell’s equation still hold, 
 
 ∇ × 𝑬𝑬 = − 𝜕𝜕

𝜕𝜕𝑡𝑡 𝑩𝑩 (165) 
 

 
 ∇ ×𝑯𝑯 = 𝑱𝑱 (166) 

 This leads to Poynting’s theorem,  
 ∇ ⋅ (𝑬𝑬 × 𝑯𝑯) = ∇ × 𝑬𝑬 ⋅ 𝑯𝑯 − 𝑬𝑬 ⋅ ∇ × 𝑯𝑯 (167) 

 
Considering (165, 166),  
 ∇ ⋅ (𝑬𝑬 × 𝑯𝑯) = − 𝜕𝜕

𝜕𝜕𝑡𝑡 𝑩𝑩 ⋅ 𝑯𝑯 − 𝑬𝑬 ⋅ 𝑱𝑱 (168) 

of electrons themselves. That is to say, every charge, whether positive or negative, has its own 
electrostatic field. This field belongs to the charge itself. This field can transmit electromagnetic 
waves, therefore it is the ether of electrons themselves. Electromagnetic waves propagate in 
this field. Because this field belongs to the charge itself. The energy of electromagnetic waves 
cannot be separated from this charge. The author uses a whip to describe this field, where the 
charge is like carrying a whip. With a flick of the whip, energy is transmitted along the handle of 
the whip to the tip of the whip. But the energy on this whip cannot escape from it. 
Electromagnetic waves cannot escape from charges! 

So some people may ask, how does energy transfer between charges occur? The whips 
of two charges must both be struck and hit exactly together. In this way, these two charges can 
exchange energy. The whip here is the electrostatic field of charge. The electromagnetic waves 
emitted by these two charges must also be a retarded wave and an advanced wave. The 
retarded wave must be synchronized with the advanced wave. If the whip is empty, it is 
equivalent to a charge radiating a retarded wave, but this retarded wave has not found the 
advanced wave to synchronize with it. The energy of this retarded wave still needs to return to 
the radiation source of the electromagnetic wave. Just like a whip emptying, the energy flow on 
the whip must return from the tip of the whip to the handle. In short, electromagnetic waves 
cannot escape the charge at this time. So electromagnetic waves cannot overflow into the 
universe. Expressed as,  

 ∫ ∞
𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑∯ (𝑬𝑬 × 𝑯𝑯) ⋅ �̂�𝑛𝑑𝑑ΓΓ = 0 (162) 

 Γ is a sphere with an infinite radius. Converted from time domain to frequency domain,  
 ℜ∯ (𝑬𝑬 × 𝑯𝑯∗) ⋅ �̂�𝑛𝑑𝑑ΓΓ = 0 (163) 

 “ℜ” means take the real part. The above equation shows the axioms of the author’s 
electromagnetic theory. This axiom means that the electromagnetic field cannot overflow the 
universe. Note that Maxwell’s electromagnetic theory does not satisfy this axiom. For any 
antenna in Maxwell’s electromagnetic theory, there are,  

 ℜ∯ (𝑬𝑬 × 𝑯𝑯∗) ⋅ �̂�𝑛𝑑𝑑ΓΓ ≠ 0 (164) 
 
6.2  Magnetic quasi-static equation 
 
Under quasi-static magnetic conditions, the Faraday’s law and Ampere’s loop law in 

Maxwell’s equation still hold, 
 
 ∇ × 𝑬𝑬 = − 𝜕𝜕

𝜕𝜕𝑡𝑡 𝑩𝑩 (165) 
 

 
 ∇ ×𝑯𝑯 = 𝑱𝑱 (166) 

 This leads to Poynting’s theorem,  
 ∇ ⋅ (𝑬𝑬 × 𝑯𝑯) = ∇ × 𝑬𝑬 ⋅ 𝑯𝑯 − 𝑬𝑬 ⋅ ∇ × 𝑯𝑯 (167) 

 
Considering (165, 166),  
 ∇ ⋅ (𝑬𝑬 × 𝑯𝑯) = − 𝜕𝜕

𝜕𝜕𝑡𝑡 𝑩𝑩 ⋅ 𝑯𝑯 − 𝑬𝑬 ⋅ 𝑱𝑱 (168) 

 Γ is a sphere with an infinite radius. Converted from time domain to frequency domain,

 “     ” means take the real part. The above equation shows the 
axioms of the author’s electromagnetic theory. This axiom means 
that the electromagnetic field cannot overflow the universe. 

Note that Maxwell’s electromagnetic theory does not satisfy this 
axiom. For any antenna in Maxwell’s electromagnetic theory, 
there are,

6.2 Magnetic Quasi-Static Equation
Under quasi-static magnetic conditions, the Faraday’s law and Ampere’s loop law in Maxwell’s equation still hold,

 This leads to Poynting’s theorem,

Considering (165, 166),

Perform volume integration on the upper equation and apply Gaussian law to the left side of the formula to obtain,

 
Perform volume integration on the upper equation and apply Gaussian law to the left 

side of the formula to obtain,  
 ∯ (𝑬𝑬 × 𝑯𝑯) ⋅ �̂�𝑛𝑑𝑑ΓΓ = −∫ 𝑉𝑉 (

𝜕𝜕
𝜕𝜕𝜕𝜕 𝑩𝑩 ⋅ 𝑯𝑯 + 𝑬𝑬 ⋅ 𝑱𝑱)𝑑𝑑𝑑𝑑 (169) 

 
Perform time integration on the above equation,  
 ∫ ∞

𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑∯ (𝑬𝑬 × 𝑯𝑯) ⋅ �̂�𝑛𝑑𝑑ΓΓ  
 

 = −∫ ∞
𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑 ∫ 𝑉𝑉 (

𝜕𝜕
𝜕𝜕𝜕𝜕 𝑩𝑩 ⋅ 𝑯𝑯 + 𝑬𝑬 ⋅ 𝑱𝑱)𝑑𝑑𝑑𝑑 (170) 

 
Consider,  
 ∫ ∞

𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑 ∫ 𝑉𝑉 (
𝜕𝜕
𝜕𝜕𝜕𝜕 𝑩𝑩 ⋅ 𝑯𝑯)𝑑𝑑𝑑𝑑 = ∫ ∞

𝜕𝜕=−∞
𝜕𝜕
𝜕𝜕𝜕𝜕 𝑈𝑈𝑑𝑑𝑑𝑑 

 
 = 𝑈𝑈(∞) − 𝑈𝑈(−∞) = 0 (171) 

 
wherein,  
 𝜕𝜕

𝜕𝜕𝜕𝜕 𝑈𝑈 = 𝜕𝜕
𝜕𝜕𝜕𝜕 𝑩𝑩 ⋅ 𝑯𝑯 (172) 

  
 𝑈𝑈 = 1

2𝑩𝑩 ⋅ 𝑯𝑯 (173) 
 𝑈𝑈(∞) is the system energy at the end of the process. 𝑈𝑈(−∞) is the system energy at the 
beginning of the process, and both energies are zero. Consider the formula (170), which is 
called, 

 
 ∫ ∞

𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑∯ (𝑬𝑬 × 𝑯𝑯) ⋅ �̂�𝑛𝑑𝑑ΓΓ = −∫ ∞
𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑 ∫ 𝑉𝑉 (𝑬𝑬 ⋅ 𝑱𝑱)𝑑𝑑𝑑𝑑 (174) 

 The above equation is the relaxed Poynting’s theorem, which was obtained under magnetic 
quasi-static conditions. However, we assume that the above equation still holds under radiation 
electromagnetic field conditions. It should notice that, in the radiation electromagnetic field, 
the author does not assume that the Poynting theorem (169), however he still agree the 
relaxed Poynting theorem (174). Considering that radiation does not overflow into the universe 
by substituting the above equation (162) into (174) yields,  

 ∫ ∞
𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑 ∫ 𝑉𝑉 (𝑬𝑬 ⋅ 𝑱𝑱)𝑑𝑑𝑑𝑑 = 0 (175) 

 
Consider the principle of superposition  
 𝑱𝑱 = ∑ 𝑁𝑁

𝑖𝑖=1 𝑱𝑱𝑖𝑖  (176) 
 

The resulting electromagnetic field  
 𝑬𝑬 = ∑ 𝑁𝑁

𝑖𝑖=1 𝑬𝑬𝑖𝑖,𝑯𝑯 = ∑ 𝑁𝑁
𝑖𝑖=1 𝑯𝑯𝑖𝑖  (177) 

 
Substituting (175) yields,  
 ∑ 𝑁𝑁

𝑖𝑖=1 ∑ 𝑁𝑁
𝑗𝑗=1 ∫ ∞

𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑 ∫ 𝑉𝑉 (𝑬𝑬𝑖𝑖 ⋅ 𝑱𝑱𝑗𝑗)𝑑𝑑𝑑𝑑 = 0 (178) 
 

 
Perform volume integration on the upper equation and apply Gaussian law to the left 

side of the formula to obtain,  
 ∯ (𝑬𝑬 × 𝑯𝑯) ⋅ �̂�𝑛𝑑𝑑ΓΓ = −∫ 𝑉𝑉 (

𝜕𝜕
𝜕𝜕𝜕𝜕 𝑩𝑩 ⋅ 𝑯𝑯 + 𝑬𝑬 ⋅ 𝑱𝑱)𝑑𝑑𝑑𝑑 (169) 

 
Perform time integration on the above equation,  
 ∫ ∞

𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑∯ (𝑬𝑬 × 𝑯𝑯) ⋅ �̂�𝑛𝑑𝑑ΓΓ  
 

 = −∫ ∞
𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑 ∫ 𝑉𝑉 (

𝜕𝜕
𝜕𝜕𝜕𝜕 𝑩𝑩 ⋅ 𝑯𝑯 + 𝑬𝑬 ⋅ 𝑱𝑱)𝑑𝑑𝑑𝑑 (170) 

 
Consider,  
 ∫ ∞

𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑 ∫ 𝑉𝑉 (
𝜕𝜕
𝜕𝜕𝜕𝜕 𝑩𝑩 ⋅ 𝑯𝑯)𝑑𝑑𝑑𝑑 = ∫ ∞

𝜕𝜕=−∞
𝜕𝜕
𝜕𝜕𝜕𝜕 𝑈𝑈𝑑𝑑𝑑𝑑 

 
 = 𝑈𝑈(∞) − 𝑈𝑈(−∞) = 0 (171) 

 
wherein,  
 𝜕𝜕

𝜕𝜕𝜕𝜕 𝑈𝑈 = 𝜕𝜕
𝜕𝜕𝜕𝜕 𝑩𝑩 ⋅ 𝑯𝑯 (172) 

  
 𝑈𝑈 = 1

2𝑩𝑩 ⋅ 𝑯𝑯 (173) 
 𝑈𝑈(∞) is the system energy at the end of the process. 𝑈𝑈(−∞) is the system energy at the 
beginning of the process, and both energies are zero. Consider the formula (170), which is 
called, 

 
 ∫ ∞

𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑∯ (𝑬𝑬 × 𝑯𝑯) ⋅ �̂�𝑛𝑑𝑑ΓΓ = −∫ ∞
𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑 ∫ 𝑉𝑉 (𝑬𝑬 ⋅ 𝑱𝑱)𝑑𝑑𝑑𝑑 (174) 

 The above equation is the relaxed Poynting’s theorem, which was obtained under magnetic 
quasi-static conditions. However, we assume that the above equation still holds under radiation 
electromagnetic field conditions. It should notice that, in the radiation electromagnetic field, 
the author does not assume that the Poynting theorem (169), however he still agree the 
relaxed Poynting theorem (174). Considering that radiation does not overflow into the universe 
by substituting the above equation (162) into (174) yields,  

 ∫ ∞
𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑 ∫ 𝑉𝑉 (𝑬𝑬 ⋅ 𝑱𝑱)𝑑𝑑𝑑𝑑 = 0 (175) 

 
Consider the principle of superposition  
 𝑱𝑱 = ∑ 𝑁𝑁

𝑖𝑖=1 𝑱𝑱𝑖𝑖  (176) 
 

The resulting electromagnetic field  
 𝑬𝑬 = ∑ 𝑁𝑁

𝑖𝑖=1 𝑬𝑬𝑖𝑖,𝑯𝑯 = ∑ 𝑁𝑁
𝑖𝑖=1 𝑯𝑯𝑖𝑖  (177) 

 
Substituting (175) yields,  
 ∑ 𝑁𝑁

𝑖𝑖=1 ∑ 𝑁𝑁
𝑗𝑗=1 ∫ ∞

𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑 ∫ 𝑉𝑉 (𝑬𝑬𝑖𝑖 ⋅ 𝑱𝑱𝑗𝑗)𝑑𝑑𝑑𝑑 = 0 (178) 
 

Perform time integration on the above equation,

Consider,



Volume 2 | Issue 1 | 21OA J Applied Sci Technol , 2024

 
Perform volume integration on the upper equation and apply Gaussian law to the left 

side of the formula to obtain,  
 ∯ (𝑬𝑬 × 𝑯𝑯) ⋅ �̂�𝑛𝑑𝑑ΓΓ = −∫ 𝑉𝑉 (

𝜕𝜕
𝜕𝜕𝜕𝜕 𝑩𝑩 ⋅ 𝑯𝑯 + 𝑬𝑬 ⋅ 𝑱𝑱)𝑑𝑑𝑑𝑑 (169) 

 
Perform time integration on the above equation,  
 ∫ ∞

𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑∯ (𝑬𝑬 × 𝑯𝑯) ⋅ �̂�𝑛𝑑𝑑ΓΓ  
 

 = −∫ ∞
𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑 ∫ 𝑉𝑉 (

𝜕𝜕
𝜕𝜕𝜕𝜕 𝑩𝑩 ⋅ 𝑯𝑯 + 𝑬𝑬 ⋅ 𝑱𝑱)𝑑𝑑𝑑𝑑 (170) 

 
Consider,  
 ∫ ∞

𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑 ∫ 𝑉𝑉 (
𝜕𝜕
𝜕𝜕𝜕𝜕 𝑩𝑩 ⋅ 𝑯𝑯)𝑑𝑑𝑑𝑑 = ∫ ∞

𝜕𝜕=−∞
𝜕𝜕
𝜕𝜕𝜕𝜕 𝑈𝑈𝑑𝑑𝑑𝑑 

 
 = 𝑈𝑈(∞) − 𝑈𝑈(−∞) = 0 (171) 

 
wherein,  
 𝜕𝜕

𝜕𝜕𝜕𝜕 𝑈𝑈 = 𝜕𝜕
𝜕𝜕𝜕𝜕 𝑩𝑩 ⋅ 𝑯𝑯 (172) 

  
 𝑈𝑈 = 1

2𝑩𝑩 ⋅ 𝑯𝑯 (173) 
 𝑈𝑈(∞) is the system energy at the end of the process. 𝑈𝑈(−∞) is the system energy at the 
beginning of the process, and both energies are zero. Consider the formula (170), which is 
called, 

 
 ∫ ∞

𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑∯ (𝑬𝑬 × 𝑯𝑯) ⋅ �̂�𝑛𝑑𝑑ΓΓ = −∫ ∞
𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑 ∫ 𝑉𝑉 (𝑬𝑬 ⋅ 𝑱𝑱)𝑑𝑑𝑑𝑑 (174) 

 The above equation is the relaxed Poynting’s theorem, which was obtained under magnetic 
quasi-static conditions. However, we assume that the above equation still holds under radiation 
electromagnetic field conditions. It should notice that, in the radiation electromagnetic field, 
the author does not assume that the Poynting theorem (169), however he still agree the 
relaxed Poynting theorem (174). Considering that radiation does not overflow into the universe 
by substituting the above equation (162) into (174) yields,  

 ∫ ∞
𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑 ∫ 𝑉𝑉 (𝑬𝑬 ⋅ 𝑱𝑱)𝑑𝑑𝑑𝑑 = 0 (175) 

 
Consider the principle of superposition  
 𝑱𝑱 = ∑ 𝑁𝑁

𝑖𝑖=1 𝑱𝑱𝑖𝑖  (176) 
 

The resulting electromagnetic field  
 𝑬𝑬 = ∑ 𝑁𝑁

𝑖𝑖=1 𝑬𝑬𝑖𝑖,𝑯𝑯 = ∑ 𝑁𝑁
𝑖𝑖=1 𝑯𝑯𝑖𝑖  (177) 

 
Substituting (175) yields,  
 ∑ 𝑁𝑁

𝑖𝑖=1 ∑ 𝑁𝑁
𝑗𝑗=1 ∫ ∞

𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑 ∫ 𝑉𝑉 (𝑬𝑬𝑖𝑖 ⋅ 𝑱𝑱𝑗𝑗)𝑑𝑑𝑑𝑑 = 0 (178) 
 

 
Perform volume integration on the upper equation and apply Gaussian law to the left 

side of the formula to obtain,  
 ∯ (𝑬𝑬 × 𝑯𝑯) ⋅ �̂�𝑛𝑑𝑑ΓΓ = −∫ 𝑉𝑉 (

𝜕𝜕
𝜕𝜕𝜕𝜕 𝑩𝑩 ⋅ 𝑯𝑯 + 𝑬𝑬 ⋅ 𝑱𝑱)𝑑𝑑𝑑𝑑 (169) 

 
Perform time integration on the above equation,  
 ∫ ∞

𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑∯ (𝑬𝑬 × 𝑯𝑯) ⋅ �̂�𝑛𝑑𝑑ΓΓ  
 

 = −∫ ∞
𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑 ∫ 𝑉𝑉 (

𝜕𝜕
𝜕𝜕𝜕𝜕 𝑩𝑩 ⋅ 𝑯𝑯 + 𝑬𝑬 ⋅ 𝑱𝑱)𝑑𝑑𝑑𝑑 (170) 

 
Consider,  
 ∫ ∞

𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑 ∫ 𝑉𝑉 (
𝜕𝜕
𝜕𝜕𝜕𝜕 𝑩𝑩 ⋅ 𝑯𝑯)𝑑𝑑𝑑𝑑 = ∫ ∞

𝜕𝜕=−∞
𝜕𝜕
𝜕𝜕𝜕𝜕 𝑈𝑈𝑑𝑑𝑑𝑑 

 
 = 𝑈𝑈(∞) − 𝑈𝑈(−∞) = 0 (171) 

 
wherein,  
 𝜕𝜕

𝜕𝜕𝜕𝜕 𝑈𝑈 = 𝜕𝜕
𝜕𝜕𝜕𝜕 𝑩𝑩 ⋅ 𝑯𝑯 (172) 

  
 𝑈𝑈 = 1

2𝑩𝑩 ⋅ 𝑯𝑯 (173) 
 𝑈𝑈(∞) is the system energy at the end of the process. 𝑈𝑈(−∞) is the system energy at the 
beginning of the process, and both energies are zero. Consider the formula (170), which is 
called, 

 
 ∫ ∞

𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑∯ (𝑬𝑬 × 𝑯𝑯) ⋅ �̂�𝑛𝑑𝑑ΓΓ = −∫ ∞
𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑 ∫ 𝑉𝑉 (𝑬𝑬 ⋅ 𝑱𝑱)𝑑𝑑𝑑𝑑 (174) 

 The above equation is the relaxed Poynting’s theorem, which was obtained under magnetic 
quasi-static conditions. However, we assume that the above equation still holds under radiation 
electromagnetic field conditions. It should notice that, in the radiation electromagnetic field, 
the author does not assume that the Poynting theorem (169), however he still agree the 
relaxed Poynting theorem (174). Considering that radiation does not overflow into the universe 
by substituting the above equation (162) into (174) yields,  

 ∫ ∞
𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑 ∫ 𝑉𝑉 (𝑬𝑬 ⋅ 𝑱𝑱)𝑑𝑑𝑑𝑑 = 0 (175) 

 
Consider the principle of superposition  
 𝑱𝑱 = ∑ 𝑁𝑁

𝑖𝑖=1 𝑱𝑱𝑖𝑖  (176) 
 

The resulting electromagnetic field  
 𝑬𝑬 = ∑ 𝑁𝑁

𝑖𝑖=1 𝑬𝑬𝑖𝑖,𝑯𝑯 = ∑ 𝑁𝑁
𝑖𝑖=1 𝑯𝑯𝑖𝑖  (177) 

 
Substituting (175) yields,  
 ∑ 𝑁𝑁

𝑖𝑖=1 ∑ 𝑁𝑁
𝑗𝑗=1 ∫ ∞

𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑 ∫ 𝑉𝑉 (𝑬𝑬𝑖𝑖 ⋅ 𝑱𝑱𝑗𝑗)𝑑𝑑𝑑𝑑 = 0 (178) 
 

 
Perform volume integration on the upper equation and apply Gaussian law to the left 

side of the formula to obtain,  
 ∯ (𝑬𝑬 × 𝑯𝑯) ⋅ �̂�𝑛𝑑𝑑ΓΓ = −∫ 𝑉𝑉 (

𝜕𝜕
𝜕𝜕𝜕𝜕 𝑩𝑩 ⋅ 𝑯𝑯 + 𝑬𝑬 ⋅ 𝑱𝑱)𝑑𝑑𝑑𝑑 (169) 

 
Perform time integration on the above equation,  
 ∫ ∞

𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑∯ (𝑬𝑬 × 𝑯𝑯) ⋅ �̂�𝑛𝑑𝑑ΓΓ  
 

 = −∫ ∞
𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑 ∫ 𝑉𝑉 (

𝜕𝜕
𝜕𝜕𝜕𝜕 𝑩𝑩 ⋅ 𝑯𝑯 + 𝑬𝑬 ⋅ 𝑱𝑱)𝑑𝑑𝑑𝑑 (170) 

 
Consider,  
 ∫ ∞

𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑 ∫ 𝑉𝑉 (
𝜕𝜕
𝜕𝜕𝜕𝜕 𝑩𝑩 ⋅ 𝑯𝑯)𝑑𝑑𝑑𝑑 = ∫ ∞

𝜕𝜕=−∞
𝜕𝜕
𝜕𝜕𝜕𝜕 𝑈𝑈𝑑𝑑𝑑𝑑 

 
 = 𝑈𝑈(∞) − 𝑈𝑈(−∞) = 0 (171) 

 
wherein,  
 𝜕𝜕

𝜕𝜕𝜕𝜕 𝑈𝑈 = 𝜕𝜕
𝜕𝜕𝜕𝜕 𝑩𝑩 ⋅ 𝑯𝑯 (172) 

  
 𝑈𝑈 = 1

2𝑩𝑩 ⋅ 𝑯𝑯 (173) 
 𝑈𝑈(∞) is the system energy at the end of the process. 𝑈𝑈(−∞) is the system energy at the 
beginning of the process, and both energies are zero. Consider the formula (170), which is 
called, 

 
 ∫ ∞

𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑∯ (𝑬𝑬 × 𝑯𝑯) ⋅ �̂�𝑛𝑑𝑑ΓΓ = −∫ ∞
𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑 ∫ 𝑉𝑉 (𝑬𝑬 ⋅ 𝑱𝑱)𝑑𝑑𝑑𝑑 (174) 

 The above equation is the relaxed Poynting’s theorem, which was obtained under magnetic 
quasi-static conditions. However, we assume that the above equation still holds under radiation 
electromagnetic field conditions. It should notice that, in the radiation electromagnetic field, 
the author does not assume that the Poynting theorem (169), however he still agree the 
relaxed Poynting theorem (174). Considering that radiation does not overflow into the universe 
by substituting the above equation (162) into (174) yields,  

 ∫ ∞
𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑 ∫ 𝑉𝑉 (𝑬𝑬 ⋅ 𝑱𝑱)𝑑𝑑𝑑𝑑 = 0 (175) 

 
Consider the principle of superposition  
 𝑱𝑱 = ∑ 𝑁𝑁

𝑖𝑖=1 𝑱𝑱𝑖𝑖  (176) 
 

The resulting electromagnetic field  
 𝑬𝑬 = ∑ 𝑁𝑁

𝑖𝑖=1 𝑬𝑬𝑖𝑖,𝑯𝑯 = ∑ 𝑁𝑁
𝑖𝑖=1 𝑯𝑯𝑖𝑖  (177) 

 
Substituting (175) yields,  
 ∑ 𝑁𝑁

𝑖𝑖=1 ∑ 𝑁𝑁
𝑗𝑗=1 ∫ ∞

𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑 ∫ 𝑉𝑉 (𝑬𝑬𝑖𝑖 ⋅ 𝑱𝑱𝑗𝑗)𝑑𝑑𝑑𝑑 = 0 (178) 
 

 
Perform volume integration on the upper equation and apply Gaussian law to the left 

side of the formula to obtain,  
 ∯ (𝑬𝑬 × 𝑯𝑯) ⋅ �̂�𝑛𝑑𝑑ΓΓ = −∫ 𝑉𝑉 (

𝜕𝜕
𝜕𝜕𝜕𝜕 𝑩𝑩 ⋅ 𝑯𝑯 + 𝑬𝑬 ⋅ 𝑱𝑱)𝑑𝑑𝑑𝑑 (169) 

 
Perform time integration on the above equation,  
 ∫ ∞

𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑∯ (𝑬𝑬 × 𝑯𝑯) ⋅ �̂�𝑛𝑑𝑑ΓΓ  
 

 = −∫ ∞
𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑 ∫ 𝑉𝑉 (

𝜕𝜕
𝜕𝜕𝜕𝜕 𝑩𝑩 ⋅ 𝑯𝑯 + 𝑬𝑬 ⋅ 𝑱𝑱)𝑑𝑑𝑑𝑑 (170) 

 
Consider,  
 ∫ ∞

𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑 ∫ 𝑉𝑉 (
𝜕𝜕
𝜕𝜕𝜕𝜕 𝑩𝑩 ⋅ 𝑯𝑯)𝑑𝑑𝑑𝑑 = ∫ ∞

𝜕𝜕=−∞
𝜕𝜕
𝜕𝜕𝜕𝜕 𝑈𝑈𝑑𝑑𝑑𝑑 

 
 = 𝑈𝑈(∞) − 𝑈𝑈(−∞) = 0 (171) 

 
wherein,  
 𝜕𝜕

𝜕𝜕𝜕𝜕 𝑈𝑈 = 𝜕𝜕
𝜕𝜕𝜕𝜕 𝑩𝑩 ⋅ 𝑯𝑯 (172) 

  
 𝑈𝑈 = 1

2𝑩𝑩 ⋅ 𝑯𝑯 (173) 
 𝑈𝑈(∞) is the system energy at the end of the process. 𝑈𝑈(−∞) is the system energy at the 
beginning of the process, and both energies are zero. Consider the formula (170), which is 
called, 

 
 ∫ ∞

𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑∯ (𝑬𝑬 × 𝑯𝑯) ⋅ �̂�𝑛𝑑𝑑ΓΓ = −∫ ∞
𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑 ∫ 𝑉𝑉 (𝑬𝑬 ⋅ 𝑱𝑱)𝑑𝑑𝑑𝑑 (174) 

 The above equation is the relaxed Poynting’s theorem, which was obtained under magnetic 
quasi-static conditions. However, we assume that the above equation still holds under radiation 
electromagnetic field conditions. It should notice that, in the radiation electromagnetic field, 
the author does not assume that the Poynting theorem (169), however he still agree the 
relaxed Poynting theorem (174). Considering that radiation does not overflow into the universe 
by substituting the above equation (162) into (174) yields,  

 ∫ ∞
𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑 ∫ 𝑉𝑉 (𝑬𝑬 ⋅ 𝑱𝑱)𝑑𝑑𝑑𝑑 = 0 (175) 

 
Consider the principle of superposition  
 𝑱𝑱 = ∑ 𝑁𝑁

𝑖𝑖=1 𝑱𝑱𝑖𝑖  (176) 
 

The resulting electromagnetic field  
 𝑬𝑬 = ∑ 𝑁𝑁

𝑖𝑖=1 𝑬𝑬𝑖𝑖,𝑯𝑯 = ∑ 𝑁𝑁
𝑖𝑖=1 𝑯𝑯𝑖𝑖  (177) 

 
Substituting (175) yields,  
 ∑ 𝑁𝑁

𝑖𝑖=1 ∑ 𝑁𝑁
𝑗𝑗=1 ∫ ∞

𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑 ∫ 𝑉𝑉 (𝑬𝑬𝑖𝑖 ⋅ 𝑱𝑱𝑗𝑗)𝑑𝑑𝑑𝑑 = 0 (178) 
 

 
Perform volume integration on the upper equation and apply Gaussian law to the left 

side of the formula to obtain,  
 ∯ (𝑬𝑬 × 𝑯𝑯) ⋅ �̂�𝑛𝑑𝑑ΓΓ = −∫ 𝑉𝑉 (

𝜕𝜕
𝜕𝜕𝜕𝜕 𝑩𝑩 ⋅ 𝑯𝑯 + 𝑬𝑬 ⋅ 𝑱𝑱)𝑑𝑑𝑑𝑑 (169) 

 
Perform time integration on the above equation,  
 ∫ ∞

𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑∯ (𝑬𝑬 × 𝑯𝑯) ⋅ �̂�𝑛𝑑𝑑ΓΓ  
 

 = −∫ ∞
𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑 ∫ 𝑉𝑉 (

𝜕𝜕
𝜕𝜕𝜕𝜕 𝑩𝑩 ⋅ 𝑯𝑯 + 𝑬𝑬 ⋅ 𝑱𝑱)𝑑𝑑𝑑𝑑 (170) 

 
Consider,  
 ∫ ∞

𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑 ∫ 𝑉𝑉 (
𝜕𝜕
𝜕𝜕𝜕𝜕 𝑩𝑩 ⋅ 𝑯𝑯)𝑑𝑑𝑑𝑑 = ∫ ∞

𝜕𝜕=−∞
𝜕𝜕
𝜕𝜕𝜕𝜕 𝑈𝑈𝑑𝑑𝑑𝑑 

 
 = 𝑈𝑈(∞) − 𝑈𝑈(−∞) = 0 (171) 

 
wherein,  
 𝜕𝜕

𝜕𝜕𝜕𝜕 𝑈𝑈 = 𝜕𝜕
𝜕𝜕𝜕𝜕 𝑩𝑩 ⋅ 𝑯𝑯 (172) 

  
 𝑈𝑈 = 1

2𝑩𝑩 ⋅ 𝑯𝑯 (173) 
 𝑈𝑈(∞) is the system energy at the end of the process. 𝑈𝑈(−∞) is the system energy at the 
beginning of the process, and both energies are zero. Consider the formula (170), which is 
called, 

 
 ∫ ∞

𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑∯ (𝑬𝑬 × 𝑯𝑯) ⋅ �̂�𝑛𝑑𝑑ΓΓ = −∫ ∞
𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑 ∫ 𝑉𝑉 (𝑬𝑬 ⋅ 𝑱𝑱)𝑑𝑑𝑑𝑑 (174) 

 The above equation is the relaxed Poynting’s theorem, which was obtained under magnetic 
quasi-static conditions. However, we assume that the above equation still holds under radiation 
electromagnetic field conditions. It should notice that, in the radiation electromagnetic field, 
the author does not assume that the Poynting theorem (169), however he still agree the 
relaxed Poynting theorem (174). Considering that radiation does not overflow into the universe 
by substituting the above equation (162) into (174) yields,  

 ∫ ∞
𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑 ∫ 𝑉𝑉 (𝑬𝑬 ⋅ 𝑱𝑱)𝑑𝑑𝑑𝑑 = 0 (175) 

 
Consider the principle of superposition  
 𝑱𝑱 = ∑ 𝑁𝑁

𝑖𝑖=1 𝑱𝑱𝑖𝑖  (176) 
 

The resulting electromagnetic field  
 𝑬𝑬 = ∑ 𝑁𝑁

𝑖𝑖=1 𝑬𝑬𝑖𝑖,𝑯𝑯 = ∑ 𝑁𝑁
𝑖𝑖=1 𝑯𝑯𝑖𝑖  (177) 

 
Substituting (175) yields,  
 ∑ 𝑁𝑁

𝑖𝑖=1 ∑ 𝑁𝑁
𝑗𝑗=1 ∫ ∞

𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑 ∫ 𝑉𝑉 (𝑬𝑬𝑖𝑖 ⋅ 𝑱𝑱𝑗𝑗)𝑑𝑑𝑑𝑑 = 0 (178) 
 

 
Perform volume integration on the upper equation and apply Gaussian law to the left 

side of the formula to obtain,  
 ∯ (𝑬𝑬 × 𝑯𝑯) ⋅ �̂�𝑛𝑑𝑑ΓΓ = −∫ 𝑉𝑉 (

𝜕𝜕
𝜕𝜕𝜕𝜕 𝑩𝑩 ⋅ 𝑯𝑯 + 𝑬𝑬 ⋅ 𝑱𝑱)𝑑𝑑𝑑𝑑 (169) 

 
Perform time integration on the above equation,  
 ∫ ∞

𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑∯ (𝑬𝑬 × 𝑯𝑯) ⋅ �̂�𝑛𝑑𝑑ΓΓ  
 

 = −∫ ∞
𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑 ∫ 𝑉𝑉 (

𝜕𝜕
𝜕𝜕𝜕𝜕 𝑩𝑩 ⋅ 𝑯𝑯 + 𝑬𝑬 ⋅ 𝑱𝑱)𝑑𝑑𝑑𝑑 (170) 

 
Consider,  
 ∫ ∞

𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑 ∫ 𝑉𝑉 (
𝜕𝜕
𝜕𝜕𝜕𝜕 𝑩𝑩 ⋅ 𝑯𝑯)𝑑𝑑𝑑𝑑 = ∫ ∞

𝜕𝜕=−∞
𝜕𝜕
𝜕𝜕𝜕𝜕 𝑈𝑈𝑑𝑑𝑑𝑑 

 
 = 𝑈𝑈(∞) − 𝑈𝑈(−∞) = 0 (171) 

 
wherein,  
 𝜕𝜕

𝜕𝜕𝜕𝜕 𝑈𝑈 = 𝜕𝜕
𝜕𝜕𝜕𝜕 𝑩𝑩 ⋅ 𝑯𝑯 (172) 

  
 𝑈𝑈 = 1

2𝑩𝑩 ⋅ 𝑯𝑯 (173) 
 𝑈𝑈(∞) is the system energy at the end of the process. 𝑈𝑈(−∞) is the system energy at the 
beginning of the process, and both energies are zero. Consider the formula (170), which is 
called, 

 
 ∫ ∞

𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑∯ (𝑬𝑬 × 𝑯𝑯) ⋅ �̂�𝑛𝑑𝑑ΓΓ = −∫ ∞
𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑 ∫ 𝑉𝑉 (𝑬𝑬 ⋅ 𝑱𝑱)𝑑𝑑𝑑𝑑 (174) 

 The above equation is the relaxed Poynting’s theorem, which was obtained under magnetic 
quasi-static conditions. However, we assume that the above equation still holds under radiation 
electromagnetic field conditions. It should notice that, in the radiation electromagnetic field, 
the author does not assume that the Poynting theorem (169), however he still agree the 
relaxed Poynting theorem (174). Considering that radiation does not overflow into the universe 
by substituting the above equation (162) into (174) yields,  

 ∫ ∞
𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑 ∫ 𝑉𝑉 (𝑬𝑬 ⋅ 𝑱𝑱)𝑑𝑑𝑑𝑑 = 0 (175) 

 
Consider the principle of superposition  
 𝑱𝑱 = ∑ 𝑁𝑁

𝑖𝑖=1 𝑱𝑱𝑖𝑖  (176) 
 

The resulting electromagnetic field  
 𝑬𝑬 = ∑ 𝑁𝑁

𝑖𝑖=1 𝑬𝑬𝑖𝑖,𝑯𝑯 = ∑ 𝑁𝑁
𝑖𝑖=1 𝑯𝑯𝑖𝑖  (177) 

 
Substituting (175) yields,  
 ∑ 𝑁𝑁

𝑖𝑖=1 ∑ 𝑁𝑁
𝑗𝑗=1 ∫ ∞

𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑 ∫ 𝑉𝑉 (𝑬𝑬𝑖𝑖 ⋅ 𝑱𝑱𝑗𝑗)𝑑𝑑𝑑𝑑 = 0 (178) 
 

 
Perform volume integration on the upper equation and apply Gaussian law to the left 

side of the formula to obtain,  
 ∯ (𝑬𝑬 × 𝑯𝑯) ⋅ �̂�𝑛𝑑𝑑ΓΓ = −∫ 𝑉𝑉 (

𝜕𝜕
𝜕𝜕𝜕𝜕 𝑩𝑩 ⋅ 𝑯𝑯 + 𝑬𝑬 ⋅ 𝑱𝑱)𝑑𝑑𝑑𝑑 (169) 

 
Perform time integration on the above equation,  
 ∫ ∞

𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑∯ (𝑬𝑬 × 𝑯𝑯) ⋅ �̂�𝑛𝑑𝑑ΓΓ  
 

 = −∫ ∞
𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑 ∫ 𝑉𝑉 (

𝜕𝜕
𝜕𝜕𝜕𝜕 𝑩𝑩 ⋅ 𝑯𝑯 + 𝑬𝑬 ⋅ 𝑱𝑱)𝑑𝑑𝑑𝑑 (170) 

 
Consider,  
 ∫ ∞

𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑 ∫ 𝑉𝑉 (
𝜕𝜕
𝜕𝜕𝜕𝜕 𝑩𝑩 ⋅ 𝑯𝑯)𝑑𝑑𝑑𝑑 = ∫ ∞

𝜕𝜕=−∞
𝜕𝜕
𝜕𝜕𝜕𝜕 𝑈𝑈𝑑𝑑𝑑𝑑 

 
 = 𝑈𝑈(∞) − 𝑈𝑈(−∞) = 0 (171) 

 
wherein,  
 𝜕𝜕

𝜕𝜕𝜕𝜕 𝑈𝑈 = 𝜕𝜕
𝜕𝜕𝜕𝜕 𝑩𝑩 ⋅ 𝑯𝑯 (172) 

  
 𝑈𝑈 = 1

2𝑩𝑩 ⋅ 𝑯𝑯 (173) 
 𝑈𝑈(∞) is the system energy at the end of the process. 𝑈𝑈(−∞) is the system energy at the 
beginning of the process, and both energies are zero. Consider the formula (170), which is 
called, 

 
 ∫ ∞

𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑∯ (𝑬𝑬 × 𝑯𝑯) ⋅ �̂�𝑛𝑑𝑑ΓΓ = −∫ ∞
𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑 ∫ 𝑉𝑉 (𝑬𝑬 ⋅ 𝑱𝑱)𝑑𝑑𝑑𝑑 (174) 

 The above equation is the relaxed Poynting’s theorem, which was obtained under magnetic 
quasi-static conditions. However, we assume that the above equation still holds under radiation 
electromagnetic field conditions. It should notice that, in the radiation electromagnetic field, 
the author does not assume that the Poynting theorem (169), however he still agree the 
relaxed Poynting theorem (174). Considering that radiation does not overflow into the universe 
by substituting the above equation (162) into (174) yields,  

 ∫ ∞
𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑 ∫ 𝑉𝑉 (𝑬𝑬 ⋅ 𝑱𝑱)𝑑𝑑𝑑𝑑 = 0 (175) 

 
Consider the principle of superposition  
 𝑱𝑱 = ∑ 𝑁𝑁

𝑖𝑖=1 𝑱𝑱𝑖𝑖  (176) 
 

The resulting electromagnetic field  
 𝑬𝑬 = ∑ 𝑁𝑁

𝑖𝑖=1 𝑬𝑬𝑖𝑖,𝑯𝑯 = ∑ 𝑁𝑁
𝑖𝑖=1 𝑯𝑯𝑖𝑖  (177) 

 
Substituting (175) yields,  
 ∑ 𝑁𝑁

𝑖𝑖=1 ∑ 𝑁𝑁
𝑗𝑗=1 ∫ ∞

𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑 ∫ 𝑉𝑉 (𝑬𝑬𝑖𝑖 ⋅ 𝑱𝑱𝑗𝑗)𝑑𝑑𝑑𝑑 = 0 (178) 
 

where in, 

U(∞) is the system energy at the end of the process. U(-∞) is the system energy at the beginning of the process, and both energies 
are zero. Consider the formula (170), which is called,

 The above equation is the relaxed Poynting’s theorem, which 
was obtained under magnetic quasi-static conditions. However, 
we assume that the above equation still holds under radiation 
electromagnetic field conditions. It should notice that, in the 
radiation electromagnetic field, the author does not assume that 

the Poynting theorem (169), however he still agree the relaxed 
Poynting theorem (174). Considering that radiation does not 
overflow into the universe by substituting the above equation 
(162) into (174) yields,

Consider the principle of superposition

The resulting electromagnetic field

Substituting (175) yields,

Consider again (175) for J = Ji Time also holds, that is,Consider again (175) for 𝑱𝑱 = 𝑱𝑱𝑖𝑖  Time also holds, that is,  
 ∫ ∞

𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑 ∫ 𝑉𝑉 (𝑬𝑬𝑖𝑖 ⋅ 𝑱𝑱𝑖𝑖)𝑑𝑑𝑑𝑑 = 0 (179) 
 

Substituting (179) into (178) yields,  
 ∑ 𝑁𝑁

𝑖𝑖=1 ∑ 𝑁𝑁
𝑗𝑗=1,𝑗𝑗≠𝑖𝑖 ∫ ∞

𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑 ∫ 𝑉𝑉 (𝑬𝑬𝑖𝑖 ⋅ 𝑱𝑱𝑗𝑗)𝑑𝑑𝑑𝑑 = 0 (180) 
 

The above equation is the law of conservation of energy. This law of conservation of 
energy cannot be obtained under the conditions of Maxwell’s equation, it can only be an 
energy theorem according to Maxwell’s equation. This is because under the conditions of the 
Maxwell equation, there is no condition for radiation not to overflow the universe (163). This 
law of conservation of energy tells us that the energy value of electromagnetic waves is 
exchanged between charges, and there is no permanent transfer of electromagnetic energy to 
the medium or ether that propagates electromagnetic waves. 

 
6.3  Mutual Energy Flow Theorem 
 
The relaxed Poynting’s theorem (174) can prove the mutual energy flow theorem *17+, 

and we will not prove it again here, 
 −∫ ∞

𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑 ∫ 𝑉𝑉𝑖𝑖
(𝑬𝑬𝑗𝑗 ⋅ 𝑱𝑱𝑖𝑖)𝑑𝑑𝑑𝑑  

 
 = (𝜉𝜉𝑖𝑖, 𝜉𝜉𝑗𝑗) 

 
 = ∫ ∞

𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑 ∫ 𝑉𝑉𝑗𝑗
(𝑬𝑬𝑖𝑖 ⋅ 𝑱𝑱𝑗𝑗)𝑑𝑑𝑑𝑑 (181) 

where,  
 (𝜉𝜉𝑖𝑖, 𝜉𝜉𝑗𝑗) ≜ ∫ ∞

𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑∯ (𝑬𝑬𝑖𝑖 × 𝑯𝑯𝑗𝑗 + 𝑬𝑬𝑗𝑗 × 𝑯𝑯𝑖𝑖) ⋅ �̂�𝑛𝑑𝑑ΓΓ  (182) 
 −∫ ∞

𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑 ∫ 𝑉𝑉𝑖𝑖
(𝑬𝑬𝑗𝑗 ⋅ 𝑱𝑱𝑖𝑖)𝑑𝑑𝑑𝑑 is the energy of the current element 𝑱𝑱𝑖𝑖  provided to the system. 

This energy comes from the current 𝑱𝑱𝑖𝑖. ∫ ∞
𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑 ∫ 𝑉𝑉𝑗𝑗

(𝑬𝑬𝑖𝑖 ⋅ 𝑱𝑱𝑗𝑗)𝑑𝑑𝑑𝑑 is the energy obtained from 
the system to supplied the load of the secondary coil current 𝑱𝑱𝑗𝑗. The mutual energy flow 
(𝜉𝜉𝑖𝑖, 𝜉𝜉𝑗𝑗) is energy flow from 𝑱𝑱𝑖𝑖  to 𝑱𝑱𝑗𝑗. With this mutual energy flow theorem, the law of 
conservation of energy (180) becomes a localized law of conservation of energy. Localization 
here refers to the transfer of energy through mutual energy flow (182). 

The definition of magnetic field is defined by the ampere force formula and the Lorentz 
force formula. In these preliminary definitions, magnetic field is defined by the current element 
𝐼𝐼𝑑𝑑𝒍𝒍 or 𝜌𝜌𝒗𝒗. In this case, both the current element and velocity can be regarded as a line 
segment. However, under quasi-static magnetic conditions, the magnetic field can also be 
defined on a loop. This magnetic field can be considered as the average value of the measured 
magnetic field on the loop. The average value under quasi-static or quasi-static magnetic 
conditions is exactly the same as the magnetic field measured by a straight wire. Maxwell’s 
electromagnetic field theory was first defined under magnetic quasi-static and quasi-static 
conditions. Below is the quasi-static Maxwell equation,  

 ∇ ⋅ 𝑬𝑬𝑠𝑠 = 𝜌𝜌/𝜖𝜖0 (183) 

Consider again (175) for 𝑱𝑱 = 𝑱𝑱𝑖𝑖  Time also holds, that is,  
 ∫ ∞

𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑 ∫ 𝑉𝑉 (𝑬𝑬𝑖𝑖 ⋅ 𝑱𝑱𝑖𝑖)𝑑𝑑𝑑𝑑 = 0 (179) 
 

Substituting (179) into (178) yields,  
 ∑ 𝑁𝑁

𝑖𝑖=1 ∑ 𝑁𝑁
𝑗𝑗=1,𝑗𝑗≠𝑖𝑖 ∫ ∞

𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑 ∫ 𝑉𝑉 (𝑬𝑬𝑖𝑖 ⋅ 𝑱𝑱𝑗𝑗)𝑑𝑑𝑑𝑑 = 0 (180) 
 

The above equation is the law of conservation of energy. This law of conservation of 
energy cannot be obtained under the conditions of Maxwell’s equation, it can only be an 
energy theorem according to Maxwell’s equation. This is because under the conditions of the 
Maxwell equation, there is no condition for radiation not to overflow the universe (163). This 
law of conservation of energy tells us that the energy value of electromagnetic waves is 
exchanged between charges, and there is no permanent transfer of electromagnetic energy to 
the medium or ether that propagates electromagnetic waves. 

 
6.3  Mutual Energy Flow Theorem 
 
The relaxed Poynting’s theorem (174) can prove the mutual energy flow theorem *17+, 

and we will not prove it again here, 
 −∫ ∞

𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑 ∫ 𝑉𝑉𝑖𝑖
(𝑬𝑬𝑗𝑗 ⋅ 𝑱𝑱𝑖𝑖)𝑑𝑑𝑑𝑑  

 
 = (𝜉𝜉𝑖𝑖, 𝜉𝜉𝑗𝑗) 

 
 = ∫ ∞

𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑 ∫ 𝑉𝑉𝑗𝑗
(𝑬𝑬𝑖𝑖 ⋅ 𝑱𝑱𝑗𝑗)𝑑𝑑𝑑𝑑 (181) 

where,  
 (𝜉𝜉𝑖𝑖, 𝜉𝜉𝑗𝑗) ≜ ∫ ∞

𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑∯ (𝑬𝑬𝑖𝑖 × 𝑯𝑯𝑗𝑗 + 𝑬𝑬𝑗𝑗 × 𝑯𝑯𝑖𝑖) ⋅ �̂�𝑛𝑑𝑑ΓΓ  (182) 
 −∫ ∞

𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑 ∫ 𝑉𝑉𝑖𝑖
(𝑬𝑬𝑗𝑗 ⋅ 𝑱𝑱𝑖𝑖)𝑑𝑑𝑑𝑑 is the energy of the current element 𝑱𝑱𝑖𝑖  provided to the system. 

This energy comes from the current 𝑱𝑱𝑖𝑖. ∫ ∞
𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑 ∫ 𝑉𝑉𝑗𝑗

(𝑬𝑬𝑖𝑖 ⋅ 𝑱𝑱𝑗𝑗)𝑑𝑑𝑑𝑑 is the energy obtained from 
the system to supplied the load of the secondary coil current 𝑱𝑱𝑗𝑗. The mutual energy flow 
(𝜉𝜉𝑖𝑖, 𝜉𝜉𝑗𝑗) is energy flow from 𝑱𝑱𝑖𝑖  to 𝑱𝑱𝑗𝑗. With this mutual energy flow theorem, the law of 
conservation of energy (180) becomes a localized law of conservation of energy. Localization 
here refers to the transfer of energy through mutual energy flow (182). 

The definition of magnetic field is defined by the ampere force formula and the Lorentz 
force formula. In these preliminary definitions, magnetic field is defined by the current element 
𝐼𝐼𝑑𝑑𝒍𝒍 or 𝜌𝜌𝒗𝒗. In this case, both the current element and velocity can be regarded as a line 
segment. However, under quasi-static magnetic conditions, the magnetic field can also be 
defined on a loop. This magnetic field can be considered as the average value of the measured 
magnetic field on the loop. The average value under quasi-static or quasi-static magnetic 
conditions is exactly the same as the magnetic field measured by a straight wire. Maxwell’s 
electromagnetic field theory was first defined under magnetic quasi-static and quasi-static 
conditions. Below is the quasi-static Maxwell equation,  

 ∇ ⋅ 𝑬𝑬𝑠𝑠 = 𝜌𝜌/𝜖𝜖0 (183) 

Substituting (179) into (178) yields,

The above equation is the law of conservation of energy. This 
law of conservation of energy cannot be obtained under the 
conditions of Maxwell’s equation, it can only be an energy 
theorem according to Maxwell’s equation. This is because 
under the conditions of the Maxwell equation, there is no 
condition for radiation not to overflow the universe (163). This 
law of conservation of energy tells us that the energy value of 

electromagnetic waves is exchanged between charges, and 
there is no permanent transfer of electromagnetic energy to the 
medium or ether that propagates electromagnetic waves.

6.3 Mutual Energy Flow Theorem
The relaxed Poynting’s theorem (174) can prove the mutual 
energy flow theorem [17], and we will not prove it again here,
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Consider again (175) for 𝑱𝑱 = 𝑱𝑱𝑖𝑖  Time also holds, that is,  
 ∫ ∞

𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑 ∫ 𝑉𝑉 (𝑬𝑬𝑖𝑖 ⋅ 𝑱𝑱𝑖𝑖)𝑑𝑑𝑑𝑑 = 0 (179) 
 

Substituting (179) into (178) yields,  
 ∑ 𝑁𝑁

𝑖𝑖=1 ∑ 𝑁𝑁
𝑗𝑗=1,𝑗𝑗≠𝑖𝑖 ∫ ∞

𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑 ∫ 𝑉𝑉 (𝑬𝑬𝑖𝑖 ⋅ 𝑱𝑱𝑗𝑗)𝑑𝑑𝑑𝑑 = 0 (180) 
 

The above equation is the law of conservation of energy. This law of conservation of 
energy cannot be obtained under the conditions of Maxwell’s equation, it can only be an 
energy theorem according to Maxwell’s equation. This is because under the conditions of the 
Maxwell equation, there is no condition for radiation not to overflow the universe (163). This 
law of conservation of energy tells us that the energy value of electromagnetic waves is 
exchanged between charges, and there is no permanent transfer of electromagnetic energy to 
the medium or ether that propagates electromagnetic waves. 

 
6.3  Mutual Energy Flow Theorem 
 
The relaxed Poynting’s theorem (174) can prove the mutual energy flow theorem *17+, 

and we will not prove it again here, 
 −∫ ∞

𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑 ∫ 𝑉𝑉𝑖𝑖
(𝑬𝑬𝑗𝑗 ⋅ 𝑱𝑱𝑖𝑖)𝑑𝑑𝑑𝑑  

 
 = (𝜉𝜉𝑖𝑖, 𝜉𝜉𝑗𝑗) 

 
 = ∫ ∞

𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑 ∫ 𝑉𝑉𝑗𝑗
(𝑬𝑬𝑖𝑖 ⋅ 𝑱𝑱𝑗𝑗)𝑑𝑑𝑑𝑑 (181) 

where,  
 (𝜉𝜉𝑖𝑖, 𝜉𝜉𝑗𝑗) ≜ ∫ ∞

𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑∯ (𝑬𝑬𝑖𝑖 × 𝑯𝑯𝑗𝑗 + 𝑬𝑬𝑗𝑗 × 𝑯𝑯𝑖𝑖) ⋅ �̂�𝑛𝑑𝑑ΓΓ  (182) 
 −∫ ∞

𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑 ∫ 𝑉𝑉𝑖𝑖
(𝑬𝑬𝑗𝑗 ⋅ 𝑱𝑱𝑖𝑖)𝑑𝑑𝑑𝑑 is the energy of the current element 𝑱𝑱𝑖𝑖  provided to the system. 

This energy comes from the current 𝑱𝑱𝑖𝑖. ∫ ∞
𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑 ∫ 𝑉𝑉𝑗𝑗

(𝑬𝑬𝑖𝑖 ⋅ 𝑱𝑱𝑗𝑗)𝑑𝑑𝑑𝑑 is the energy obtained from 
the system to supplied the load of the secondary coil current 𝑱𝑱𝑗𝑗. The mutual energy flow 
(𝜉𝜉𝑖𝑖, 𝜉𝜉𝑗𝑗) is energy flow from 𝑱𝑱𝑖𝑖  to 𝑱𝑱𝑗𝑗. With this mutual energy flow theorem, the law of 
conservation of energy (180) becomes a localized law of conservation of energy. Localization 
here refers to the transfer of energy through mutual energy flow (182). 

The definition of magnetic field is defined by the ampere force formula and the Lorentz 
force formula. In these preliminary definitions, magnetic field is defined by the current element 
𝐼𝐼𝑑𝑑𝒍𝒍 or 𝜌𝜌𝒗𝒗. In this case, both the current element and velocity can be regarded as a line 
segment. However, under quasi-static magnetic conditions, the magnetic field can also be 
defined on a loop. This magnetic field can be considered as the average value of the measured 
magnetic field on the loop. The average value under quasi-static or quasi-static magnetic 
conditions is exactly the same as the magnetic field measured by a straight wire. Maxwell’s 
electromagnetic field theory was first defined under magnetic quasi-static and quasi-static 
conditions. Below is the quasi-static Maxwell equation,  

 ∇ ⋅ 𝑬𝑬𝑠𝑠 = 𝜌𝜌/𝜖𝜖0 (183) 

Consider again (175) for 𝑱𝑱 = 𝑱𝑱𝑖𝑖  Time also holds, that is,  
 ∫ ∞

𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑 ∫ 𝑉𝑉 (𝑬𝑬𝑖𝑖 ⋅ 𝑱𝑱𝑖𝑖)𝑑𝑑𝑑𝑑 = 0 (179) 
 

Substituting (179) into (178) yields,  
 ∑ 𝑁𝑁

𝑖𝑖=1 ∑ 𝑁𝑁
𝑗𝑗=1,𝑗𝑗≠𝑖𝑖 ∫ ∞

𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑 ∫ 𝑉𝑉 (𝑬𝑬𝑖𝑖 ⋅ 𝑱𝑱𝑗𝑗)𝑑𝑑𝑑𝑑 = 0 (180) 
 

The above equation is the law of conservation of energy. This law of conservation of 
energy cannot be obtained under the conditions of Maxwell’s equation, it can only be an 
energy theorem according to Maxwell’s equation. This is because under the conditions of the 
Maxwell equation, there is no condition for radiation not to overflow the universe (163). This 
law of conservation of energy tells us that the energy value of electromagnetic waves is 
exchanged between charges, and there is no permanent transfer of electromagnetic energy to 
the medium or ether that propagates electromagnetic waves. 

 
6.3  Mutual Energy Flow Theorem 
 
The relaxed Poynting’s theorem (174) can prove the mutual energy flow theorem *17+, 

and we will not prove it again here, 
 −∫ ∞

𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑 ∫ 𝑉𝑉𝑖𝑖
(𝑬𝑬𝑗𝑗 ⋅ 𝑱𝑱𝑖𝑖)𝑑𝑑𝑑𝑑  

 
 = (𝜉𝜉𝑖𝑖, 𝜉𝜉𝑗𝑗) 

 
 = ∫ ∞

𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑 ∫ 𝑉𝑉𝑗𝑗
(𝑬𝑬𝑖𝑖 ⋅ 𝑱𝑱𝑗𝑗)𝑑𝑑𝑑𝑑 (181) 

where,  
 (𝜉𝜉𝑖𝑖, 𝜉𝜉𝑗𝑗) ≜ ∫ ∞

𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑∯ (𝑬𝑬𝑖𝑖 × 𝑯𝑯𝑗𝑗 + 𝑬𝑬𝑗𝑗 × 𝑯𝑯𝑖𝑖) ⋅ �̂�𝑛𝑑𝑑ΓΓ  (182) 
 −∫ ∞

𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑 ∫ 𝑉𝑉𝑖𝑖
(𝑬𝑬𝑗𝑗 ⋅ 𝑱𝑱𝑖𝑖)𝑑𝑑𝑑𝑑 is the energy of the current element 𝑱𝑱𝑖𝑖  provided to the system. 

This energy comes from the current 𝑱𝑱𝑖𝑖. ∫ ∞
𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑 ∫ 𝑉𝑉𝑗𝑗

(𝑬𝑬𝑖𝑖 ⋅ 𝑱𝑱𝑗𝑗)𝑑𝑑𝑑𝑑 is the energy obtained from 
the system to supplied the load of the secondary coil current 𝑱𝑱𝑗𝑗. The mutual energy flow 
(𝜉𝜉𝑖𝑖, 𝜉𝜉𝑗𝑗) is energy flow from 𝑱𝑱𝑖𝑖  to 𝑱𝑱𝑗𝑗. With this mutual energy flow theorem, the law of 
conservation of energy (180) becomes a localized law of conservation of energy. Localization 
here refers to the transfer of energy through mutual energy flow (182). 

The definition of magnetic field is defined by the ampere force formula and the Lorentz 
force formula. In these preliminary definitions, magnetic field is defined by the current element 
𝐼𝐼𝑑𝑑𝒍𝒍 or 𝜌𝜌𝒗𝒗. In this case, both the current element and velocity can be regarded as a line 
segment. However, under quasi-static magnetic conditions, the magnetic field can also be 
defined on a loop. This magnetic field can be considered as the average value of the measured 
magnetic field on the loop. The average value under quasi-static or quasi-static magnetic 
conditions is exactly the same as the magnetic field measured by a straight wire. Maxwell’s 
electromagnetic field theory was first defined under magnetic quasi-static and quasi-static 
conditions. Below is the quasi-static Maxwell equation,  

 ∇ ⋅ 𝑬𝑬𝑠𝑠 = 𝜌𝜌/𝜖𝜖0 (183) 

Consider again (175) for 𝑱𝑱 = 𝑱𝑱𝑖𝑖  Time also holds, that is,  
 ∫ ∞

𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑 ∫ 𝑉𝑉 (𝑬𝑬𝑖𝑖 ⋅ 𝑱𝑱𝑖𝑖)𝑑𝑑𝑑𝑑 = 0 (179) 
 

Substituting (179) into (178) yields,  
 ∑ 𝑁𝑁

𝑖𝑖=1 ∑ 𝑁𝑁
𝑗𝑗=1,𝑗𝑗≠𝑖𝑖 ∫ ∞

𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑 ∫ 𝑉𝑉 (𝑬𝑬𝑖𝑖 ⋅ 𝑱𝑱𝑗𝑗)𝑑𝑑𝑑𝑑 = 0 (180) 
 

The above equation is the law of conservation of energy. This law of conservation of 
energy cannot be obtained under the conditions of Maxwell’s equation, it can only be an 
energy theorem according to Maxwell’s equation. This is because under the conditions of the 
Maxwell equation, there is no condition for radiation not to overflow the universe (163). This 
law of conservation of energy tells us that the energy value of electromagnetic waves is 
exchanged between charges, and there is no permanent transfer of electromagnetic energy to 
the medium or ether that propagates electromagnetic waves. 

 
6.3  Mutual Energy Flow Theorem 
 
The relaxed Poynting’s theorem (174) can prove the mutual energy flow theorem *17+, 

and we will not prove it again here, 
 −∫ ∞

𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑 ∫ 𝑉𝑉𝑖𝑖
(𝑬𝑬𝑗𝑗 ⋅ 𝑱𝑱𝑖𝑖)𝑑𝑑𝑑𝑑  

 
 = (𝜉𝜉𝑖𝑖, 𝜉𝜉𝑗𝑗) 

 
 = ∫ ∞

𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑 ∫ 𝑉𝑉𝑗𝑗
(𝑬𝑬𝑖𝑖 ⋅ 𝑱𝑱𝑗𝑗)𝑑𝑑𝑑𝑑 (181) 

where,  
 (𝜉𝜉𝑖𝑖, 𝜉𝜉𝑗𝑗) ≜ ∫ ∞

𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑∯ (𝑬𝑬𝑖𝑖 × 𝑯𝑯𝑗𝑗 + 𝑬𝑬𝑗𝑗 × 𝑯𝑯𝑖𝑖) ⋅ �̂�𝑛𝑑𝑑ΓΓ  (182) 
 −∫ ∞

𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑 ∫ 𝑉𝑉𝑖𝑖
(𝑬𝑬𝑗𝑗 ⋅ 𝑱𝑱𝑖𝑖)𝑑𝑑𝑑𝑑 is the energy of the current element 𝑱𝑱𝑖𝑖  provided to the system. 

This energy comes from the current 𝑱𝑱𝑖𝑖. ∫ ∞
𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑 ∫ 𝑉𝑉𝑗𝑗

(𝑬𝑬𝑖𝑖 ⋅ 𝑱𝑱𝑗𝑗)𝑑𝑑𝑑𝑑 is the energy obtained from 
the system to supplied the load of the secondary coil current 𝑱𝑱𝑗𝑗. The mutual energy flow 
(𝜉𝜉𝑖𝑖, 𝜉𝜉𝑗𝑗) is energy flow from 𝑱𝑱𝑖𝑖  to 𝑱𝑱𝑗𝑗. With this mutual energy flow theorem, the law of 
conservation of energy (180) becomes a localized law of conservation of energy. Localization 
here refers to the transfer of energy through mutual energy flow (182). 

The definition of magnetic field is defined by the ampere force formula and the Lorentz 
force formula. In these preliminary definitions, magnetic field is defined by the current element 
𝐼𝐼𝑑𝑑𝒍𝒍 or 𝜌𝜌𝒗𝒗. In this case, both the current element and velocity can be regarded as a line 
segment. However, under quasi-static magnetic conditions, the magnetic field can also be 
defined on a loop. This magnetic field can be considered as the average value of the measured 
magnetic field on the loop. The average value under quasi-static or quasi-static magnetic 
conditions is exactly the same as the magnetic field measured by a straight wire. Maxwell’s 
electromagnetic field theory was first defined under magnetic quasi-static and quasi-static 
conditions. Below is the quasi-static Maxwell equation,  

 ∇ ⋅ 𝑬𝑬𝑠𝑠 = 𝜌𝜌/𝜖𝜖0 (183) 

Consider again (175) for 𝑱𝑱 = 𝑱𝑱𝑖𝑖  Time also holds, that is,  
 ∫ ∞

𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑 ∫ 𝑉𝑉 (𝑬𝑬𝑖𝑖 ⋅ 𝑱𝑱𝑖𝑖)𝑑𝑑𝑑𝑑 = 0 (179) 
 

Substituting (179) into (178) yields,  
 ∑ 𝑁𝑁

𝑖𝑖=1 ∑ 𝑁𝑁
𝑗𝑗=1,𝑗𝑗≠𝑖𝑖 ∫ ∞

𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑 ∫ 𝑉𝑉 (𝑬𝑬𝑖𝑖 ⋅ 𝑱𝑱𝑗𝑗)𝑑𝑑𝑑𝑑 = 0 (180) 
 

The above equation is the law of conservation of energy. This law of conservation of 
energy cannot be obtained under the conditions of Maxwell’s equation, it can only be an 
energy theorem according to Maxwell’s equation. This is because under the conditions of the 
Maxwell equation, there is no condition for radiation not to overflow the universe (163). This 
law of conservation of energy tells us that the energy value of electromagnetic waves is 
exchanged between charges, and there is no permanent transfer of electromagnetic energy to 
the medium or ether that propagates electromagnetic waves. 

 
6.3  Mutual Energy Flow Theorem 
 
The relaxed Poynting’s theorem (174) can prove the mutual energy flow theorem *17+, 

and we will not prove it again here, 
 −∫ ∞

𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑 ∫ 𝑉𝑉𝑖𝑖
(𝑬𝑬𝑗𝑗 ⋅ 𝑱𝑱𝑖𝑖)𝑑𝑑𝑑𝑑  

 
 = (𝜉𝜉𝑖𝑖, 𝜉𝜉𝑗𝑗) 

 
 = ∫ ∞

𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑 ∫ 𝑉𝑉𝑗𝑗
(𝑬𝑬𝑖𝑖 ⋅ 𝑱𝑱𝑗𝑗)𝑑𝑑𝑑𝑑 (181) 

where,  
 (𝜉𝜉𝑖𝑖, 𝜉𝜉𝑗𝑗) ≜ ∫ ∞

𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑∯ (𝑬𝑬𝑖𝑖 × 𝑯𝑯𝑗𝑗 + 𝑬𝑬𝑗𝑗 × 𝑯𝑯𝑖𝑖) ⋅ �̂�𝑛𝑑𝑑ΓΓ  (182) 
 −∫ ∞

𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑 ∫ 𝑉𝑉𝑖𝑖
(𝑬𝑬𝑗𝑗 ⋅ 𝑱𝑱𝑖𝑖)𝑑𝑑𝑑𝑑 is the energy of the current element 𝑱𝑱𝑖𝑖  provided to the system. 

This energy comes from the current 𝑱𝑱𝑖𝑖. ∫ ∞
𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑 ∫ 𝑉𝑉𝑗𝑗

(𝑬𝑬𝑖𝑖 ⋅ 𝑱𝑱𝑗𝑗)𝑑𝑑𝑑𝑑 is the energy obtained from 
the system to supplied the load of the secondary coil current 𝑱𝑱𝑗𝑗. The mutual energy flow 
(𝜉𝜉𝑖𝑖, 𝜉𝜉𝑗𝑗) is energy flow from 𝑱𝑱𝑖𝑖  to 𝑱𝑱𝑗𝑗. With this mutual energy flow theorem, the law of 
conservation of energy (180) becomes a localized law of conservation of energy. Localization 
here refers to the transfer of energy through mutual energy flow (182). 

The definition of magnetic field is defined by the ampere force formula and the Lorentz 
force formula. In these preliminary definitions, magnetic field is defined by the current element 
𝐼𝐼𝑑𝑑𝒍𝒍 or 𝜌𝜌𝒗𝒗. In this case, both the current element and velocity can be regarded as a line 
segment. However, under quasi-static magnetic conditions, the magnetic field can also be 
defined on a loop. This magnetic field can be considered as the average value of the measured 
magnetic field on the loop. The average value under quasi-static or quasi-static magnetic 
conditions is exactly the same as the magnetic field measured by a straight wire. Maxwell’s 
electromagnetic field theory was first defined under magnetic quasi-static and quasi-static 
conditions. Below is the quasi-static Maxwell equation,  

 ∇ ⋅ 𝑬𝑬𝑠𝑠 = 𝜌𝜌/𝜖𝜖0 (183) 

where, 

                                           is the energy of the current element 
Ji provided to the system. This energy comes from the current                                        
                                        is the energy obtained from the system 
to supplied the load of the secondary coil current Jj. The mutual 
energy flow (ξi,ξj) is energy flow from Ji to Jj. With this mutual 
energy flow theorem, the law of conservation of energy (180) 
becomes a localized law of conservation of energy. Localization 
here refers to the transfer of energy through mutual energy flow 
(182).

The definition of magnetic field is defined by the ampere force 
formula and the Lorentz force formula. In these preliminary 

definitions, magnetic field is defined by the current element Idl 
or ρv. In this case, both the current element and velocity can 
be regarded as a line segment. However, under quasi-static 
magnetic conditions, the magnetic field can also be defined on 
a loop. This magnetic field can be considered as the average 
value of the measured magnetic field on the loop. The average 
value under quasi-static or quasi-static magnetic conditions is 
exactly the same as the magnetic field measured by a straight 
wire. Maxwell’s electromagnetic field theory was first defined 
under magnetic quasi-static and quasi-static conditions. Below 
is the quasi-static Maxwell equation, 

Consider again (175) for 𝑱𝑱 = 𝑱𝑱𝑖𝑖  Time also holds, that is,  
 ∫ ∞

𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑 ∫ 𝑉𝑉 (𝑬𝑬𝑖𝑖 ⋅ 𝑱𝑱𝑖𝑖)𝑑𝑑𝑑𝑑 = 0 (179) 
 

Substituting (179) into (178) yields,  
 ∑ 𝑁𝑁

𝑖𝑖=1 ∑ 𝑁𝑁
𝑗𝑗=1,𝑗𝑗≠𝑖𝑖 ∫ ∞

𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑 ∫ 𝑉𝑉 (𝑬𝑬𝑖𝑖 ⋅ 𝑱𝑱𝑗𝑗)𝑑𝑑𝑑𝑑 = 0 (180) 
 

The above equation is the law of conservation of energy. This law of conservation of 
energy cannot be obtained under the conditions of Maxwell’s equation, it can only be an 
energy theorem according to Maxwell’s equation. This is because under the conditions of the 
Maxwell equation, there is no condition for radiation not to overflow the universe (163). This 
law of conservation of energy tells us that the energy value of electromagnetic waves is 
exchanged between charges, and there is no permanent transfer of electromagnetic energy to 
the medium or ether that propagates electromagnetic waves. 

 
6.3  Mutual Energy Flow Theorem 
 
The relaxed Poynting’s theorem (174) can prove the mutual energy flow theorem *17+, 

and we will not prove it again here, 
 −∫ ∞

𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑 ∫ 𝑉𝑉𝑖𝑖
(𝑬𝑬𝑗𝑗 ⋅ 𝑱𝑱𝑖𝑖)𝑑𝑑𝑑𝑑  

 
 = (𝜉𝜉𝑖𝑖, 𝜉𝜉𝑗𝑗) 

 
 = ∫ ∞

𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑 ∫ 𝑉𝑉𝑗𝑗
(𝑬𝑬𝑖𝑖 ⋅ 𝑱𝑱𝑗𝑗)𝑑𝑑𝑑𝑑 (181) 

where,  
 (𝜉𝜉𝑖𝑖, 𝜉𝜉𝑗𝑗) ≜ ∫ ∞

𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑∯ (𝑬𝑬𝑖𝑖 × 𝑯𝑯𝑗𝑗 + 𝑬𝑬𝑗𝑗 × 𝑯𝑯𝑖𝑖) ⋅ �̂�𝑛𝑑𝑑ΓΓ  (182) 
 −∫ ∞

𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑 ∫ 𝑉𝑉𝑖𝑖
(𝑬𝑬𝑗𝑗 ⋅ 𝑱𝑱𝑖𝑖)𝑑𝑑𝑑𝑑 is the energy of the current element 𝑱𝑱𝑖𝑖  provided to the system. 

This energy comes from the current 𝑱𝑱𝑖𝑖. ∫ ∞
𝑡𝑡=−∞ 𝑑𝑑𝑑𝑑 ∫ 𝑉𝑉𝑗𝑗

(𝑬𝑬𝑖𝑖 ⋅ 𝑱𝑱𝑗𝑗)𝑑𝑑𝑑𝑑 is the energy obtained from 
the system to supplied the load of the secondary coil current 𝑱𝑱𝑗𝑗. The mutual energy flow 
(𝜉𝜉𝑖𝑖, 𝜉𝜉𝑗𝑗) is energy flow from 𝑱𝑱𝑖𝑖  to 𝑱𝑱𝑗𝑗. With this mutual energy flow theorem, the law of 
conservation of energy (180) becomes a localized law of conservation of energy. Localization 
here refers to the transfer of energy through mutual energy flow (182). 

The definition of magnetic field is defined by the ampere force formula and the Lorentz 
force formula. In these preliminary definitions, magnetic field is defined by the current element 
𝐼𝐼𝑑𝑑𝒍𝒍 or 𝜌𝜌𝒗𝒗. In this case, both the current element and velocity can be regarded as a line 
segment. However, under quasi-static magnetic conditions, the magnetic field can also be 
defined on a loop. This magnetic field can be considered as the average value of the measured 
magnetic field on the loop. The average value under quasi-static or quasi-static magnetic 
conditions is exactly the same as the magnetic field measured by a straight wire. Maxwell’s 
electromagnetic field theory was first defined under magnetic quasi-static and quasi-static 
conditions. Below is the quasi-static Maxwell equation,  

 ∇ ⋅ 𝑬𝑬𝑠𝑠 = 𝜌𝜌/𝜖𝜖0 (183)   
 𝑬𝑬𝑠𝑠 ≜ −∇𝜙𝜙 (184) 

  
 ∇ × (∇ × 𝑨𝑨) = 𝜇𝜇0𝑱𝑱 + 𝜖𝜖0𝜇𝜇0

𝜕𝜕
𝜕𝜕𝜕𝜕 𝑬𝑬𝑠𝑠 (185) 

 
In the author’s quasi-static equation, the author does not denote ∇ × 𝑨𝑨 as a magnetic 

field, but instead uses two cross products, which is similar to what Lorenz did *33+. The 
continuity equation for current,  

 ∇ ⋅ 𝑱𝑱 = − 𝜕𝜕
𝜕𝜕𝜕𝜕 𝜌𝜌 (186) 

 
And the Lorenz gauge condition,  
 ∇ ⋅ 𝑨𝑨 = −𝜇𝜇0𝜖𝜖0

𝜕𝜕
𝜕𝜕𝜕𝜕 𝜙𝜙 (187) 

 
Faraday’s law is, 
 
 𝑬𝑬 ≜ − 𝜕𝜕

𝜕𝜕𝜕𝜕 𝑨𝑨 − ∇𝜙𝜙 (188) 
 The above Faraday’s law formula is the Faraday’s law in Maxwell’s own Maxwell’s equation. In 
the author’s electromagnetic theory there is no,  

 ∇ × 𝑬𝑬 = − 𝜕𝜕
𝜕𝜕𝜕𝜕 𝑩𝑩 (189) 

 This formula is the work of Oliver Heaviside, a descendant of Maxwell. As it involves 
𝑩𝑩 = ∇ × 𝑨𝑨, as we have already discussed earlier, the accurate definition should be,  

 𝑩𝑩 = ∇ × 𝑨𝑨 (190) 
 Therefore, the formula (189) should be rewritten as,  

 ∇ × 𝑬𝑬 = − 𝜕𝜕
𝜕𝜕𝜕𝜕 𝑩𝑩 (191) 

 The above (183-188) is a quasi-static equation. In these equations, there are no defined 
magnetic field, only the electric field 𝑬𝑬 and the electrostatic field 𝑬𝑬𝑠𝑠  . Based on the 
definitions of Gaussian law (183) and electrostatic field (188),  

 ∇ ⋅ (−∇𝜙𝜙) = 𝜌𝜌/𝜖𝜖0 (192) 
  

 ∇2𝜙𝜙 = −𝜌𝜌/𝜖𝜖0 (193) 
 

Above, we obtained the Poisson equation for scalar potentials. Consider mathematical 
formulas,  

 ∇ × (∇ × 𝑨𝑨) = ∇(∇ ⋅ 𝑨𝑨) − ∇2𝑨𝑨 (194) 
 

Formula (185)  
 ∇(∇ ⋅ 𝑨𝑨) − ∇2𝑨𝑨 = 𝜇𝜇0𝑱𝑱 + 𝜖𝜖0𝜇𝜇0

𝜕𝜕
𝜕𝜕𝜕𝜕 𝑬𝑬𝑠𝑠 (195) 

  
 ∇(∇ ⋅ 𝑨𝑨) − 𝜇𝜇0𝜖𝜖0

𝜕𝜕
𝜕𝜕𝜕𝜕 𝑬𝑬𝑠𝑠 − 𝜇𝜇0𝑱𝑱 = ∇2𝑨𝑨 (196) 

 
Considering the Lorenz gauge (187), the above equation can be rewritten as:,  

  
 𝑬𝑬𝑠𝑠 ≜ −∇𝜙𝜙 (184) 

  
 ∇ × (∇ × 𝑨𝑨) = 𝜇𝜇0𝑱𝑱 + 𝜖𝜖0𝜇𝜇0

𝜕𝜕
𝜕𝜕𝜕𝜕 𝑬𝑬𝑠𝑠 (185) 

 
In the author’s quasi-static equation, the author does not denote ∇ × 𝑨𝑨 as a magnetic 

field, but instead uses two cross products, which is similar to what Lorenz did *33+. The 
continuity equation for current,  

 ∇ ⋅ 𝑱𝑱 = − 𝜕𝜕
𝜕𝜕𝜕𝜕 𝜌𝜌 (186) 

 
And the Lorenz gauge condition,  
 ∇ ⋅ 𝑨𝑨 = −𝜇𝜇0𝜖𝜖0

𝜕𝜕
𝜕𝜕𝜕𝜕 𝜙𝜙 (187) 

 
Faraday’s law is, 
 
 𝑬𝑬 ≜ − 𝜕𝜕

𝜕𝜕𝜕𝜕 𝑨𝑨 − ∇𝜙𝜙 (188) 
 The above Faraday’s law formula is the Faraday’s law in Maxwell’s own Maxwell’s equation. In 
the author’s electromagnetic theory there is no,  

 ∇ × 𝑬𝑬 = − 𝜕𝜕
𝜕𝜕𝜕𝜕 𝑩𝑩 (189) 

 This formula is the work of Oliver Heaviside, a descendant of Maxwell. As it involves 
𝑩𝑩 = ∇ × 𝑨𝑨, as we have already discussed earlier, the accurate definition should be,  

 𝑩𝑩 = ∇ × 𝑨𝑨 (190) 
 Therefore, the formula (189) should be rewritten as,  

 ∇ × 𝑬𝑬 = − 𝜕𝜕
𝜕𝜕𝜕𝜕 𝑩𝑩 (191) 

 The above (183-188) is a quasi-static equation. In these equations, there are no defined 
magnetic field, only the electric field 𝑬𝑬 and the electrostatic field 𝑬𝑬𝑠𝑠  . Based on the 
definitions of Gaussian law (183) and electrostatic field (188),  

 ∇ ⋅ (−∇𝜙𝜙) = 𝜌𝜌/𝜖𝜖0 (192) 
  

 ∇2𝜙𝜙 = −𝜌𝜌/𝜖𝜖0 (193) 
 

Above, we obtained the Poisson equation for scalar potentials. Consider mathematical 
formulas,  

 ∇ × (∇ × 𝑨𝑨) = ∇(∇ ⋅ 𝑨𝑨) − ∇2𝑨𝑨 (194) 
 

Formula (185)  
 ∇(∇ ⋅ 𝑨𝑨) − ∇2𝑨𝑨 = 𝜇𝜇0𝑱𝑱 + 𝜖𝜖0𝜇𝜇0

𝜕𝜕
𝜕𝜕𝜕𝜕 𝑬𝑬𝑠𝑠 (195) 

  
 ∇(∇ ⋅ 𝑨𝑨) − 𝜇𝜇0𝜖𝜖0

𝜕𝜕
𝜕𝜕𝜕𝜕 𝑬𝑬𝑠𝑠 − 𝜇𝜇0𝑱𝑱 = ∇2𝑨𝑨 (196) 

 
Considering the Lorenz gauge (187), the above equation can be rewritten as:,  

  
 𝑬𝑬𝑠𝑠 ≜ −∇𝜙𝜙 (184) 

  
 ∇ × (∇ × 𝑨𝑨) = 𝜇𝜇0𝑱𝑱 + 𝜖𝜖0𝜇𝜇0

𝜕𝜕
𝜕𝜕𝜕𝜕 𝑬𝑬𝑠𝑠 (185) 

 
In the author’s quasi-static equation, the author does not denote ∇ × 𝑨𝑨 as a magnetic 

field, but instead uses two cross products, which is similar to what Lorenz did *33+. The 
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𝜕𝜕𝜕𝜕 𝜌𝜌 (186) 

 
And the Lorenz gauge condition,  
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𝜕𝜕𝜕𝜕 𝑨𝑨 − ∇𝜙𝜙 (188) 
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 Therefore, the formula (189) should be rewritten as,  
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In the author’s quasi-static equation, the author does not denote 
∇×A as a magnetic field, but instead uses two cross products, 

which is similar to what Lorenz did [33]. The continuity equation 
for current,

And the Lorenz gauge condition,

Faraday’s law is,

The above Faraday’s law formula is the Faraday’s law in Maxwell’s own Maxwell’s equation. In the author’s electromagnetic theory 
there is no,
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earlier, the accurate definition should be,
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The above (183-188) is a quasi-static equation. In these 
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field E and the electrostatic field Es . Based on the definitions of 
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average magnetic field on the loop with a magnetic field? This 
permutation (211, 214) actually needs to be performed in two 
formulas (183, 185). There is no legitimate reason for doing 
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field to a retarded electromagnetic field.

6.6 Retarded Potential Method
The non retarded potential function is

 
Faraday’s law of electromagnetic induction (206) remains unchanged 
 
 ∇ × 𝑬𝑬 = − 𝜕𝜕

𝜕𝜕𝜕𝜕 𝑩𝑩 (218) 
 

Can replace, 
 
 𝑬𝑬 ≜ − 𝜕𝜕

𝜕𝜕𝜕𝜕 𝑨𝑨 − ∇𝜙𝜙 (219) 
 

The displacement current method was proposed by Maxwell, but it is difficult to find a 
reasonable explanation for this method. The difficulty lies in the fact that the transformation of 
formulas (211-214) is unreasonable. Why can the static electric field 𝑬𝑬𝑠𝑠 be replaced with an 
electric field 𝑬𝑬? Why can we replace the average magnetic field on the loop with a magnetic 
field? This permutation (211, 214) actually needs to be performed in two formulas (183, 185). 
There is no legitimate reason for doing so. Fortunately, the Maxwell displacement current 
method is consistent with the Lorenz retarded potential method *33+. In fact, the retarded 
potential is the solution to Maxwell’s equation. It is reasonable to transition from a non 
retarded electromagnetic field to a retarded electromagnetic field. 

 
6.6  Retarded potential method 
 
The non retarded potential function is 
 
 𝑨𝑨 = 𝜇𝜇0

4𝜋𝜋 ∫ 𝑉𝑉
𝑱𝑱
𝑟𝑟 𝑑𝑑𝑑𝑑 (220) 

  
 𝜙𝜙 = 1

4𝜋𝜋𝜖𝜖0
∫ 𝑉𝑉

𝜌𝜌
𝑟𝑟 𝑑𝑑𝑑𝑑 (221) 

 
The retarded potential function is, 
 
 𝑨𝑨(𝑟𝑟) = 𝜇𝜇0

4𝜋𝜋 ∫ 𝑉𝑉
[𝑱𝑱]
𝑟𝑟 𝑑𝑑𝑑𝑑 (222) 

  
 𝜙𝜙(𝑟𝑟) = 1

4𝜋𝜋𝜖𝜖0
∫ 𝑉𝑉

[𝜌𝜌]
𝑟𝑟 𝑑𝑑𝑑𝑑 (223) 

 
Square brackets indicate lag, i.e,  
 [𝑓𝑓(𝑥𝑥, 𝑡𝑡)] = 𝑓𝑓(𝑥𝑥, 𝑡𝑡 − 𝑟𝑟/𝑐𝑐) (224) 

 According to Lorenz’s viewpoint *33+, formulas (220, 221) and formulas (223, 223) were 
indistinguishable experimentally in their time. Therefore, even if formulas (220, 221) were 
obtained from experiments of that era, more accurate electromagnetic theory may still mean 
(222, 223). Compared to Maxwell’s displacement current method, Lorenz’s theory of retarded 
potential is more convincing. According to Maxwell’s electromagnetic theory, the electric and 
magnetic fields are,  

 
Faraday’s law of electromagnetic induction (206) remains unchanged 
 
 ∇ × 𝑬𝑬 = − 𝜕𝜕

𝜕𝜕𝜕𝜕 𝑩𝑩 (218) 
 

Can replace, 
 
 𝑬𝑬 ≜ − 𝜕𝜕

𝜕𝜕𝜕𝜕 𝑨𝑨 − ∇𝜙𝜙 (219) 
 

The displacement current method was proposed by Maxwell, but it is difficult to find a 
reasonable explanation for this method. The difficulty lies in the fact that the transformation of 
formulas (211-214) is unreasonable. Why can the static electric field 𝑬𝑬𝑠𝑠 be replaced with an 
electric field 𝑬𝑬? Why can we replace the average magnetic field on the loop with a magnetic 
field? This permutation (211, 214) actually needs to be performed in two formulas (183, 185). 
There is no legitimate reason for doing so. Fortunately, the Maxwell displacement current 
method is consistent with the Lorenz retarded potential method *33+. In fact, the retarded 
potential is the solution to Maxwell’s equation. It is reasonable to transition from a non 
retarded electromagnetic field to a retarded electromagnetic field. 

 
6.6  Retarded potential method 
 
The non retarded potential function is 
 
 𝑨𝑨 = 𝜇𝜇0

4𝜋𝜋 ∫ 𝑉𝑉
𝑱𝑱
𝑟𝑟 𝑑𝑑𝑑𝑑 (220) 

  
 𝜙𝜙 = 1

4𝜋𝜋𝜖𝜖0
∫ 𝑉𝑉

𝜌𝜌
𝑟𝑟 𝑑𝑑𝑑𝑑 (221) 

 
The retarded potential function is, 
 
 𝑨𝑨(𝑟𝑟) = 𝜇𝜇0

4𝜋𝜋 ∫ 𝑉𝑉
[𝑱𝑱]
𝑟𝑟 𝑑𝑑𝑑𝑑 (222) 

  
 𝜙𝜙(𝑟𝑟) = 1

4𝜋𝜋𝜖𝜖0
∫ 𝑉𝑉

[𝜌𝜌]
𝑟𝑟 𝑑𝑑𝑑𝑑 (223) 

 
Square brackets indicate lag, i.e,  
 [𝑓𝑓(𝑥𝑥, 𝑡𝑡)] = 𝑓𝑓(𝑥𝑥, 𝑡𝑡 − 𝑟𝑟/𝑐𝑐) (224) 

 According to Lorenz’s viewpoint *33+, formulas (220, 221) and formulas (223, 223) were 
indistinguishable experimentally in their time. Therefore, even if formulas (220, 221) were 
obtained from experiments of that era, more accurate electromagnetic theory may still mean 
(222, 223). Compared to Maxwell’s displacement current method, Lorenz’s theory of retarded 
potential is more convincing. According to Maxwell’s electromagnetic theory, the electric and 
magnetic fields are,  

 
Faraday’s law of electromagnetic induction (206) remains unchanged 
 
 ∇ × 𝑬𝑬 = − 𝜕𝜕

𝜕𝜕𝜕𝜕 𝑩𝑩 (218) 
 

Can replace, 
 
 𝑬𝑬 ≜ − 𝜕𝜕

𝜕𝜕𝜕𝜕 𝑨𝑨 − ∇𝜙𝜙 (219) 
 

The displacement current method was proposed by Maxwell, but it is difficult to find a 
reasonable explanation for this method. The difficulty lies in the fact that the transformation of 
formulas (211-214) is unreasonable. Why can the static electric field 𝑬𝑬𝑠𝑠 be replaced with an 
electric field 𝑬𝑬? Why can we replace the average magnetic field on the loop with a magnetic 
field? This permutation (211, 214) actually needs to be performed in two formulas (183, 185). 
There is no legitimate reason for doing so. Fortunately, the Maxwell displacement current 
method is consistent with the Lorenz retarded potential method *33+. In fact, the retarded 
potential is the solution to Maxwell’s equation. It is reasonable to transition from a non 
retarded electromagnetic field to a retarded electromagnetic field. 

 
6.6  Retarded potential method 
 
The non retarded potential function is 
 
 𝑨𝑨 = 𝜇𝜇0

4𝜋𝜋 ∫ 𝑉𝑉
𝑱𝑱
𝑟𝑟 𝑑𝑑𝑑𝑑 (220) 

  
 𝜙𝜙 = 1

4𝜋𝜋𝜖𝜖0
∫ 𝑉𝑉

𝜌𝜌
𝑟𝑟 𝑑𝑑𝑑𝑑 (221) 

 
The retarded potential function is, 
 
 𝑨𝑨(𝑟𝑟) = 𝜇𝜇0

4𝜋𝜋 ∫ 𝑉𝑉
[𝑱𝑱]
𝑟𝑟 𝑑𝑑𝑑𝑑 (222) 

  
 𝜙𝜙(𝑟𝑟) = 1

4𝜋𝜋𝜖𝜖0
∫ 𝑉𝑉

[𝜌𝜌]
𝑟𝑟 𝑑𝑑𝑑𝑑 (223) 

 
Square brackets indicate lag, i.e,  
 [𝑓𝑓(𝑥𝑥, 𝑡𝑡)] = 𝑓𝑓(𝑥𝑥, 𝑡𝑡 − 𝑟𝑟/𝑐𝑐) (224) 

 According to Lorenz’s viewpoint *33+, formulas (220, 221) and formulas (223, 223) were 
indistinguishable experimentally in their time. Therefore, even if formulas (220, 221) were 
obtained from experiments of that era, more accurate electromagnetic theory may still mean 
(222, 223). Compared to Maxwell’s displacement current method, Lorenz’s theory of retarded 
potential is more convincing. According to Maxwell’s electromagnetic theory, the electric and 
magnetic fields are,  

The retarded potential function is,

Square brackets indicate lag, i.e,

 According to Lorenz’s viewpoint formulas (220, 221) and 
formulas (223, 223) were indistinguishable experimentally 
in their time [33]. Therefore, even if formulas (220, 221) 
were obtained from experiments of that era, more accurate 

electromagnetic theory may still mean (222, 223). Compared 
to Maxwell’s displacement current method, Lorenz’s theory of 
retarded potential is more convincing. According to Maxwell’s 
electromagnetic theory, the electric and magnetic fields are,

 𝑬𝑬 = − 𝜕𝜕
𝜕𝜕𝜕𝜕 𝑨𝑨

(𝑟𝑟) − ∇𝜙𝜙(𝑟𝑟) (225) 
  

 𝑩𝑩 = ∇ × 𝑨𝑨(𝑟𝑟) (226) 
 

It is worth noting that the above equation cannot be directly obtained because it is 
deformed  

 −𝑗𝑗𝜔𝜔𝑩𝑩 = ∇ × (−𝑗𝑗𝜔𝜔𝑨𝑨(𝑟𝑟)) (227) 
 

Or,  
 𝑯𝑯 = 1

−𝑗𝑗𝜔𝜔𝜇𝜇0
∇ × 𝑬𝑬 (228) 

 The right side of this formula encounters the curl of the electric field, but in fact, the 
calculation of curl is done on the small loop. It is calculating the average magnetic field. 
Consider definition (127), actually we have,  

 𝑯𝑯 ≜ 1
−𝑗𝑗𝜔𝜔𝜇𝜇0

∇ × 𝑬𝑬 (229) 
 

Therefore, the above formula (228) actually means that we assume that,  
 𝑯𝑯 = 𝑯𝑯 (230) 

 
And this formula needs to be proven. Is there a problem with this formula under 

radiated electromagnetic fields. We have already proven that this formula is not valid in the 
case of simple electromagnetic waves (161). The Maxwell electric field theory directly assumes 
that the above equation holds. This is the source of the error. 

 
6.7  Retarded potential method 
 
 
 𝑨𝑨(𝑟𝑟) = 𝜇𝜇0

4𝜋𝜋 ∫ 𝑉𝑉
[𝑱𝑱]
𝑟𝑟 𝑑𝑑𝑑𝑑 = 𝜇𝜇0

4𝜋𝜋 ∫ 𝑉𝑉
𝑱𝑱
𝑟𝑟 exp(−𝑗𝑗𝑗𝑗𝑗𝑗)𝑑𝑑𝑑𝑑 (231) 

 
Calculate the curl of the retarded potential  
 ∇ × 𝑨𝑨(𝑟𝑟) = 𝜇𝜇0

4𝜋𝜋 ∫ 𝑉𝑉 ∇
exp(−𝑗𝑗𝑗𝑗𝑟𝑟)

𝑟𝑟 × 𝑱𝑱𝑑𝑑𝑑𝑑 
 

 = 𝜇𝜇0
4𝜋𝜋 ∫ 𝑉𝑉 (−

𝒓𝒓
𝑟𝑟3 +

−𝑗𝑗𝑗𝑗�̂�𝑟
𝑟𝑟 )exp(−𝑗𝑗𝑗𝑗𝑗𝑗) × 𝑱𝑱𝑑𝑑𝑑𝑑 

 
 = 𝜇𝜇0

4𝜋𝜋 ∫ 𝑉𝑉 𝑱𝑱 × ( 𝒓𝒓𝑟𝑟3 +
𝑗𝑗𝑗𝑗�̂�𝑟
𝑟𝑟 )exp(−𝑗𝑗𝑗𝑗𝑗𝑗)𝑑𝑑𝑑𝑑 

 
 = 𝜇𝜇0

4𝜋𝜋 ∫ 𝑉𝑉 𝑱𝑱 × ( 𝒓𝒓𝑟𝑟3)exp(−𝑗𝑗𝑗𝑗𝑗𝑗)𝑑𝑑𝑑𝑑 
 

 +𝑗𝑗 𝜇𝜇04𝜋𝜋 ∫ 𝑉𝑉 𝑱𝑱 ×
𝑗𝑗�̂�𝑟
𝑟𝑟 )exp(−𝑗𝑗𝑗𝑗𝑗𝑗)𝑑𝑑𝑑𝑑 (232) 

 
If the above equation (232) is a magnetic field 𝑩𝑩, we obtain,  

 𝑬𝑬 = − 𝜕𝜕
𝜕𝜕𝜕𝜕 𝑨𝑨

(𝑟𝑟) − ∇𝜙𝜙(𝑟𝑟) (225) 
  

 𝑩𝑩 = ∇ × 𝑨𝑨(𝑟𝑟) (226) 
 

It is worth noting that the above equation cannot be directly obtained because it is 
deformed  

 −𝑗𝑗𝜔𝜔𝑩𝑩 = ∇ × (−𝑗𝑗𝜔𝜔𝑨𝑨(𝑟𝑟)) (227) 
 

Or,  
 𝑯𝑯 = 1

−𝑗𝑗𝜔𝜔𝜇𝜇0
∇ × 𝑬𝑬 (228) 

 The right side of this formula encounters the curl of the electric field, but in fact, the 
calculation of curl is done on the small loop. It is calculating the average magnetic field. 
Consider definition (127), actually we have,  

 𝑯𝑯 ≜ 1
−𝑗𝑗𝜔𝜔𝜇𝜇0

∇ × 𝑬𝑬 (229) 
 

Therefore, the above formula (228) actually means that we assume that,  
 𝑯𝑯 = 𝑯𝑯 (230) 

 
And this formula needs to be proven. Is there a problem with this formula under 

radiated electromagnetic fields. We have already proven that this formula is not valid in the 
case of simple electromagnetic waves (161). The Maxwell electric field theory directly assumes 
that the above equation holds. This is the source of the error. 

 
6.7  Retarded potential method 
 
 
 𝑨𝑨(𝑟𝑟) = 𝜇𝜇0

4𝜋𝜋 ∫ 𝑉𝑉
[𝑱𝑱]
𝑟𝑟 𝑑𝑑𝑑𝑑 = 𝜇𝜇0

4𝜋𝜋 ∫ 𝑉𝑉
𝑱𝑱
𝑟𝑟 exp(−𝑗𝑗𝑗𝑗𝑗𝑗)𝑑𝑑𝑑𝑑 (231) 

 
Calculate the curl of the retarded potential  
 ∇ × 𝑨𝑨(𝑟𝑟) = 𝜇𝜇0

4𝜋𝜋 ∫ 𝑉𝑉 ∇
exp(−𝑗𝑗𝑗𝑗𝑟𝑟)

𝑟𝑟 × 𝑱𝑱𝑑𝑑𝑑𝑑 
 

 = 𝜇𝜇0
4𝜋𝜋 ∫ 𝑉𝑉 (−

𝒓𝒓
𝑟𝑟3 +

−𝑗𝑗𝑗𝑗�̂�𝑟
𝑟𝑟 )exp(−𝑗𝑗𝑗𝑗𝑗𝑗) × 𝑱𝑱𝑑𝑑𝑑𝑑 

 
 = 𝜇𝜇0

4𝜋𝜋 ∫ 𝑉𝑉 𝑱𝑱 × ( 𝒓𝒓𝑟𝑟3 +
𝑗𝑗𝑗𝑗�̂�𝑟
𝑟𝑟 )exp(−𝑗𝑗𝑗𝑗𝑗𝑗)𝑑𝑑𝑑𝑑 

 
 = 𝜇𝜇0

4𝜋𝜋 ∫ 𝑉𝑉 𝑱𝑱 × ( 𝒓𝒓𝑟𝑟3)exp(−𝑗𝑗𝑗𝑗𝑗𝑗)𝑑𝑑𝑑𝑑 
 

 +𝑗𝑗 𝜇𝜇04𝜋𝜋 ∫ 𝑉𝑉 𝑱𝑱 ×
𝑗𝑗�̂�𝑟
𝑟𝑟 )exp(−𝑗𝑗𝑗𝑗𝑗𝑗)𝑑𝑑𝑑𝑑 (232) 

 
If the above equation (232) is a magnetic field 𝑩𝑩, we obtain,  

 𝑬𝑬 = − 𝜕𝜕
𝜕𝜕𝜕𝜕 𝑨𝑨

(𝑟𝑟) − ∇𝜙𝜙(𝑟𝑟) (225) 
  

 𝑩𝑩 = ∇ × 𝑨𝑨(𝑟𝑟) (226) 
 

It is worth noting that the above equation cannot be directly obtained because it is 
deformed  

 −𝑗𝑗𝜔𝜔𝑩𝑩 = ∇ × (−𝑗𝑗𝜔𝜔𝑨𝑨(𝑟𝑟)) (227) 
 

Or,  
 𝑯𝑯 = 1

−𝑗𝑗𝜔𝜔𝜇𝜇0
∇ × 𝑬𝑬 (228) 

 The right side of this formula encounters the curl of the electric field, but in fact, the 
calculation of curl is done on the small loop. It is calculating the average magnetic field. 
Consider definition (127), actually we have,  

 𝑯𝑯 ≜ 1
−𝑗𝑗𝜔𝜔𝜇𝜇0

∇ × 𝑬𝑬 (229) 
 

Therefore, the above formula (228) actually means that we assume that,  
 𝑯𝑯 = 𝑯𝑯 (230) 

 
And this formula needs to be proven. Is there a problem with this formula under 

radiated electromagnetic fields. We have already proven that this formula is not valid in the 
case of simple electromagnetic waves (161). The Maxwell electric field theory directly assumes 
that the above equation holds. This is the source of the error. 

 
6.7  Retarded potential method 
 
 
 𝑨𝑨(𝑟𝑟) = 𝜇𝜇0

4𝜋𝜋 ∫ 𝑉𝑉
[𝑱𝑱]
𝑟𝑟 𝑑𝑑𝑑𝑑 = 𝜇𝜇0

4𝜋𝜋 ∫ 𝑉𝑉
𝑱𝑱
𝑟𝑟 exp(−𝑗𝑗𝑗𝑗𝑗𝑗)𝑑𝑑𝑑𝑑 (231) 

 
Calculate the curl of the retarded potential  
 ∇ × 𝑨𝑨(𝑟𝑟) = 𝜇𝜇0

4𝜋𝜋 ∫ 𝑉𝑉 ∇
exp(−𝑗𝑗𝑗𝑗𝑟𝑟)

𝑟𝑟 × 𝑱𝑱𝑑𝑑𝑑𝑑 
 

 = 𝜇𝜇0
4𝜋𝜋 ∫ 𝑉𝑉 (−

𝒓𝒓
𝑟𝑟3 +

−𝑗𝑗𝑗𝑗�̂�𝑟
𝑟𝑟 )exp(−𝑗𝑗𝑗𝑗𝑗𝑗) × 𝑱𝑱𝑑𝑑𝑑𝑑 

 
 = 𝜇𝜇0

4𝜋𝜋 ∫ 𝑉𝑉 𝑱𝑱 × ( 𝒓𝒓𝑟𝑟3 +
𝑗𝑗𝑗𝑗�̂�𝑟
𝑟𝑟 )exp(−𝑗𝑗𝑗𝑗𝑗𝑗)𝑑𝑑𝑑𝑑 

 
 = 𝜇𝜇0

4𝜋𝜋 ∫ 𝑉𝑉 𝑱𝑱 × ( 𝒓𝒓𝑟𝑟3)exp(−𝑗𝑗𝑗𝑗𝑗𝑗)𝑑𝑑𝑑𝑑 
 

 +𝑗𝑗 𝜇𝜇04𝜋𝜋 ∫ 𝑉𝑉 𝑱𝑱 ×
𝑗𝑗�̂�𝑟
𝑟𝑟 )exp(−𝑗𝑗𝑗𝑗𝑗𝑗)𝑑𝑑𝑑𝑑 (232) 

 
If the above equation (232) is a magnetic field 𝑩𝑩, we obtain,  

 𝑬𝑬 = − 𝜕𝜕
𝜕𝜕𝜕𝜕 𝑨𝑨

(𝑟𝑟) − ∇𝜙𝜙(𝑟𝑟) (225) 
  

 𝑩𝑩 = ∇ × 𝑨𝑨(𝑟𝑟) (226) 
 

It is worth noting that the above equation cannot be directly obtained because it is 
deformed  

 −𝑗𝑗𝜔𝜔𝑩𝑩 = ∇ × (−𝑗𝑗𝜔𝜔𝑨𝑨(𝑟𝑟)) (227) 
 

Or,  
 𝑯𝑯 = 1

−𝑗𝑗𝜔𝜔𝜇𝜇0
∇ × 𝑬𝑬 (228) 

 The right side of this formula encounters the curl of the electric field, but in fact, the 
calculation of curl is done on the small loop. It is calculating the average magnetic field. 
Consider definition (127), actually we have,  

 𝑯𝑯 ≜ 1
−𝑗𝑗𝜔𝜔𝜇𝜇0

∇ × 𝑬𝑬 (229) 
 

Therefore, the above formula (228) actually means that we assume that,  
 𝑯𝑯 = 𝑯𝑯 (230) 

 
And this formula needs to be proven. Is there a problem with this formula under 

radiated electromagnetic fields. We have already proven that this formula is not valid in the 
case of simple electromagnetic waves (161). The Maxwell electric field theory directly assumes 
that the above equation holds. This is the source of the error. 

 
6.7  Retarded potential method 
 
 
 𝑨𝑨(𝑟𝑟) = 𝜇𝜇0

4𝜋𝜋 ∫ 𝑉𝑉
[𝑱𝑱]
𝑟𝑟 𝑑𝑑𝑑𝑑 = 𝜇𝜇0

4𝜋𝜋 ∫ 𝑉𝑉
𝑱𝑱
𝑟𝑟 exp(−𝑗𝑗𝑗𝑗𝑗𝑗)𝑑𝑑𝑑𝑑 (231) 

 
Calculate the curl of the retarded potential  
 ∇ × 𝑨𝑨(𝑟𝑟) = 𝜇𝜇0

4𝜋𝜋 ∫ 𝑉𝑉 ∇
exp(−𝑗𝑗𝑗𝑗𝑟𝑟)

𝑟𝑟 × 𝑱𝑱𝑑𝑑𝑑𝑑 
 

 = 𝜇𝜇0
4𝜋𝜋 ∫ 𝑉𝑉 (−

𝒓𝒓
𝑟𝑟3 +

−𝑗𝑗𝑗𝑗�̂�𝑟
𝑟𝑟 )exp(−𝑗𝑗𝑗𝑗𝑗𝑗) × 𝑱𝑱𝑑𝑑𝑑𝑑 

 
 = 𝜇𝜇0

4𝜋𝜋 ∫ 𝑉𝑉 𝑱𝑱 × ( 𝒓𝒓𝑟𝑟3 +
𝑗𝑗𝑗𝑗�̂�𝑟
𝑟𝑟 )exp(−𝑗𝑗𝑗𝑗𝑗𝑗)𝑑𝑑𝑑𝑑 

 
 = 𝜇𝜇0

4𝜋𝜋 ∫ 𝑉𝑉 𝑱𝑱 × ( 𝒓𝒓𝑟𝑟3)exp(−𝑗𝑗𝑗𝑗𝑗𝑗)𝑑𝑑𝑑𝑑 
 

 +𝑗𝑗 𝜇𝜇04𝜋𝜋 ∫ 𝑉𝑉 𝑱𝑱 ×
𝑗𝑗�̂�𝑟
𝑟𝑟 )exp(−𝑗𝑗𝑗𝑗𝑗𝑗)𝑑𝑑𝑑𝑑 (232) 

 
If the above equation (232) is a magnetic field 𝑩𝑩, we obtain,  

 𝑬𝑬 = − 𝜕𝜕
𝜕𝜕𝜕𝜕 𝑨𝑨

(𝑟𝑟) − ∇𝜙𝜙(𝑟𝑟) (225) 
  

 𝑩𝑩 = ∇ × 𝑨𝑨(𝑟𝑟) (226) 
 

It is worth noting that the above equation cannot be directly obtained because it is 
deformed  

 −𝑗𝑗𝜔𝜔𝑩𝑩 = ∇ × (−𝑗𝑗𝜔𝜔𝑨𝑨(𝑟𝑟)) (227) 
 

Or,  
 𝑯𝑯 = 1

−𝑗𝑗𝜔𝜔𝜇𝜇0
∇ × 𝑬𝑬 (228) 

 The right side of this formula encounters the curl of the electric field, but in fact, the 
calculation of curl is done on the small loop. It is calculating the average magnetic field. 
Consider definition (127), actually we have,  

 𝑯𝑯 ≜ 1
−𝑗𝑗𝜔𝜔𝜇𝜇0

∇ × 𝑬𝑬 (229) 
 

Therefore, the above formula (228) actually means that we assume that,  
 𝑯𝑯 = 𝑯𝑯 (230) 

 
And this formula needs to be proven. Is there a problem with this formula under 

radiated electromagnetic fields. We have already proven that this formula is not valid in the 
case of simple electromagnetic waves (161). The Maxwell electric field theory directly assumes 
that the above equation holds. This is the source of the error. 

 
6.7  Retarded potential method 
 
 
 𝑨𝑨(𝑟𝑟) = 𝜇𝜇0

4𝜋𝜋 ∫ 𝑉𝑉
[𝑱𝑱]
𝑟𝑟 𝑑𝑑𝑑𝑑 = 𝜇𝜇0

4𝜋𝜋 ∫ 𝑉𝑉
𝑱𝑱
𝑟𝑟 exp(−𝑗𝑗𝑗𝑗𝑗𝑗)𝑑𝑑𝑑𝑑 (231) 

 
Calculate the curl of the retarded potential  
 ∇ × 𝑨𝑨(𝑟𝑟) = 𝜇𝜇0

4𝜋𝜋 ∫ 𝑉𝑉 ∇
exp(−𝑗𝑗𝑗𝑗𝑟𝑟)

𝑟𝑟 × 𝑱𝑱𝑑𝑑𝑑𝑑 
 

 = 𝜇𝜇0
4𝜋𝜋 ∫ 𝑉𝑉 (−

𝒓𝒓
𝑟𝑟3 +

−𝑗𝑗𝑗𝑗�̂�𝑟
𝑟𝑟 )exp(−𝑗𝑗𝑗𝑗𝑗𝑗) × 𝑱𝑱𝑑𝑑𝑑𝑑 

 
 = 𝜇𝜇0

4𝜋𝜋 ∫ 𝑉𝑉 𝑱𝑱 × ( 𝒓𝒓𝑟𝑟3 +
𝑗𝑗𝑗𝑗�̂�𝑟
𝑟𝑟 )exp(−𝑗𝑗𝑗𝑗𝑗𝑗)𝑑𝑑𝑑𝑑 

 
 = 𝜇𝜇0

4𝜋𝜋 ∫ 𝑉𝑉 𝑱𝑱 × ( 𝒓𝒓𝑟𝑟3)exp(−𝑗𝑗𝑗𝑗𝑗𝑗)𝑑𝑑𝑑𝑑 
 

 +𝑗𝑗 𝜇𝜇04𝜋𝜋 ∫ 𝑉𝑉 𝑱𝑱 ×
𝑗𝑗�̂�𝑟
𝑟𝑟 )exp(−𝑗𝑗𝑗𝑗𝑗𝑗)𝑑𝑑𝑑𝑑 (232) 

 
If the above equation (232) is a magnetic field 𝑩𝑩, we obtain,  

It is worth noting that the above equation cannot be directly obtained because it is deformed

Or, 
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It is calculating the average magnetic field. Consider definition 
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directly assumes that the above equation holds. This is the source 
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6.7 Retarded Potential Method
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∇ × 𝑬𝑬 (228) 
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the origin, where there is lim𝑘𝑘𝑟𝑟→0  
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𝑘𝑘�̂�𝑟
𝑟𝑟 )𝑑𝑑𝑑𝑑 (235) 

 
The first term in the above equation is the static magnetic field,  
 𝑩𝑩𝑠𝑠 ≜

𝜇𝜇0
4𝜋𝜋 ∫ 𝑉𝑉 𝑱𝑱 × ( 𝒓𝒓𝑟𝑟3)𝑑𝑑𝑑𝑑 (236) 

 
The second item is for radiation. It should be determined by the experiment. If it is 

found that the measured magnetic field is  
 𝑩𝑩𝑠𝑠 + 𝑗𝑗 𝜇𝜇04𝜋𝜋 ∫ 𝑉𝑉 𝑱𝑱 ×

𝑘𝑘�̂�𝑟
𝑟𝑟 𝑑𝑑𝑑𝑑 (237) 

 We can define,  
 ∇ × 𝑨𝑨(𝑟𝑟) ≜ 𝑩𝑩 (238) 

 
If the experiment finds that the measured magnetic field is,  
 𝑩𝑩𝑠𝑠 +
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Otherwise,  
 ∇ × 𝑨𝑨(𝑟𝑟) ≠ 𝑩𝑩 (240) 

 Experiments can solve problems. But we have already proven in a simpler case, as shown in 
(161), that the above equation (240) is correct under plane wave conditions. For this reason, we 
can generally have,  

𝑩𝑩 = 𝑩𝑩(𝑟𝑟) ≜ ∇ × 𝑨𝑨(𝑟𝑟) 
 ≠ 𝑩𝑩 (241) 

 The right side of the above equation is to calculate the curl of the retarded potential, which is 
actually equal to the magnetic field measured on a loop. Therefore, it is the average magnetic 
field on the loop. It is not the magnetic field 𝑩𝑩. 
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The first term in the above equation is the static magnetic field,  
 𝑩𝑩𝑠𝑠 ≜

𝜇𝜇0
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The second item is for radiation. It should be determined by the experiment. If it is 

found that the measured magnetic field is  
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 We can define,  
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actually equal to the magnetic field measured on a loop. Therefore, it is the average magnetic 
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which was later inherited by Wheeler and Feynman *8, 9+, and then interpreted and inherited 
by Cramer quantum mechanics trading *14, 15+. However, they did not actually apply this 
principle to the calculation of electromagnetic fields. The author uses this condition to require 
that the advanced and retarded parts of the electric field and the magnetic field emitted cannot 
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If the experiment finds that the measured magnetic field is,

Otherwise,

Experiments can solve problems. But we have already proven in 
a simpler case, as shown in (161), that the above equation (240) 

is correct under plane wave conditions. For this reason, we can 
generally have,
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 𝑩𝑩 = 𝑩𝑩 (233) 
 

At this point, we can define  
 𝑩𝑩 ≜ ∇ × 𝑨𝑨(𝑟𝑟) (234) 

 
Unfortunately (232) is not yet a magnetic field 𝑩𝑩. We are considering the problem near 

the origin, where there is lim𝑘𝑘𝑟𝑟→0  
 lim

𝑘𝑘𝑟𝑟→0
∇ × 𝑨𝑨(𝑟𝑟) = 𝜇𝜇0

4𝜋𝜋 ∫ 𝑉𝑉 𝑱𝑱 × ( 𝒓𝒓𝑟𝑟3)𝑑𝑑𝑑𝑑 + 𝑗𝑗 𝜇𝜇04𝜋𝜋 ∫ 𝑉𝑉 𝑱𝑱 ×
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If the experiment finds that the measured magnetic field is,  
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𝜇𝜇0
4𝜋𝜋 ∫ 𝑉𝑉 𝑱𝑱 ×

𝑘𝑘�̂�𝑟
𝑟𝑟 𝑑𝑑𝑑𝑑 (239) 

 
Otherwise,  
 ∇ × 𝑨𝑨(𝑟𝑟) ≠ 𝑩𝑩 (240) 
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The principle of half retardation and half advancement was first proposed by Dirac *13+, 

which was later inherited by Wheeler and Feynman *8, 9+, and then interpreted and inherited 
by Cramer quantum mechanics trading *14, 15+. However, they did not actually apply this 
principle to the calculation of electromagnetic fields. The author uses this condition to require 
that the advanced and retarded parts of the electric field and the magnetic field emitted cannot 

 The right side of the above equation is to calculate the curl of the 
retarded potential, which is actually equal to the magnetic field 
measured on a loop. Therefore, it is the average magnetic field 
on the loop. It is not the magnetic field B.

6.8 The Principle of Half Retardation And Half Advancement 
The principle of half retardation and half advancement was 
first proposed by Dirac which was later inherited by Wheeler 

and Feynman [8, 9], and then interpreted and inherited by 
Cramer quantum mechanics transactional interpretation [13-
15]. However, they did not actually apply this principle to the 
calculation of electromagnetic fields [8,9]. The author uses this 
condition to require that the advanced and retarded parts of the 
electric field and the magnetic field emitted cannot be offset. If 
at limkr→0 situation, 

be offset. If at lim𝑘𝑘𝑘𝑘→0 situation,  
 𝑩𝑩(𝑘𝑘) = lim

𝑘𝑘𝑘𝑘→0
∇ × 𝑨𝑨(𝑘𝑘) 

 
 𝑩𝑩(𝑎𝑎) = lim

𝑘𝑘𝑘𝑘→0
∇ × 𝑨𝑨(𝑎𝑎) 

then  
 𝑩𝑩(𝑘𝑘) = 𝑩𝑩𝑠𝑠 + 𝑗𝑗 𝜇𝜇04𝜋𝜋 ∫ 𝑉𝑉 𝑱𝑱 ×

𝑘𝑘�̂�𝑘
𝑘𝑘 )𝑑𝑑𝑑𝑑 (242) 

  
 𝑩𝑩(𝑎𝑎) = 𝑩𝑩𝑠𝑠 − 𝑗𝑗 𝜇𝜇04𝜋𝜋 ∫ 𝑉𝑉 𝑱𝑱 ×

𝑘𝑘�̂�𝑘
𝑘𝑘 )𝑑𝑑𝑑𝑑 (243) 

  
 1

2𝑩𝑩
(𝑘𝑘) + 1

2𝑩𝑩
(𝑎𝑎) = 𝑩𝑩𝑠𝑠 (244) 

 
We found that the far-field part in the formulas (242, 243) has been canceled out. Such 

retarded and advanced far-field cannot be transmitted. We must correct the formula (242, 243). 
We found that if we have at the situation lim𝑘𝑘𝑘𝑘→0, 

 
 𝑩𝑩(𝑘𝑘) = 𝑩𝑩𝑠𝑠 +

𝜇𝜇0
4𝜋𝜋 ∫ 𝑉𝑉 𝑱𝑱 ×

𝑘𝑘�̂�𝑘
𝑘𝑘 𝑑𝑑𝑑𝑑 (245) 

 
So the corresponding leading wave is  
 𝑩𝑩(𝑎𝑎) = 𝑩𝑩𝑠𝑠 +

𝜇𝜇0
4𝜋𝜋 ∫ 𝑉𝑉 𝑱𝑱 ×

𝑘𝑘�̂�𝑘
𝑘𝑘 )𝑑𝑑𝑑𝑑 (246) 

 
In this way, half retardation and half advancement do not cancel out.  
 1

2𝑩𝑩
(𝑘𝑘) + 1

2𝑩𝑩
(𝑎𝑎) = 𝑩𝑩𝑠𝑠 +

𝜇𝜇0
4𝜋𝜋 ∫ 𝑉𝑉 𝑱𝑱 ×

𝑘𝑘�̂�𝑘
𝑘𝑘 𝑑𝑑𝑑𝑑 (247) 

 This is correct. Therefore, we can define,  
 𝑩𝑩(𝑘𝑘) ≜ 𝜇𝜇0

4𝜋𝜋 ∫ 𝑉𝑉 𝑱𝑱 × ( 𝒓𝒓𝑘𝑘3)exp(−𝑗𝑗𝑗𝑗𝑗𝑗)𝑑𝑑𝑑𝑑 
 

 + 𝜇𝜇0
4𝜋𝜋 ∫ 𝑉𝑉 𝑱𝑱 ×

𝑘𝑘�̂�𝑘
𝑘𝑘 exp(−𝑗𝑗𝑗𝑗𝑗𝑗)𝑑𝑑𝑑𝑑 (248) 

  
 𝑩𝑩(𝑎𝑎) ≜ 𝜇𝜇0

4𝜋𝜋 ∫ 𝑉𝑉 𝑱𝑱 × ( 𝒓𝒓𝑘𝑘3)exp(+𝑗𝑗𝑗𝑗𝑗𝑗)𝑑𝑑𝑑𝑑 
 

 + 𝜇𝜇0
4𝜋𝜋 ∫ 𝑉𝑉 𝑱𝑱 ×

𝑘𝑘�̂�𝑘
𝑘𝑘 exp(+𝑗𝑗𝑗𝑗𝑗𝑗)𝑑𝑑𝑑𝑑) (249) 

 
Or  
 𝑩𝑩(𝑘𝑘) = 𝑩𝑩𝑛𝑛

(𝑘𝑘) + (−𝑗𝑗)𝑩𝑩𝑓𝑓
(𝑘𝑘)

 (250) 
  

 𝑩𝑩(𝑎𝑎) = 𝑩𝑩𝑛𝑛
(𝑎𝑎) + (𝑗𝑗)𝑩𝑩𝑓𝑓

(𝑎𝑎)
 (251) 

 
Or,  
 𝑩𝑩 = 1

2 (𝑩𝑩
(𝑘𝑘) + 𝑩𝑩(𝑎𝑎)) (252) 

 

be offset. If at lim𝑘𝑘𝑘𝑘→0 situation,  
 𝑩𝑩(𝑘𝑘) = lim

𝑘𝑘𝑘𝑘→0
∇ × 𝑨𝑨(𝑘𝑘) 

 
 𝑩𝑩(𝑎𝑎) = lim

𝑘𝑘𝑘𝑘→0
∇ × 𝑨𝑨(𝑎𝑎) 

then  
 𝑩𝑩(𝑘𝑘) = 𝑩𝑩𝑠𝑠 + 𝑗𝑗 𝜇𝜇04𝜋𝜋 ∫ 𝑉𝑉 𝑱𝑱 ×

𝑘𝑘�̂�𝑘
𝑘𝑘 )𝑑𝑑𝑑𝑑 (242) 

  
 𝑩𝑩(𝑎𝑎) = 𝑩𝑩𝑠𝑠 − 𝑗𝑗 𝜇𝜇04𝜋𝜋 ∫ 𝑉𝑉 𝑱𝑱 ×

𝑘𝑘�̂�𝑘
𝑘𝑘 )𝑑𝑑𝑑𝑑 (243) 

  
 1

2𝑩𝑩
(𝑘𝑘) + 1

2𝑩𝑩
(𝑎𝑎) = 𝑩𝑩𝑠𝑠 (244) 

 
We found that the far-field part in the formulas (242, 243) has been canceled out. Such 

retarded and advanced far-field cannot be transmitted. We must correct the formula (242, 243). 
We found that if we have at the situation lim𝑘𝑘𝑘𝑘→0, 

 
 𝑩𝑩(𝑘𝑘) = 𝑩𝑩𝑠𝑠 +

𝜇𝜇0
4𝜋𝜋 ∫ 𝑉𝑉 𝑱𝑱 ×

𝑘𝑘�̂�𝑘
𝑘𝑘 𝑑𝑑𝑑𝑑 (245) 

 
So the corresponding leading wave is  
 𝑩𝑩(𝑎𝑎) = 𝑩𝑩𝑠𝑠 +

𝜇𝜇0
4𝜋𝜋 ∫ 𝑉𝑉 𝑱𝑱 ×

𝑘𝑘�̂�𝑘
𝑘𝑘 )𝑑𝑑𝑑𝑑 (246) 

 
In this way, half retardation and half advancement do not cancel out.  
 1

2𝑩𝑩
(𝑘𝑘) + 1

2𝑩𝑩
(𝑎𝑎) = 𝑩𝑩𝑠𝑠 +

𝜇𝜇0
4𝜋𝜋 ∫ 𝑉𝑉 𝑱𝑱 ×

𝑘𝑘�̂�𝑘
𝑘𝑘 𝑑𝑑𝑑𝑑 (247) 

 This is correct. Therefore, we can define,  
 𝑩𝑩(𝑘𝑘) ≜ 𝜇𝜇0

4𝜋𝜋 ∫ 𝑉𝑉 𝑱𝑱 × ( 𝒓𝒓𝑘𝑘3)exp(−𝑗𝑗𝑗𝑗𝑗𝑗)𝑑𝑑𝑑𝑑 
 

 + 𝜇𝜇0
4𝜋𝜋 ∫ 𝑉𝑉 𝑱𝑱 ×

𝑘𝑘�̂�𝑘
𝑘𝑘 exp(−𝑗𝑗𝑗𝑗𝑗𝑗)𝑑𝑑𝑑𝑑 (248) 

  
 𝑩𝑩(𝑎𝑎) ≜ 𝜇𝜇0

4𝜋𝜋 ∫ 𝑉𝑉 𝑱𝑱 × ( 𝒓𝒓𝑘𝑘3)exp(+𝑗𝑗𝑗𝑗𝑗𝑗)𝑑𝑑𝑑𝑑 
 

 + 𝜇𝜇0
4𝜋𝜋 ∫ 𝑉𝑉 𝑱𝑱 ×

𝑘𝑘�̂�𝑘
𝑘𝑘 exp(+𝑗𝑗𝑗𝑗𝑗𝑗)𝑑𝑑𝑑𝑑) (249) 

 
Or  
 𝑩𝑩(𝑘𝑘) = 𝑩𝑩𝑛𝑛

(𝑘𝑘) + (−𝑗𝑗)𝑩𝑩𝑓𝑓
(𝑘𝑘)

 (250) 
  

 𝑩𝑩(𝑎𝑎) = 𝑩𝑩𝑛𝑛
(𝑎𝑎) + (𝑗𝑗)𝑩𝑩𝑓𝑓

(𝑎𝑎)
 (251) 

 
Or,  
 𝑩𝑩 = 1

2 (𝑩𝑩
(𝑘𝑘) + 𝑩𝑩(𝑎𝑎)) (252) 

 

be offset. If at lim𝑘𝑘𝑘𝑘→0 situation,  
 𝑩𝑩(𝑘𝑘) = lim

𝑘𝑘𝑘𝑘→0
∇ × 𝑨𝑨(𝑘𝑘) 

 
 𝑩𝑩(𝑎𝑎) = lim

𝑘𝑘𝑘𝑘→0
∇ × 𝑨𝑨(𝑎𝑎) 

then  
 𝑩𝑩(𝑘𝑘) = 𝑩𝑩𝑠𝑠 + 𝑗𝑗 𝜇𝜇04𝜋𝜋 ∫ 𝑉𝑉 𝑱𝑱 ×

𝑘𝑘�̂�𝑘
𝑘𝑘 )𝑑𝑑𝑑𝑑 (242) 

  
 𝑩𝑩(𝑎𝑎) = 𝑩𝑩𝑠𝑠 − 𝑗𝑗 𝜇𝜇04𝜋𝜋 ∫ 𝑉𝑉 𝑱𝑱 ×

𝑘𝑘�̂�𝑘
𝑘𝑘 )𝑑𝑑𝑑𝑑 (243) 

  
 1

2𝑩𝑩
(𝑘𝑘) + 1

2𝑩𝑩
(𝑎𝑎) = 𝑩𝑩𝑠𝑠 (244) 

 
We found that the far-field part in the formulas (242, 243) has been canceled out. Such 

retarded and advanced far-field cannot be transmitted. We must correct the formula (242, 243). 
We found that if we have at the situation lim𝑘𝑘𝑘𝑘→0, 

 
 𝑩𝑩(𝑘𝑘) = 𝑩𝑩𝑠𝑠 +

𝜇𝜇0
4𝜋𝜋 ∫ 𝑉𝑉 𝑱𝑱 ×

𝑘𝑘�̂�𝑘
𝑘𝑘 𝑑𝑑𝑑𝑑 (245) 

 
So the corresponding leading wave is  
 𝑩𝑩(𝑎𝑎) = 𝑩𝑩𝑠𝑠 +

𝜇𝜇0
4𝜋𝜋 ∫ 𝑉𝑉 𝑱𝑱 ×

𝑘𝑘�̂�𝑘
𝑘𝑘 )𝑑𝑑𝑑𝑑 (246) 

 
In this way, half retardation and half advancement do not cancel out.  
 1

2𝑩𝑩
(𝑘𝑘) + 1

2𝑩𝑩
(𝑎𝑎) = 𝑩𝑩𝑠𝑠 +

𝜇𝜇0
4𝜋𝜋 ∫ 𝑉𝑉 𝑱𝑱 ×

𝑘𝑘�̂�𝑘
𝑘𝑘 𝑑𝑑𝑑𝑑 (247) 

 This is correct. Therefore, we can define,  
 𝑩𝑩(𝑘𝑘) ≜ 𝜇𝜇0

4𝜋𝜋 ∫ 𝑉𝑉 𝑱𝑱 × ( 𝒓𝒓𝑘𝑘3)exp(−𝑗𝑗𝑗𝑗𝑗𝑗)𝑑𝑑𝑑𝑑 
 

 + 𝜇𝜇0
4𝜋𝜋 ∫ 𝑉𝑉 𝑱𝑱 ×

𝑘𝑘�̂�𝑘
𝑘𝑘 exp(−𝑗𝑗𝑗𝑗𝑗𝑗)𝑑𝑑𝑑𝑑 (248) 

  
 𝑩𝑩(𝑎𝑎) ≜ 𝜇𝜇0

4𝜋𝜋 ∫ 𝑉𝑉 𝑱𝑱 × ( 𝒓𝒓𝑘𝑘3)exp(+𝑗𝑗𝑗𝑗𝑗𝑗)𝑑𝑑𝑑𝑑 
 

 + 𝜇𝜇0
4𝜋𝜋 ∫ 𝑉𝑉 𝑱𝑱 ×

𝑘𝑘�̂�𝑘
𝑘𝑘 exp(+𝑗𝑗𝑗𝑗𝑗𝑗)𝑑𝑑𝑑𝑑) (249) 

 
Or  
 𝑩𝑩(𝑘𝑘) = 𝑩𝑩𝑛𝑛

(𝑘𝑘) + (−𝑗𝑗)𝑩𝑩𝑓𝑓
(𝑘𝑘)

 (250) 
  

 𝑩𝑩(𝑎𝑎) = 𝑩𝑩𝑛𝑛
(𝑎𝑎) + (𝑗𝑗)𝑩𝑩𝑓𝑓

(𝑎𝑎)
 (251) 

 
Or,  
 𝑩𝑩 = 1

2 (𝑩𝑩
(𝑘𝑘) + 𝑩𝑩(𝑎𝑎)) (252) 

 

be offset. If at lim𝑘𝑘𝑘𝑘→0 situation,  
 𝑩𝑩(𝑘𝑘) = lim

𝑘𝑘𝑘𝑘→0
∇ × 𝑨𝑨(𝑘𝑘) 

 
 𝑩𝑩(𝑎𝑎) = lim

𝑘𝑘𝑘𝑘→0
∇ × 𝑨𝑨(𝑎𝑎) 

then  
 𝑩𝑩(𝑘𝑘) = 𝑩𝑩𝑠𝑠 + 𝑗𝑗 𝜇𝜇04𝜋𝜋 ∫ 𝑉𝑉 𝑱𝑱 ×

𝑘𝑘�̂�𝑘
𝑘𝑘 )𝑑𝑑𝑑𝑑 (242) 

  
 𝑩𝑩(𝑎𝑎) = 𝑩𝑩𝑠𝑠 − 𝑗𝑗 𝜇𝜇04𝜋𝜋 ∫ 𝑉𝑉 𝑱𝑱 ×

𝑘𝑘�̂�𝑘
𝑘𝑘 )𝑑𝑑𝑑𝑑 (243) 

  
 1

2𝑩𝑩
(𝑘𝑘) + 1

2𝑩𝑩
(𝑎𝑎) = 𝑩𝑩𝑠𝑠 (244) 

 
We found that the far-field part in the formulas (242, 243) has been canceled out. Such 

retarded and advanced far-field cannot be transmitted. We must correct the formula (242, 243). 
We found that if we have at the situation lim𝑘𝑘𝑘𝑘→0, 

 
 𝑩𝑩(𝑘𝑘) = 𝑩𝑩𝑠𝑠 +

𝜇𝜇0
4𝜋𝜋 ∫ 𝑉𝑉 𝑱𝑱 ×

𝑘𝑘�̂�𝑘
𝑘𝑘 𝑑𝑑𝑑𝑑 (245) 

 
So the corresponding leading wave is  
 𝑩𝑩(𝑎𝑎) = 𝑩𝑩𝑠𝑠 +

𝜇𝜇0
4𝜋𝜋 ∫ 𝑉𝑉 𝑱𝑱 ×

𝑘𝑘�̂�𝑘
𝑘𝑘 )𝑑𝑑𝑑𝑑 (246) 

 
In this way, half retardation and half advancement do not cancel out.  
 1

2𝑩𝑩
(𝑘𝑘) + 1

2𝑩𝑩
(𝑎𝑎) = 𝑩𝑩𝑠𝑠 +

𝜇𝜇0
4𝜋𝜋 ∫ 𝑉𝑉 𝑱𝑱 ×

𝑘𝑘�̂�𝑘
𝑘𝑘 𝑑𝑑𝑑𝑑 (247) 

 This is correct. Therefore, we can define,  
 𝑩𝑩(𝑘𝑘) ≜ 𝜇𝜇0

4𝜋𝜋 ∫ 𝑉𝑉 𝑱𝑱 × ( 𝒓𝒓𝑘𝑘3)exp(−𝑗𝑗𝑗𝑗𝑗𝑗)𝑑𝑑𝑑𝑑 
 

 + 𝜇𝜇0
4𝜋𝜋 ∫ 𝑉𝑉 𝑱𝑱 ×

𝑘𝑘�̂�𝑘
𝑘𝑘 exp(−𝑗𝑗𝑗𝑗𝑗𝑗)𝑑𝑑𝑑𝑑 (248) 

  
 𝑩𝑩(𝑎𝑎) ≜ 𝜇𝜇0

4𝜋𝜋 ∫ 𝑉𝑉 𝑱𝑱 × ( 𝒓𝒓𝑘𝑘3)exp(+𝑗𝑗𝑗𝑗𝑗𝑗)𝑑𝑑𝑑𝑑 
 

 + 𝜇𝜇0
4𝜋𝜋 ∫ 𝑉𝑉 𝑱𝑱 ×

𝑘𝑘�̂�𝑘
𝑘𝑘 exp(+𝑗𝑗𝑗𝑗𝑗𝑗)𝑑𝑑𝑑𝑑) (249) 

 
Or  
 𝑩𝑩(𝑘𝑘) = 𝑩𝑩𝑛𝑛

(𝑘𝑘) + (−𝑗𝑗)𝑩𝑩𝑓𝑓
(𝑘𝑘)

 (250) 
  

 𝑩𝑩(𝑎𝑎) = 𝑩𝑩𝑛𝑛
(𝑎𝑎) + (𝑗𝑗)𝑩𝑩𝑓𝑓

(𝑎𝑎)
 (251) 

 
Or,  
 𝑩𝑩 = 1

2 (𝑩𝑩
(𝑘𝑘) + 𝑩𝑩(𝑎𝑎)) (252) 

 

be offset. If at lim𝑘𝑘𝑘𝑘→0 situation,  
 𝑩𝑩(𝑘𝑘) = lim

𝑘𝑘𝑘𝑘→0
∇ × 𝑨𝑨(𝑘𝑘) 

 
 𝑩𝑩(𝑎𝑎) = lim

𝑘𝑘𝑘𝑘→0
∇ × 𝑨𝑨(𝑎𝑎) 

then  
 𝑩𝑩(𝑘𝑘) = 𝑩𝑩𝑠𝑠 + 𝑗𝑗 𝜇𝜇04𝜋𝜋 ∫ 𝑉𝑉 𝑱𝑱 ×

𝑘𝑘�̂�𝑘
𝑘𝑘 )𝑑𝑑𝑑𝑑 (242) 

  
 𝑩𝑩(𝑎𝑎) = 𝑩𝑩𝑠𝑠 − 𝑗𝑗 𝜇𝜇04𝜋𝜋 ∫ 𝑉𝑉 𝑱𝑱 ×

𝑘𝑘�̂�𝑘
𝑘𝑘 )𝑑𝑑𝑑𝑑 (243) 

  
 1

2𝑩𝑩
(𝑘𝑘) + 1

2𝑩𝑩
(𝑎𝑎) = 𝑩𝑩𝑠𝑠 (244) 

 
We found that the far-field part in the formulas (242, 243) has been canceled out. Such 

retarded and advanced far-field cannot be transmitted. We must correct the formula (242, 243). 
We found that if we have at the situation lim𝑘𝑘𝑘𝑘→0, 

 
 𝑩𝑩(𝑘𝑘) = 𝑩𝑩𝑠𝑠 +

𝜇𝜇0
4𝜋𝜋 ∫ 𝑉𝑉 𝑱𝑱 ×

𝑘𝑘�̂�𝑘
𝑘𝑘 𝑑𝑑𝑑𝑑 (245) 

 
So the corresponding leading wave is  
 𝑩𝑩(𝑎𝑎) = 𝑩𝑩𝑠𝑠 +

𝜇𝜇0
4𝜋𝜋 ∫ 𝑉𝑉 𝑱𝑱 ×

𝑘𝑘�̂�𝑘
𝑘𝑘 )𝑑𝑑𝑑𝑑 (246) 

 
In this way, half retardation and half advancement do not cancel out.  
 1

2𝑩𝑩
(𝑘𝑘) + 1

2𝑩𝑩
(𝑎𝑎) = 𝑩𝑩𝑠𝑠 +

𝜇𝜇0
4𝜋𝜋 ∫ 𝑉𝑉 𝑱𝑱 ×

𝑘𝑘�̂�𝑘
𝑘𝑘 𝑑𝑑𝑑𝑑 (247) 

 This is correct. Therefore, we can define,  
 𝑩𝑩(𝑘𝑘) ≜ 𝜇𝜇0

4𝜋𝜋 ∫ 𝑉𝑉 𝑱𝑱 × ( 𝒓𝒓𝑘𝑘3)exp(−𝑗𝑗𝑗𝑗𝑗𝑗)𝑑𝑑𝑑𝑑 
 

 + 𝜇𝜇0
4𝜋𝜋 ∫ 𝑉𝑉 𝑱𝑱 ×

𝑘𝑘�̂�𝑘
𝑘𝑘 exp(−𝑗𝑗𝑗𝑗𝑗𝑗)𝑑𝑑𝑑𝑑 (248) 

  
 𝑩𝑩(𝑎𝑎) ≜ 𝜇𝜇0

4𝜋𝜋 ∫ 𝑉𝑉 𝑱𝑱 × ( 𝒓𝒓𝑘𝑘3)exp(+𝑗𝑗𝑗𝑗𝑗𝑗)𝑑𝑑𝑑𝑑 
 

 + 𝜇𝜇0
4𝜋𝜋 ∫ 𝑉𝑉 𝑱𝑱 ×

𝑘𝑘�̂�𝑘
𝑘𝑘 exp(+𝑗𝑗𝑗𝑗𝑗𝑗)𝑑𝑑𝑑𝑑) (249) 

 
Or  
 𝑩𝑩(𝑘𝑘) = 𝑩𝑩𝑛𝑛

(𝑘𝑘) + (−𝑗𝑗)𝑩𝑩𝑓𝑓
(𝑘𝑘)

 (250) 
  

 𝑩𝑩(𝑎𝑎) = 𝑩𝑩𝑛𝑛
(𝑎𝑎) + (𝑗𝑗)𝑩𝑩𝑓𝑓

(𝑎𝑎)
 (251) 

 
Or,  
 𝑩𝑩 = 1

2 (𝑩𝑩
(𝑘𝑘) + 𝑩𝑩(𝑎𝑎)) (252) 

 

be offset. If at lim𝑘𝑘𝑘𝑘→0 situation,  
 𝑩𝑩(𝑘𝑘) = lim

𝑘𝑘𝑘𝑘→0
∇ × 𝑨𝑨(𝑘𝑘) 

 
 𝑩𝑩(𝑎𝑎) = lim

𝑘𝑘𝑘𝑘→0
∇ × 𝑨𝑨(𝑎𝑎) 

then  
 𝑩𝑩(𝑘𝑘) = 𝑩𝑩𝑠𝑠 + 𝑗𝑗 𝜇𝜇04𝜋𝜋 ∫ 𝑉𝑉 𝑱𝑱 ×

𝑘𝑘�̂�𝑘
𝑘𝑘 )𝑑𝑑𝑑𝑑 (242) 

  
 𝑩𝑩(𝑎𝑎) = 𝑩𝑩𝑠𝑠 − 𝑗𝑗 𝜇𝜇04𝜋𝜋 ∫ 𝑉𝑉 𝑱𝑱 ×

𝑘𝑘�̂�𝑘
𝑘𝑘 )𝑑𝑑𝑑𝑑 (243) 

  
 1

2𝑩𝑩
(𝑘𝑘) + 1

2𝑩𝑩
(𝑎𝑎) = 𝑩𝑩𝑠𝑠 (244) 

 
We found that the far-field part in the formulas (242, 243) has been canceled out. Such 

retarded and advanced far-field cannot be transmitted. We must correct the formula (242, 243). 
We found that if we have at the situation lim𝑘𝑘𝑘𝑘→0, 

 
 𝑩𝑩(𝑘𝑘) = 𝑩𝑩𝑠𝑠 +

𝜇𝜇0
4𝜋𝜋 ∫ 𝑉𝑉 𝑱𝑱 ×

𝑘𝑘�̂�𝑘
𝑘𝑘 𝑑𝑑𝑑𝑑 (245) 

 
So the corresponding leading wave is  
 𝑩𝑩(𝑎𝑎) = 𝑩𝑩𝑠𝑠 +

𝜇𝜇0
4𝜋𝜋 ∫ 𝑉𝑉 𝑱𝑱 ×
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The superscript (r) in the above formula represents retardation, 
while (a) represents advancement. The subscript n means 
near field and f means far field. B is the average magnetic 
field calculated along the loop, which is also calculated from 
the curl of the vector potential. The magnetic field calculated 
according to Maxwell’s electromagnetic theory is B but is not B. 
The formula (248) tells us that the magnetic field is calculated 
based on the retarded field, but not the retarded potential. When 

calculated based on the retarded potential, the magnetic field is 
B, which is averaged along the loop. This B is not a magnetic 
field B. The formula (252) is the revised and updated magnetic 
field by author.

It is worth mentioning that the factor 1/2 appearing in formula 
(252) affects other equations. For example, the formula (185) 
needs to be modified to:,

_

_

_ _

The superscript (𝑟𝑟) in the above formula represents retardation, while (a) represents 
advancement. The subscript 𝑛𝑛 means near field and 𝑓𝑓 means far field. 𝑩𝑩 is the average 
magnetic field calculated along the loop, which is also calculated from the curl of the vector 
potential. The magnetic field calculated according to Maxwell’s electromagnetic theory is 𝑩𝑩 
but is not 𝑩𝑩. The formula (248) tells us that the magnetic field is calculated based on the 
retarded field, but not the retarded potential. When calculated based on the retarded potential, 
the magnetic field is 𝑩𝑩, which is averaged along the loop. This 𝑩𝑩 is not a magnetic field 𝑩𝑩. 
The formula (252) is the revised and updated magnetic field by author. 

It is worth mentioning that the factor 12 appearing in formula (252) affects other 
equations. For example, the formula (185) needs to be modified to:, 

 
 ∇ × (∇ × 𝑨𝑨) = 𝜇𝜇0

1
2 𝑱𝑱 + 𝜖𝜖0𝜇𝜇0

𝜕𝜕
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(182) is modified to,  
 (𝜉𝜉𝑖𝑖, 𝜉𝜉𝑗𝑗) ≜

1
2 ∫ ∞

𝜕𝜕=−∞ 𝑑𝑑𝑑𝑑∯ (𝑬𝑬𝑖𝑖 × 𝑯𝑯𝑗𝑗 + 𝑬𝑬𝑗𝑗 × 𝑯𝑯𝑖𝑖) ⋅ �̂�𝑛𝑑𝑑ΓΓ  (254) 

The above two formular should have a additional factor 12. 
 

 
7  Conclusion 
 
This article defines the average magnetic field 𝑯𝑯 on a circular circuit, and finds that 

this average magnetic field is consistent with the result defined by the original magnetic field 
𝑯𝑯 under quasi-static conditions. The original magnetic field definition here refers to the 
magnetic field defined by measuring the ampere force using a straight current element, or the 
magnetic field obtained by measuring the Lorentz force using a Hall device. 

However, for radiated electromagnetic fields, i.e. retarded or advanced electromagnetic 
fields, the original definitions of the average value of the magnetic field on the circular circuit 
𝑯𝑯 and the magnetic field 𝑯𝑯 are inconsistent. However, Maxwell’s electromagnetic theory still 
confuses the difference between the average value of the magnetic field on a circular circuit 
and the original definition of the magnetic field in the case of radiated electromagnetic fields. 
Due to this confusion, the magnetic field calculated by Maxwell’s electromagnetic theory was 
incorrect and therefore needs to be corrected. The author revised Maxwell’s electromagnetic 
theory according to the new electromagnetic field axiom proposed by the author. The author’s 
new axiom is that (1) radiation does not overflow the universe. From this, the law of 
conservation of energy (180) and the theorem of mutual energy flow (181, 182) were obtained. 
The author corrected the magnetic field calculated by Maxwell’s equation based on the 
principle of half retardation and half advancement, and that the retarded wave and advanced 
wave cannot cancel each other on the surface of the current. 
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7. Conclusion
This article defines the average magnetic field H on a circular 
circuit, and finds that this average magnetic field is consistent 
with the result defined by the original magnetic field H under 
quasi-static conditions. The original magnetic field definition 
here refers to the magnetic field defined by measuring the ampere 
force using a straight current element, or the magnetic field 
obtained by measuring the Lorentz force using a Hall device.

However, for radiated electromagnetic fields, i.e. retarded or 
advanced electromagnetic fields, the original definitions of the 
average value of the magnetic field on the circular circuit H 
and the magnetic field H are inconsistent. However, Maxwell’s 
electromagnetic theory still confuses the difference between the 
average value of the magnetic field on a circular circuit and the 
original definition of the magnetic field in the case of radiated 
electromagnetic fields. Due to this confusion, the magnetic field 
calculated by Maxwell’s electromagnetic theory was incorrect 
and therefore needs to be corrected. The author revised Maxwell’s 
electromagnetic theory according to the new electromagnetic 
field axiom proposed by the author. The author’s new axiom is 
that (1) radiation does not overflow the universe. From this, the 
law of conservation of energy (180) and the theorem of mutual 
energy flow (181, 182) were obtained. The author corrected the 
magnetic field calculated by Maxwell’s equation based on the 
principle of half retardation and half advancement, and that the 
retarded wave and advanced wave cannot cancel each other on 
the surface of the current.
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