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1. Introduction 

Emergency decision-making is a crucial and valuable tool for communities and nations. It increases the dependability and 

efficacy of emergency response, reducing the number of casualties, ecological damage, and financial losses. Making 

decisions is one of the best ways to sort through all of your options and choose the best one. In the past, it has been 

widely believed that all the data pertaining to the alternative's criteria and accompanying weights are given as clear 

numbers. However, most judgments in real-life circumstances are made in a setting where the objectives and restrictions 

are generally not well-defined or ambiguous. In order to handle these situations in real life problems different theories 

were developed with passage of time such as, fuzzy set (FS) theory [1], rough sets (RS) theory [2] and soft sets (SS) 

theory [3]. All of the aforementioned theories have unique, noteworthy applications. 

It is important to keep in mind that Zadeh [1], the author of fuzzy set theory, was the one who began this journey by 

introducing the idea of fuzzy set (FS), with one element known as the membership function and only describes 

satisfaction’s degree of an object without mentioning the object's dissatisfaction. Later on, the theory fails to handle data 

that acquire unsatisfactory and satisfactory information of interest. In order to address this deficiency, Atanassov [4] 

developed the concept of IFS by presenting each set element as an ordered pair,   ,  , where   and   stand for the 

degree of non-membership and membership, respectively. Later on, this field used in various situations where the IFS 

was not appropriate since the data was interval-based. In order to get over the aforementioned challenges, mathematician 

requires some more potent techniques. Following that, Atanassov and Gargov [5] expanded on the notion of an 

intuitionistic fuzzy set and introduced the concept of an interval-valued intuitionistic fuzzy set, in which the grades of 

membership and non-membership are intervals instead of real values with constraints that bounded by 0 and 1. 

According to the criteria of addressing the problem, each technique requires some operators that serve as a backbone, as 

demonstrated in the aforementioned literature. As a result, aggregation operators are crucial instruments for gathering the 

provided data on various alternatives in various sectors. Many scholars have examined at the utility of operators related 

to intuitionistic fuzzy environments and interval valued IFS in [6–10], and they have developed a variety of operators 

with these different domains and applied them on decision-making problems. Wei [11] presented the concept of 
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According to the criteria of addressing the problem, each technique requires some operators that serve as a backbone, as 

demonstrated in the aforementioned literature. As a result, aggregation operators are crucial instruments for gathering the 

provided data on various alternatives in various sectors. Many scholars have examined at the utility of operators related 

to intuitionistic fuzzy environments and interval valued IFS in [6–10], and they have developed a variety of operators 

with these different domains and applied them on decision-making problems. Wei [11] presented the concept of 
Hamacher and image fuzzy aggregation operators and constructed a multi-attribute group decision-making issue based on 

the recommended operators while taking into account the importance of these operators. Wang et al. [12] proposed the 

use of image fuzzy numbers to create new operators called Muirhead mean operators. Based on intuitionistic fuzzy 

numbers, Rahman [13] established the idea of various geometric logarithmic and averaging aggregation operators. 

Shapley fuzzy measure was applied by Tian et al. [14] who developed the concepts of power operator and weighted 

geometric operator. Many aggregation operators have been developed using intuitionistic fuzzy environments by Ding et 

al. [15], Yang et al. [16], He et al. [17], Zhang et al. [18], Li et al. [19], Meng et al. [20]. 

Yager [21] developed a model idea of q-rung orthopair fuzzy set (qROFS) in response to the increasing of scientific 

knowledge modelling in relation to decision-making problems of theories, which needed additional refinement to handle 

the maximum powers of IFS. In q‐ROFS, q-th power of non-membership with the sum of q-th power of membership is 

equal to or less than one which covers the excluded information of IFS. Furthermore, it is shown that IFS and PFS are 

particular instances of q-ROFS. It demonstrates that qROFS is an extension of the approaches outlined before, covering a 

wide range of information and handling uncertain environments more effectively. Furthermore, Yager examined certain 

fundamental q-ROFS characteristics in [22] and employed them in additional research pertaining to this class. Liu et al. 

[23] then investigated the q-rung technique for operators such orthopair fuzzy weighted averaging (q-ROFWA) and 

orthopair fuzzy weighted geometric (q-ROFWG), and based on these, they resolved further decision-making issues. The 

concept of q-ROFS information measures, such as entropy, similarity measure, inclusion measure, and distance measure, 

was recently developed by Peng et al. [24]. 

The aforementioned approaches fail miserably of producing the desired outcome since there are so many real-world 

issues where the computation of the neutral membership degree is crucial. Cuong et al. [25] presented the idea of an 

image fuzzy set to deal with this kind of problem. Three terms membership degree, neutral membership degree, and 

nonmembership degree were utilised in their work, and their combined sum did not surpass 1. Ashraf [26] extended this 

idea to the spherical fuzzy set in order to address the drawbacks of the picture fuzzy set. Based on this concept, Kutlu and 

Kahraman [27, 28] expanded the aforementioned methods by creating TOPSIS and VIKOR. Additionally, the authors 

expanded the idea of spherical fuzzy sets to spherical soft fuzzy sets in [29], and on the basis of these cutting-edge 

techniques, they presented several new aggregation operations.  In consideration of the above mentioned methods, there 

were some problems which cannot be handled by these methods such as, in situation like when the sum of squares of the 

membership degree, neutral membership and nonmembership degree (0.7, 0.5, 0.9) exceeds 1. To address such 

complicated issues, Ismat et al. [30] developed the concept of polytopic fuzzy sets as an extension of q-rung orthopair 

fuzzy sets and spherical fuzzy sets. It is significant to highlight that Polytopic fuzzy set theory may be used to solve 

decision-making issues where other theories, such as Picture fuzzy set, Spherical fuzzy set, and Q-rung orthopair 

theories, are inapplicable. 

According to the research described above, these approaches have flaws and are unable to represent the partial ignorance 

of the data and its fluctuations during a particular time period. As a result, only non-periodic information may be handled 

by any of the FS theory extensions indicated above. But in complicated data sets, ambiguity and vagueness also coexist 

with changes to the data's periodicity. For instance, large volumes of data from image analysis, facial recognition, audio, 

medical research, and government biometric databases are included in complex data sets. These databases also have a lot 

of contradictory and incomplete information in them. In order to circumvent these circumstances, Ramot et al. [31] 

proposed the concept of complex fuzzy set (CFS) theory, in which the degree of alternatives is expressed as a complex 

fuzzy number (CFN) rather than a real integer from the unit circle. Later on Alkouri and Salleh [32] generalized this idea 

by introducing the idea of CFS into complex intuitionistic fuzzy sets (CIFS), based on the membership grade iae  and 

non-membership grade ibe  with some conditional restrictions 0    1 , 0
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 , 0,  2a b  . Complex fuzzy numbers (CFNs) were applied by Ma et al. [33] to develop the CFS-based technique, a 

unique approach for solving multiperiodic factors. Several operational laws for CFS for decision-making issues were 

provided by Dick et al. [34]. The results of [34] were altered by Liu and Zhang [35] and presented in a brand-new, 

sophisticated manner. Different types of aggregation operators in complex intuitionistic fuzzy environments were studied 

by Garg and Rani [36], Kumar and Bajaj [37], and Rani and Garg [38]. Greenfield et al. [39] also introduced the idea of 

complex interval-valued fuzzy set theory. Although the CIFS concept has been used in several contexts, due to its 

structural limitations, the principle only has a restricted range of applications. The CIFS concept will fail in instances 

where the total of the real part and imaginary part of the duplet exceeds the unit interval, for example, and neither the 

membership grade nor the non-membership grade with the restricted requirement will be given any information in such 

cases. 

Complex Pythagorean fuzzy sets (CPyFS), which may handle decision-making problems when CIFS cannot be used, 

were proposed by Ullah et al. [40] in order to address these circumstances. CPyFS also consists of two terms namely, the 

membership grade iae and non-membership grade ibe  with the restricted condition, 2 20 1   and
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. It has been established mathematically that CPyFS lies in a larger range than CFS and CIFS.    

Complex fuzzy operators such as the complex Pythagorean fuzzy weighted averaging operator, the complex Pythagorean 

fuzzy ordered weighted averaging operator, the complex Pythagorean fuzzy hybrid averaging operator, the induced 

complex Pythagorean fuzzy ordered weighted averaging operator and the induced complex Pythagorean fuzzy hybrid 

averaging operator were introduced by Rahman et al. [41] based on some algebraic operational laws. But no one 

developed the notion of a complicated Polytopic fuzzy set (CPFS). The limitation constraints for polytopic fuzzy sets are 

relaxed by the concept of complex Polytopic fuzzy sets, which we developed in this study (PFS). As a result, when 

compared to their current sets, CPFS is a more effective tool for solving decision-making problems. 

The key contributions of this paper are stated as:  

i. To introduce the notion of complex Polytopic fuzzy set theory. CPFS is an extension of Polytopic fuzzy set. 

Thus CPFS is more effective, broad, and efficient than existing theories like CIFS and CPyFS in dealing with 

uncertain information throughout the decision-making process. Moreover, there is no research work up to date 

on the CPFS. 

ii. To provide some fundamental operational principles for complex Polytopic fuzzy numbers. 

iii. To introduce the aggregation operators, such as the CPFWG operator, CPFOWG operator, CPFHG operator, 

I-CPFOWG operator and I-CPFHG operator. 

iv. To establish a decision-making technique on the basis of this novel model. 

v. To demonstrate the validity and usefulness of the new method through an example. 

The remaining paper is organized as: Section 2 presents some fundamental definitions. PFSs are discussed in Section 3 

along with some of their basic operation laws. In Section 4 different aggregation operators under CPF environment are 

studied. Moreover, Section 5 includes emergency decision-making model under the novel approach. Section 6 contains 

illustrative example under different techniques. Section 7 and Section 8 presents the comparative analysis sensitivity 

analysis, respectively. Next, Section 9 and 10 contains the limitations and conclusion of the novel model.   

2. Preliminaries 

Some fundamental ideas and terminology that are necessary later on are presented in this section. 

i. To introduce the notion of complex Polytopic fuzzy set theory. CPFS is an extension of Polytopic fuzzy set. Thus CPFS is more 
effective, broad, and efficient than existing theories like CIFS and CPyFS in dealing with uncertain information throughout the 
decision-making process. Moreover, there is no research work up to date on the CPFS.
ii. To provide some fundamental operational principles for complex Polytopic fuzzy numbers.
iii. To introduce the aggregation operators, such as the CPFWG operator, CPFOWG operator, CPFHG operator, I-CPFOWG operator 
and I-CPFHG operator.
iv. To establish a decision-making technique on the basis of this novel model.
v. To demonstrate the validity and usefulness of the new method through an example.
The remaining paper is organized as: Section 2 presents some fundamental definitions. PFSs are discussed in Section 3 along with 
some of their basic operation laws. In Section 4 different aggregation operators under CPF environment are studied. Moreover, 
Section 5 includes emergency decision-making model under the novel approach. Section 6 contains illustrative example under 
different techniques. Section 7 and Section 8 presents the comparative analysis sensitivity analysis, respectively. Next, Section 9 and 
10 contains the limitations and conclusion of the novel model.  

2. Preliminaries
Some fundamental ideas and terminology that are necessary later on are presented in this section.

Definition 1: [42] Let C be a non-empty complex fuzzy set (CFS) defined on a finite set X by  

 ( ), ( ) :Cia
CC e X     with ( ) : [0,1]C X   is called the complex membership degree (MED) of   with

 1i    in the complex plane. 

Definition 2: [43] Let X be a fixed set; a complex intuitionistic fuzzy set I in a finite X is given by 

 ( ) ( ), ( ) , ( ) :I Iia ib
I II e e X       with 0  ( ), ( ) 1,I I     1i    and    , [0,2 ]I Ia b   such that 

0 ( ) ( ) 1, ,I I X        
    0  + 1

2 2
I Ia b 
 

    and ( ), ( )I I   represents MED and non-membership 

degree (NOMED) respectively. 

Definition 3: [44] Let X be a fixed set, then the Complex Pythagorean fuzzy set is defined as 

 ( ) ( ), ( ) , ( ) :P Pia ib
P PP e e X       with    2 20 ( ) ( ) 1, ,P P X        
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  and ( ), ( )I I   represents MED and NOMED respectively. 

 In addition, its hesitancy or indeterminacy can be find out by using the following formula:

           2 21 ( ) ( )2 21 ( ) ( ) ,
P P

P P PG e
 

  
 

    then the term  PG   is called the grade of 

indeterminacy or hesitancy of the element X . 

Definition 4: [45] Let X be a fixed set, then the complex q-Rung orthopair fuzzy set (q-CROFS) is defined as 

 ( ) ( ), ( ) , ( ) :q qia ib
q qQ e e X       with    0 ( ) ( ) 1, , 1,

q q
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q q
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  and ( ), ( )q q   represents MED and NOMED respectively. 

 In addition, its hesitancy or indeterminacy can be find out by using the following formula:
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 then the term  qG   is called the grade of 

indeterminacy or hesitancy of the element X . 

3. Complex Polytopic Fuzzy Sets 

This section introduces the concept of Complex Polytopic fuzzy sets (CPFS), Complex Polytopic fuzzy numbers, and 

some of its fundamental operational laws, score function and accuracy function are investigated. Furthermore, various 

aggregation operators and their features are described, which will be useful in tackling MADM problems. The notion of 

Polytopic fuzzy set (PFS) extends the concepts of q-rung orthopair fuzzy set and spherical fuzzy set. 

Definition 5: Let X be a fixed set, then the mathematical form CPFS   is written as 

 ( ) ( ) ( ), ( ) , ( ) , ( ) :ia ib ine e e X    
           with ( ) : [0,  1],X    

( ) : [0,  1], ( ) : [0,  1],X X           [0,2 ], [0,2 ], [0,2 ],a b n           and

     ( ) ( ) ( )0 ( ) ( ) ( ) 1,  ,  q 1,
q q qia ib ine e e X    

              



Volume 3 | Issue 4 | 4J Math Techniques Comput Math, 2024

Definition 1: [42] Let C be a non-empty complex fuzzy set (CFS) defined on a finite set X by  

 ( ), ( ) :Cia
CC e X     with ( ) : [0,1]C X   is called the complex membership degree (MED) of   with

 1i    in the complex plane. 

Definition 2: [43] Let X be a fixed set; a complex intuitionistic fuzzy set I in a finite X is given by 

 ( ) ( ), ( ) , ( ) :I Iia ib
I II e e X       with 0  ( ), ( ) 1,I I     1i    and    , [0,2 ]I Ia b   such that 

0 ( ) ( ) 1, ,I I X        
    0  + 1

2 2
I Ia b 
 

    and ( ), ( )I I   represents MED and non-membership 

degree (NOMED) respectively. 

Definition 3: [44] Let X be a fixed set, then the Complex Pythagorean fuzzy set is defined as 

 ( ) ( ), ( ) , ( ) :P Pia ib
P PP e e X       with    2 20 ( ) ( ) 1, ,P P X        

   2 2
 0  + 1

2 2
P Pa b 
 

   
    

   
  and ( ), ( )I I   represents MED and NOMED respectively. 

 In addition, its hesitancy or indeterminacy can be find out by using the following formula:

           2 21 ( ) ( )2 21 ( ) ( ) ,
P P

P P PG e
 

  
 

    then the term  PG   is called the grade of 

indeterminacy or hesitancy of the element X . 

Definition 4: [45] Let X be a fixed set, then the complex q-Rung orthopair fuzzy set (q-CROFS) is defined as 

 ( ) ( ), ( ) , ( ) :q qia ib
q qQ e e X       with    0 ( ) ( ) 1, , 1,

q q
q q X q         

   
 0  + 1

2 2

q q
q qa b 
 

   
       

   
  and ( ), ( )q q   represents MED and NOMED respectively. 

 In addition, its hesitancy or indeterminacy can be find out by using the following formula:

     
   

1
1

1 ( ) ( )
1 ( ) ( ) ,

q q q
q qq q q

q q qG e
 

  
               

 then the term  qG   is called the grade of 

indeterminacy or hesitancy of the element X . 

3. Complex Polytopic Fuzzy Sets 

This section introduces the concept of Complex Polytopic fuzzy sets (CPFS), Complex Polytopic fuzzy numbers, and 

some of its fundamental operational laws, score function and accuracy function are investigated. Furthermore, various 

aggregation operators and their features are described, which will be useful in tackling MADM problems. The notion of 

Polytopic fuzzy set (PFS) extends the concepts of q-rung orthopair fuzzy set and spherical fuzzy set. 

Definition 5: Let X be a fixed set, then the mathematical form CPFS   is written as 

 ( ) ( ) ( ), ( ) , ( ) , ( ) :ia ib ine e e X    
           with ( ) : [0,  1],X    

( ) : [0,  1], ( ) : [0,  1],X X           [0,2 ], [0,2 ], [0,2 ],a b n           and

     ( ) ( ) ( )0 ( ) ( ) ( ) 1,  ,  q 1,
q q qia ib ine e e X    

              

Definition 1: [42] Let C be a non-empty complex fuzzy set (CFS) defined on a finite set X by  

 ( ), ( ) :Cia
CC e X     with ( ) : [0,1]C X   is called the complex membership degree (MED) of   with

 1i    in the complex plane. 

Definition 2: [43] Let X be a fixed set; a complex intuitionistic fuzzy set I in a finite X is given by 

 ( ) ( ), ( ) , ( ) :I Iia ib
I II e e X       with 0  ( ), ( ) 1,I I     1i    and    , [0,2 ]I Ia b   such that 

0 ( ) ( ) 1, ,I I X        
    0  + 1

2 2
I Ia b 
 

    and ( ), ( )I I   represents MED and non-membership 

degree (NOMED) respectively. 

Definition 3: [44] Let X be a fixed set, then the Complex Pythagorean fuzzy set is defined as 

 ( ) ( ), ( ) , ( ) :P Pia ib
P PP e e X       with    2 20 ( ) ( ) 1, ,P P X        

   2 2
 0  + 1

2 2
P Pa b 
 

   
    

   
  and ( ), ( )I I   represents MED and NOMED respectively. 

 In addition, its hesitancy or indeterminacy can be find out by using the following formula:

           2 21 ( ) ( )2 21 ( ) ( ) ,
P P

P P PG e
 

  
 

    then the term  PG   is called the grade of 

indeterminacy or hesitancy of the element X . 

Definition 4: [45] Let X be a fixed set, then the complex q-Rung orthopair fuzzy set (q-CROFS) is defined as 

 ( ) ( ), ( ) , ( ) :q qia ib
q qQ e e X       with    0 ( ) ( ) 1, , 1,

q q
q q X q         

   
 0  + 1

2 2

q q
q qa b 
 

   
       

   
  and ( ), ( )q q   represents MED and NOMED respectively. 

 In addition, its hesitancy or indeterminacy can be find out by using the following formula:

     
   

1
1

1 ( ) ( )
1 ( ) ( ) ,

q q q
q qq q q

q q qG e
 

  
               

 then the term  qG   is called the grade of 

indeterminacy or hesitancy of the element X . 

3. Complex Polytopic Fuzzy Sets 

This section introduces the concept of Complex Polytopic fuzzy sets (CPFS), Complex Polytopic fuzzy numbers, and 

some of its fundamental operational laws, score function and accuracy function are investigated. Furthermore, various 

aggregation operators and their features are described, which will be useful in tackling MADM problems. The notion of 

Polytopic fuzzy set (PFS) extends the concepts of q-rung orthopair fuzzy set and spherical fuzzy set. 

Definition 5: Let X be a fixed set, then the mathematical form CPFS   is written as 

 ( ) ( ) ( ), ( ) , ( ) , ( ) :ia ib ine e e X    
           with ( ) : [0,  1],X    

( ) : [0,  1], ( ) : [0,  1],X X           [0,2 ], [0,2 ], [0,2 ],a b n           and

     ( ) ( ) ( )0 ( ) ( ) ( ) 1,  ,  q 1,
q q qia ib ine e e X    

              

3. Complex Polytopic Fuzzy Sets
This section introduces the concept of Complex Polytopic fuzzy sets (CPFS), Complex Polytopic fuzzy numbers, and some of its 
fundamental operational laws, score function and accuracy function are investigated. Furthermore, various aggregation operators 
and their features are described, which will be useful in tackling MADM problems. The notion of Polytopic fuzzy set (PFS) extends 
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 and ( ), ( ), ( )       represents membership degree (MED), neutral 

membership degree (NMED) and non-membership degree (NOMED) respectively.  

Remark 1: Some special cases of Definitions 1-4 are stated as follows: 

i) Complex fuzzy set: If we consider the phase term such as:  ( ) 0Ca   , then it can be reduces to fuzzy set.   

ii) Complex intuitionistic fuzzy: If we consider the phase terms such as: ( ) 0Ia   , ( ) 0Ib   , then it can be 

reduces to intuitionistic fuzzy set. 

iii) Complex Pythagorean fuzzy: If we consider the phase terms such as: ( ) 0pa   ,
 ( ) 0pb   , then it can be 

reduces to Pythagorean fuzzy set. 

iv) Complex q-Rung orthopair fuzzy set:  If we consider the phase terms such as: ( ) 0,qa    ( ) 0qb   , then it 

can be reduces to q-Rung orthopair fuzzy set. 

v) Complex Polytopic fuzzy set: If we consider the phase terms such as: ( ) 0,a    ( ) 0b    and ,( ) 0n    

then it can be reduces to Polytopic fuzzy set. 

Definition 6: Let a family of CPF numbers be such that  , , ( 1,2),j j jia ib in
j j j je e e j    and 0,   be a real 

number, then 

i)  
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Definition 7: Let  , , ,ia ib ine e e  be a CPF number, then its score function ( )S   and accuracy function ( )A   is 

defined in the following mathematical form: 
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defined in the following mathematical form: 
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 ( ) 0pb   , then it can be 

reduces to Pythagorean fuzzy set. 

iv) Complex q-Rung orthopair fuzzy set:  If we consider the phase terms such as: ( ) 0,qa    ( ) 0qb   , then it 

can be reduces to q-Rung orthopair fuzzy set. 

v) Complex Polytopic fuzzy set: If we consider the phase terms such as: ( ) 0,a    ( ) 0b    and ,( ) 0n    

then it can be reduces to Polytopic fuzzy set. 

Definition 6: Let a family of CPF numbers be such that  , , ( 1,2),j j jia ib in
j j j je e e j    and 0,   be a real 

number, then 
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Definition 7: Let  , , ,ia ib ine e e  be a CPF number, then its score function ( )S   and accuracy function ( )A   is 

defined in the following mathematical form: 

   1( ) 1 1
3

q q q q q qS a b n           
  with  ( ) [ 2,2],S     and 

     1( ) 1 max , 1 max ,
2

q q q q q qA a b n         
with ( ) [0,2].A    

Definition 8: Let  ( ) ( ) ( ), ( ) , ( ) , ( ) :ia ib ine e e X    
           and  

 ( ) ( ) ( ), ( ) , ( ) , ( ) :ia ib ine e e X    
         

 
, be the two CPFNs then, some of its basic operations are 

stated as follows:  

1) Union:  ( ) ( ) ( ), ( ) , ( ) , ( ) :ia ib ine e e X       
              
      

where     
   
 

( ) max ( ), ( ) , ( ) max ( ), ( ) ,

( ) min ( ), ( )
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( ) max ( ), ( ) , ( ) max ( ), ( ) ,

( ) min ( ), ( )

a a a b b b

n n n

       

   

     

  

 



 


  

2) Intersection:  ( ) ( ) ( ), ( ) , ( ) , ( ) :ia ib ine e e X       
              
       

  where 
   
 

( ) min ( ), ( ) , ( ) min ( ), ( ) ,

( ) max ( ), ( )

       

   

     

     

 



 


  

       and 
   
 

( ) min ( ), ( ) , ( ) min ( ), ( ) ,

( ) max ( ), ( )

a a a b b b

n n n

       

   

     

  

 



 


 

3) Complement:  ( ) ( ) ( ), ( ) , ( ) , ( ) :c in ib iae e e X           

Definition 9: Let  1 1 11 1 1 1, ,ia ib ine e e  and  2 2 22 2 2 2, ,ia ib ine e e   are any two CPFNs, then   

i) If 1 2 1 2 1 2 1 2 1 2 1 2,  ,  ,,  ,a a b b n n       , then 2 1   

ii) If 1 2 1 2 1 2 1 2 1 2 1 2,  ,  ,,  ,a a b b n n       , then 1 2   

iii) If 1 2 1 2 1 2 1 2 1 2 1 2,  ,  ,,  ,a a b b n n       , then 1 2   

Theorem 1: Let a family of CPF numbers be such that  , , ( 1,2,3),j j jia ib in
j j j je e e j    then the following laws 

hold:  

1) Commutative laws:  

i) 1 2 2 1       

ii) 1 2 2 1       

2) Associative laws: 

i)    1 2 3 1 2 3           

ii)    1 2 3 1 2 3           

3) Distributive laws: 

i)  1 2 3 1 2 1 3             

ii)  1 2 3 1 3 2 3             
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Moreover, the remaining parts of this Theorem can be proved easily by using definition 6. 

Theorem 2: Let a family of CPF numbers be such that  , , ( 1,2,3),j j jia ib in
j j j je e e j    with 1 2, , 0,     then 

the following laws hold: 

1)      1 2 1 2          

2)      1 2 1 2
         

3)      1 1 2 1 1 2 1          

4)      1 2 1 2
1 1 1
         

5)    1 1
cc 

   

6)    1 1
cc     

Proof: Let  , , ( 1,2,..., )j j jia ib in
j j j je e e j n    be a family of CPFNs, then, by using Definition 6, we have 
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Proof: Since  1 1 11 1 1 1, ,ia ib ine e e   and  2 2 22 2 2 2, ,ia ib ine e e  are two CPFNs, then, by using Definition 6, we 
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Next, we prove 5),   whereas, the remaining parts can be proved easily with the help of Definition 6.  
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Theorem 3: Let  , , ( 1, 2)j j jia ib in
j j j je e e j    be a family of CPFNs, and 0  , be a real number then the 

resulting values of 1 2  , 1 2  ,   and    are also CPFNs. 

Proof: The required result can be proved easily with a straight forward calculation by using Definition 6. Hence, the 

proof is omitted here. 

Theorem 4: Let  , ,j j jia ib in
j j j je e e  be a family of CPFNs, then 1 2 1 2.       

Proof: Let  , , ( 1, 2)j j jia ib in
j j j je e e j    are two CPFNs, then by Definition 6, we have: 
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Again, by using Definition 6, we have  
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j j j je e e j    be a family of CPFNs, and 0  , be a real number then the 

resulting values of 1 2  , 1 2  ,   and    are also CPFNs. 

Proof: The required result can be proved easily with a straight forward calculation by using Definition 6. Hence, the 

proof is omitted here. 
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Again, by using Definition 6, we have  
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By using a well-known classical result that arithmetic mean is greater than or equal to geometric mean such that: 
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.  So, we conclude that: 1 2 1 2.     

 Theorem 5: Let  , ,ia ib ine e e   be a CPFN, and a real number 0  , then the following conditions hold. 

i)      if and only if 1   

ii)         if and only if 0 1   

Proof:  By using Definition 6, we have  
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Next, by Theorem 4, we have   
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   for 1.  Similarly, we can prove 
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. Thus, we have     . Moreover, on similar way, the second part can be 

proved.  

Theorem 6: Let  , ,j j jia ib in
j j j je e e   be a family of CPFNs, and a real number 0  , then the following 

conditions hold. 

i. 1 2 2 1       

ii. 1 2 2 1       

iii.      1 2 1 2          

iv.      1 2 1 2          

v.      1 2 1 2
         

vi.      1 2 1 2
         

Proof: i. Since  1 1 11 1 1 1, ,ia ib ine e e  and   2 2 22 2 2 2, ,ia ib ine e e   are two CPFNs, then by Definition 8, we 

have: 
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Next, we prove result iv. The remaining parts can be prove directly by using Definition 8. 
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Theorem 7: Let  , ,j j jia ib in
j j j je e e   be a family of CPFNs, and a real number 0  , then the following 

conditions hold. 

i.      1 2 1 2
c c c       

ii.      1 2 1 2
c c c       

iii.      1 2 1 2
c c c       

iv.      1 2 1 2
c c c       

Proof: We prove part ii, and iv, the remaining parts can be proved by using the same process.          i. Since

 1 1 11 1 1 1, ,ia ib ine e e  ,  2 2 22 2 2 2, ,ia ib ine e e  are two CPFNs, then Definition 8, we have 
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Theorem 8: Let  , ,j j jia ib in
j j j je e e   be a family of CPFNs, and a real number, then the following conditions 

hold: 

1)    1 2 1 2 1 2           

2)    1 2 1 2 1 2           

3)  1 2 1 1       

4)  1 2 1 1       

5)  1 2 2 2       

6)  1 2 2 2        

Proof: In the proof, we just prove part 5, the remaining part can be prove easily just by using Definition 8, let 

 1 1 11 1 1 1, ,ia ib ine e e  ,  2 2 22 2 2 2, ,ia ib ine e e  are two CPFNs, then we have: 
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Theorem 9: Let  , ,j j jia ib in
j j j je e e   be a family of CPFNs, and a real number, then the following conditions 

hold: 

1)      1 2 3 1 3 2 3             
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Theorem 9: Let  , ,j j jia ib in
j j j je e e   be a family of CPFNs, and a real number, then the following conditions 

hold: 

1)      1 2 3 1 3 2 3             

2)      1 2 3 1 3 2 3             

3)      1 2 3 1 3 2 3             

4)      1 2 3 1 3 2 3             

5)      1 2 3 1 3 2 3             

6)      1 2 3 1 3 2 3             

Proof: The proof can easily by using Definition 5 and 8 with a straight forward calculation. 

Theorem 10: Let  , ,j j jia ib in
j j j je e e   be a family of CPFNs, and a real number, then the following hold true: 

1) 1 2 3 1 3 2           

2) 1 2 3 1 3 2           

3) 1 2 3 1 3 2           

4) 1 2 3 1 3 2           

Proof: Let three CPFNs be 1  , 2  and 3 , then according to Definition 8, we get 
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4. Complex Polytopic fuzzy geometric operators 

This section introduces the concept of several complex aggregation operators, including the I-CPFOWG operator, I-

CPFHG operator, CPFWG operator, CPFOWG operator, and CPFHG operator, as well as its structural qualities, namely 

idempotency, boundedness, and monotonicity. 

Definition 10: Let   , , 1 ,j j jia ib in
j j j je e e j n    a family of CPF numbers with weighted vector

 1 2 , ,..., T
n    , such that  1 j n  and

1
1

n
j

j



 .Then the complex Polytopic fuzzy weighted geometric 

aggregation operator is mathematically given by: 
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 Theorem 11: Let   , , 1 ,j j jia ib in
j j j je e e j n     be a group of CPFVs, then their resulting value under 

CPFWG operator remains a CPFV, such that 
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Proof: The required result can be proved by mathematical induction principle, the major steps are as follows: 

Step 01: As   , , 1 ,j j jia ib in
j j j je e e j n     then for  2n  , we have  
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4. Complex Polytopic fuzzy geometric operators
This section introduces the concept of several complex aggregation operators, including the I-CPFOWG operator, I-CPFHG operator, 
CPFWG operator, CPFOWG operator, and CPFHG operator, as well as its structural qualities, namely idempotency, boundedness, 
and monotonicity.
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Next, by using Definition 10, we have  
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Step 02: In step 01, it is proved for 2n  . Next, suppose that Eq. (2) holds for n k , 0,k  then it follows that 
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Step 03: Next, for 1n k   
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Hence, it holds for 1n k  . As a result, Eq. (2) holds for all positive integers according to the principle of mathematical 

induction. So, the proof is completed. 
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Also, we have that     min maxj j j
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n n n  . The above expression, yields that    
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Proof: To avoid the repetition again and again its proof is omitted. 
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with       1 , 2 ,..., ,n   be arranged such that    1j j    . 

Theorem 12: Let   , , 1 ,j j jia ib i
j j j

n
je e e j n     be a family of CPFVs, for which their output under the 

CPFOWG operator remains a CPFV. 

Proof: Required result can be proved as Theorem 11. 

Definition 12: The complex Polytopic fuzzy hybrid geometric aggregation operator is mathematically given by: 
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where ,j j  be the pair of CPFOWG having the jth largest value is known as the order -inducing variable and j  as 

the complex Polytopic fuzzy argument. 

Definition 14: Let  , 1j j j n   be a 2-tuple family, along with their weighted vector  1 2, ,..., T
n    and 

 1 2, ,..., T
n     satisfying the conditions  1 j n  ,

1
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 ,  0 1   with 

1
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n
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  . Following that, the 

mathematical expression for the induced complex Polytopic fuzzy hybrid geometric aggregation operator is: 
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  , with n being the balancing coefficient. If    1 2, ,..., T

n     approaches to 1 1 1, ,...,
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1 2, ,..., n
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5. An application of the proposed aggregation operators 

The CPFWG operator, CPFOWG operator, CPFHG operator, I-CPFOWG operator, and I-CPFHG operator are some of 

the novel techniques we design for decision-making in this section. 

Algorithm: Let  1 2, ,..., m      be a fixed set of m alternatives and  1 2, ,..., n    be a fixed set of n criteria 

whose weighted vector is  1 2, ,..., T
n    with restriction, such as  1 j n  and
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 . Let  1 2, ,..., k      be a 

set of k experts/decision makers whose weight is  1 2, ,..., T
k    with restriction  1 j n   and

1
1

k

j
j

  . To find the 

suitable option, we develop a MAGDM under the CPF environment. The main steps are as follows: 

Step 1: Develop matrices based on the expertise of experts. 

Step 2: Make a single matrix out of all the separate matrices by combining them using the specified operators. 

Step 3: Again compute all of the preference values using the specified techniques. 

Step 4: Calculating the scores uses all preference values. 

Step 5: Choose the one with the highest score value. 

6. Illustrative Example      

Consider a businessman intends to invest his money in a certain business. After a very careful consideration, he choosing 

the four alternatives, such as, 1  : Medicine Company, 2 : Mobile Company, 3 : Cement Company and 4 : Cloth 

Company. The businessman will decide based on the following five attributes, namely, 1 : Growth Analysis, 2 : 

Environmental analysis, 3 : Corporate Reputation, 4 : Economic Benefit and 5 : Enterprise Management level,  

whose weighted vector is  0.30,0.10,0.30,0.10,0.20 .T   Furthermore, there are four decision makers  1,2,3,4k k 

for decision with weighted vector  0.20,0.10,0.40,0.30 T   and  let 4.q   

6.1 By Algebraic Aggregation Operators: 
 
Step 1:  Decision matrices can be constructed on the expert’s ideas as follows:  

Table 1: Decision matrix of 1  
 1  2  3  4  5  
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5. An application of the proposed aggregation operators 

The CPFWG operator, CPFOWG operator, CPFHG operator, I-CPFOWG operator, and I-CPFHG operator are some of 

the novel techniques we design for decision-making in this section. 

Algorithm: Let  1 2, ,..., m      be a fixed set of m alternatives and  1 2, ,..., n    be a fixed set of n criteria 

whose weighted vector is  1 2, ,..., T
n    with restriction, such as  1 j n  and

1
1

n
j

j



 . Let  1 2, ,..., k      be a 

set of k experts/decision makers whose weight is  1 2, ,..., T
k    with restriction  1 j n   and

1
1

k

j
j

  . To find the 

suitable option, we develop a MAGDM under the CPF environment. The main steps are as follows: 

Step 1: Develop matrices based on the expertise of experts. 

Step 2: Make a single matrix out of all the separate matrices by combining them using the specified operators. 

Step 3: Again compute all of the preference values using the specified techniques. 

Step 4: Calculating the scores uses all preference values. 

Step 5: Choose the one with the highest score value. 

6. Illustrative Example      

Consider a businessman intends to invest his money in a certain business. After a very careful consideration, he choosing 

the four alternatives, such as, 1  : Medicine Company, 2 : Mobile Company, 3 : Cement Company and 4 : Cloth 

Company. The businessman will decide based on the following five attributes, namely, 1 : Growth Analysis, 2 : 

Environmental analysis, 3 : Corporate Reputation, 4 : Economic Benefit and 5 : Enterprise Management level,  

whose weighted vector is  0.30,0.10,0.30,0.10,0.20 .T   Furthermore, there are four decision makers  1,2,3,4k k 

for decision with weighted vector  0.20,0.10,0.40,0.30 T   and  let 4.q   

6.1 By Algebraic Aggregation Operators: 
 
Step 1:  Decision matrices can be constructed on the expert’s ideas as follows:  

Table 1: Decision matrix of 1  
 1  2  3  4  5  

6. Illustrative Example     

6.1 By Algebraic Aggregation Operators:
Step 1:  Decision matrices can be constructed on the expert’s ideas as follows: 

1

 

 

 

 

2 0.5

2 0.7

2 0.8

0.90 ,

0.60 ,

0.70

i

i

i

e

e

e







 
 
 
 
  
 

 

 

 

 

2 0.6

2 0.5

2 0.7

0.80 ,

0.70 ,

0.60

i

i

i

e

e

e







 
 
 
 
  
 

 

 

 

 

2 0.5

2 0.4

2 0.8

0.70 ,

0.90 ,

0.50

i

i

i

e

e

e







 
 
 
 
  
 

 

 

 

 

2 0.5

2 0.6

2 0.9

0.90 ,

0.60 ,

0.80

i

i

i

e

e

e







 
 
 
 
  
 

 

 

 

 

2 0.5

2 0.6

2 0.7

0.70 ,

0.90 ,

0.60

i

i

i

e

e

e







 
 
 
 
  
 

 

2

 
 

 

 

2 0.6

2 0.4

2 0.5

0.80 ,

0.70 ,

0.60

i

i

i

e

e

e







 
 
 
 
  
 

 

 

 

 

2 0.6

2 0.7

2 0.7

0.50 ,

0.90 ,

0.60

i

i

i

e

e

e







 
 
 
 
  
 

 

 

 

 

2 0.6

2 0.7

2 0.5

0.80 ,

0.60 ,

0.80

i

i

i

e

e

e







 
 
 
 
  
 

 

 

 

 

2 0.6

2 0.4

2 0.9

0.70 ,

0.50 ,

0.80

i

i

i

e

e

e







 
 
 
 
  
 

 

 

 

 

2 0.8

2 0.5

2 0.6

0.70 ,

0.80 ,

0.90

i

i

i

e

e

e







 
 
 
 
  
 

 

3
 

 

 

 

2 0.5

2 0.6

2 0.5

0.70 ,

0.80 ,

0.90

i

i

i

e

e

e







 
 
 
 
  
 

 

 

 

 

2 0.7

2 0.5

2 0.9

0.90 ,

0.60 ,

0.50

i

i

i

e

e

e







 
 
 
 
  
 

 

 

 

 

2 0.4

2 0.5

2 0.6

0.70 ,

0.60 ,

0.90

i

i

i

e

e

e







 
 
 
 
  
 

 

 

 

 

2 0.6

2 0.5

2 0.4

0.70 ,

0.60 ,

0.80

i

i

i

e

e

e







 
 
 
 
  
 

 

 

 

 

2 0.9

2 0.4

2 0.5

0.70 ,

0.50 ,

0.90

i

i

i

e

e

e







 
 
 
 
  
 

 

4

 
 

 

 

2 0.4

2 0.7

2 0.9

0.80 ,

0.70 ,

0.80

i

i

i

e

e

e







 
 
 
 
  
 

 

 

 

 

2 0.6

2 0.7

2 0.7

0.80 ,

0.50 ,

0.60

i

i

i

e

e

e







 
 
 
 
  
 

 

 

 

 

2 0.4

2 0.6

2 0.8

0.80 ,

0.90 ,

0.40

i

i

i

e

e

e







 
 
 
 
  
 

 

 

 

 

2 0.7

2 0.4

2 0.5

0.90 ,

0.70 ,

0.60

i

i

i

e

e

e







 
 
 
 
  
 

 

 

 

 

2 0.7

2 0.4

2 0.5

0.90 ,

0.50 ,

0.80

i

i

i

e

e

e







 
 
 
 
  
 

 

 
 

Table 2: Decision matrix of 2  
 1  2  3  4  5  

1   

 

 

2 0.7

2 0.5

2 0.6

0.59 ,

0.71 ,

0.81

i

i

i

e

e

e







 
 
 
 
  
 

 

 

 

 

2 0.8

2 0.7

2 0.6

0.59 ,

0.79 ,

0.81

i

i

i

e

e

e







 
 
 
 
  
 

 

 

 

 

2 0.3

2 0.6

2 0.7

0.61 ,

0.91 ,

0.81

i

i

i

e

e

e







 
 
 
 
  
 

 

 

 

 

2 0.7

2 0.5

2 0.8

0.79 ,

0.81 ,

0.89

i

i

i

e

e

e







 
 
 
 
  
 

 

 

 

 

2 0.7

2 0.6

2 0.4

0.89 ,

0.61 ,

0.69

i

i

i

e

e

e







 
 
 
 
  
 

 

2   

 

 

2 0.7

2 0.6

2 0.4

0.49 ,

0.91 ,

0.79

i

i

i

e

e

e







 
 
 
 
  
 

 

 

 

 

2 0.9

2 0.5

2 0.4

0.51 ,

0.79 ,

0.69

i

i

i

e

e

e







 
 
 
 
  
 

 

 

 

 

2 0.5

2 0.8

2 0.8

0.68 ,

0.91 ,

0.49

i

i

i

e

e

e







 
 
 
 
  
 

 

 

 

 

2 0.6

2 0.4

2 0.9

0.68 ,

0.51 ,

0.81

i

i

i

e

e

e







 
 
 
 
  
 

 

 

 

 

2 0.6

2 0.7

2 0.5

0.91 ,

0.39 ,

0.71

i

i

i

e

e

e







 
 
 
 
  
 

 

3   

 

 

2 0.4

2 0.7

2 0.8

0.79 ,

0.71 ,

0.59

i

i

i

e

e

e







 
 
 
 
  
 

 

 

 

 

2 0.6

2 0.4

2 0.5

0.81 ,

0.91 ,

0.89

i

i

i

e

e

e







 
 
 
 
  
 

 

 

 

 

2 0.4

2 0.5

2 0.9

0.79 ,

0.91 ,

0.59

i

i

i

e

e

e







 
 
 
 
  
 

 

 

 

 

2 0.7

2 0.6

2 0.8

0.59 ,

0.49 ,

0.39

i

i

i

e

e

e







 
 
 
 
  
 

 

 

 

 

2 0.7

2 0.5

2 0.8

0.89 ,

0.39 ,

0.51

i

i

i

e

e

e







 
 
 
 
  
 

 

4   

 

 

2 0.8

2 0.7

2 0.8

0.39 ,

0.71 ,

0.89

i

i

i

e

e

e







 
 
 
 
  
 

 

 

 

 

2 0.8

2 0.5

2 0.6

0.59 ,

0.69 ,

0.71

i

i

i

e

e

e







 
 
 
 
  
 

 

 

 

 

2 0.8

2 0.9

2 0.4

0.41 ,

0.59 ,

0.79

i

i

i

e

e

e







 
 
 
 
  
 

 

 

 

 

2 0.9

2 0.7

2 0.6

0.71 ,

0.39 ,

0.49

i

i

i

e

e

e







 
 
 
 
  
 

 

 

 

 

2 0.9

2 0.5

2 0.8

0.69 ,

0.39 ,

0.49

i

i

i

e

e

e







 
 
 
 
  
 

 

 
Table 3: Decision matrix of 3  

 1  2  3  4  5  

1   

 

 

2 0.8

2 0.6

2 0.5

0.71 ,

0.69 ,

0.89

i

i

i

e

e

e







 
 
 
 
  
 

 

 

 

 

2 0.8

2 0.7

2 0.6

0.69 ,

0.49 ,

0.71

i

i

i

e

e

e







 
 
 
 
  
 

 

 

 

 

2 0.5

2 0.9

2 0.5

0.79 ,

0.41 ,

0.81

i

i

i

e

e

e







 
 
 
 
  
 

 

 

 

 

2 0.9

2 0.6

2 0.8

0.49 ,

0.69 ,

0.91

i

i

i

e

e

e







 
 
 
 
  
 

 

 

 

 

2 0.6

2 0.8

2 0.6

0.79 ,

0.91 ,

0.79

i

i

i

e

e

e







 
 
 
 
  
 

 

2   

 

 

2 0.8

2 0.7

2 0.6

0.59 ,

0.39 ,

0.51

i

i

i

e

e

se







 
 
 
 
  
 

 

 

 

 

2 0.5

2 0.9

2 0.6

0.59 ,

0.69 ,

0.71

i

i

i

e

e

e







 
 
 
 
  
 

 

 

 

 

2 0.8

2 0.6

2 0.8

0.59 ,

0.69 ,

0.51

i

i

i

e

e

e







 
 
 
 
  
 

 

 

 

 

2 0.7

2 0.5

2 0.8

0.61 ,

0.39 ,

0.89

i

i

i

e

e

e







 
 
 
 
  
 

 

 

 

 

2 0.7

2 0.8

2 0.9

0.79 ,

0.49 ,

0.61

i

i

i

e

e

e







 
 
 
 
  
 

 

3   

 

 

2 0.7

2 0.4

2 0.6

0.51 ,

0.89 ,

0.79

i

i

i

e

e

e







 
 
 
 
  
 

 

 

 

 

2 0.8

2 0.6

2 0.6

0.69 ,

0.49 ,

0.89

i

i

i

e

e

e







 
 
 
 
  
 

 

 

 

 

2 0.4

2 0.7

2 0.8

0.79 ,

0.91 ,

0.59

i

i

i

e

e

e







 
 
 
 
  
 

 

 

 

 

2 0.5

2 0.9

2 0.6

0.89 ,

0.79 ,

0.39

i

i

i

e

e

e







 
 
 
 
  
 

 

 

 

 

2 0.7

2 0.5

2 0.6

0.89 ,

0.61 ,

0.79

i

i

i

e

e

e
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2 0.5

2 0.7

2 0.8

0.90 ,

0.60 ,

0.70

i

i

i

e

e

e







 
 
 
 
  
 

 

 

 

 

2 0.6

2 0.5

2 0.7

0.80 ,

0.70 ,

0.60

i

i

i

e

e

e







 
 
 
 
  
 

 

 

 

 

2 0.5

2 0.4

2 0.8

0.70 ,

0.90 ,

0.50

i

i

i

e

e

e







 
 
 
 
  
 

 

 

 

 

2 0.5

2 0.6

2 0.9

0.90 ,

0.60 ,

0.80

i

i

i

e

e

e







 
 
 
 
  
 

 

 

 

 

2 0.5

2 0.6

2 0.7

0.70 ,

0.90 ,

0.60

i

i

i

e

e

e







 
 
 
 
  
 

 

2

 
 

 

 

2 0.6

2 0.4

2 0.5

0.80 ,

0.70 ,

0.60

i

i

i

e

e

e







 
 
 
 
  
 

 

 

 

 

2 0.6

2 0.7

2 0.7

0.50 ,

0.90 ,

0.60

i

i

i

e

e

e







 
 
 
 
  
 

 

 

 

 

2 0.6

2 0.7

2 0.5

0.80 ,

0.60 ,

0.80

i

i

i

e

e

e







 
 
 
 
  
 

 

 

 

 

2 0.6

2 0.4

2 0.9

0.70 ,

0.50 ,

0.80

i

i

i

e

e

e







 
 
 
 
  
 

 

 

 

 

2 0.8

2 0.5

2 0.6

0.70 ,

0.80 ,

0.90

i

i

i

e

e

e







 
 
 
 
  
 

 

3
 

 

 

 

2 0.5

2 0.6

2 0.5

0.70 ,

0.80 ,

0.90

i

i

i

e

e

e







 
 
 
 
  
 

 

 

 

 

2 0.7

2 0.5

2 0.9

0.90 ,

0.60 ,

0.50

i

i

i

e

e

e







 
 
 
 
  
 

 

 

 

 

2 0.4

2 0.5

2 0.6

0.70 ,

0.60 ,

0.90

i

i

i

e

e

e







 
 
 
 
  
 

 

 

 

 

2 0.6

2 0.5

2 0.4

0.70 ,

0.60 ,

0.80

i

i

i

e

e

e







 
 
 
 
  
 

 

 

 

 

2 0.9

2 0.4

2 0.5

0.70 ,

0.50 ,

0.90

i

i

i

e

e

e







 
 
 
 
  
 

 

4

 
 

 

 

2 0.4

2 0.7

2 0.9

0.80 ,

0.70 ,

0.80

i

i

i

e

e

e







 
 
 
 
  
 

 

 

 

 

2 0.6

2 0.7

2 0.7

0.80 ,

0.50 ,

0.60

i

i

i

e

e

e







 
 
 
 
  
 

 

 

 

 

2 0.4

2 0.6

2 0.8

0.80 ,

0.90 ,

0.40

i

i

i

e

e

e







 
 
 
 
  
 

 

 

 

 

2 0.7

2 0.4

2 0.5

0.90 ,

0.70 ,

0.60

i

i

i

e

e

e







 
 
 
 
  
 

 

 

 

 

2 0.7

2 0.4

2 0.5

0.90 ,

0.50 ,

0.80

i

i

i

e

e

e







 
 
 
 
  
 

 

 
 

Table 2: Decision matrix of 2  
 1  2  3  4  5  

1   

 

 

2 0.7

2 0.5

2 0.6

0.59 ,

0.71 ,

0.81

i

i

i

e

e

e







 
 
 
 
  
 

 

 

 

 

2 0.8

2 0.7

2 0.6

0.59 ,

0.79 ,

0.81

i

i

i

e

e

e







 
 
 
 
  
 

 

 

 

 

2 0.3

2 0.6

2 0.7

0.61 ,

0.91 ,

0.81

i

i

i

e

e

e







 
 
 
 
  
 

 

 

 

 

2 0.7

2 0.5

2 0.8

0.79 ,

0.81 ,

0.89

i

i

i

e

e

e







 
 
 
 
  
 

 

 

 

 

2 0.7

2 0.6

2 0.4

0.89 ,

0.61 ,

0.69

i

i

i

e

e

e







 
 
 
 
  
 

 

2   

 

 

2 0.7

2 0.6

2 0.4

0.49 ,

0.91 ,

0.79

i

i

i

e

e

e







 
 
 
 
  
 

 

 

 

 

2 0.9

2 0.5

2 0.4

0.51 ,

0.79 ,

0.69

i

i

i

e

e

e







 
 
 
 
  
 

 

 

 

 

2 0.5

2 0.8

2 0.8

0.68 ,

0.91 ,

0.49

i

i

i

e

e

e







 
 
 
 
  
 

 

 

 

 

2 0.6

2 0.4

2 0.9

0.68 ,

0.51 ,

0.81

i

i

i

e

e

e







 
 
 
 
  
 

 

 

 

 

2 0.6

2 0.7

2 0.5

0.91 ,

0.39 ,

0.71

i

i

i

e

e

e







 
 
 
 
  
 

 

3   

 

 

2 0.4

2 0.7

2 0.8

0.79 ,

0.71 ,

0.59

i

i

i

e

e

e







 
 
 
 
  
 

 

 

 

 

2 0.6

2 0.4

2 0.5

0.81 ,

0.91 ,

0.89

i

i

i

e

e

e







 
 
 
 
  
 

 

 

 

 

2 0.4

2 0.5

2 0.9

0.79 ,

0.91 ,

0.59

i

i

i

e

e

e







 
 
 
 
  
 

 

 

 

 

2 0.7

2 0.6

2 0.8

0.59 ,

0.49 ,

0.39

i

i

i

e

e

e







 
 
 
 
  
 

 

 

 

 

2 0.7

2 0.5

2 0.8

0.89 ,

0.39 ,

0.51

i

i

i

e

e

e







 
 
 
 
  
 

 

4   

 

 

2 0.8

2 0.7

2 0.8

0.39 ,

0.71 ,

0.89

i

i

i

e

e

e







 
 
 
 
  
 

 

 

 

 

2 0.8

2 0.5

2 0.6

0.59 ,

0.69 ,

0.71

i

i

i

e

e

e







 
 
 
 
  
 

 

 

 

 

2 0.8

2 0.9

2 0.4

0.41 ,

0.59 ,

0.79

i

i

i

e

e

e







 
 
 
 
  
 

 

 

 

 

2 0.9

2 0.7

2 0.6

0.71 ,

0.39 ,

0.49

i

i

i

e

e

e







 
 
 
 
  
 

 

 

 

 

2 0.9

2 0.5

2 0.8

0.69 ,

0.39 ,

0.49

i

i

i

e

e

e







 
 
 
 
  
 

 

 
Table 3: Decision matrix of 3  

 1  2  3  4  5  

1   

 

 

2 0.8

2 0.6

2 0.5

0.71 ,

0.69 ,

0.89

i

i

i

e

e

e







 
 
 
 
  
 

 

 

 

 

2 0.8

2 0.7

2 0.6

0.69 ,

0.49 ,

0.71

i

i

i

e

e

e







 
 
 
 
  
 

 

 

 

 

2 0.5

2 0.9

2 0.5

0.79 ,

0.41 ,

0.81

i

i

i

e

e

e







 
 
 
 
  
 

 

 

 

 

2 0.9

2 0.6

2 0.8

0.49 ,

0.69 ,

0.91

i

i

i

e

e

e







 
 
 
 
  
 

 

 

 

 

2 0.6

2 0.8

2 0.6

0.79 ,

0.91 ,

0.79

i

i

i

e

e

e







 
 
 
 
  
 

 

2   

 

 

2 0.8

2 0.7

2 0.6

0.59 ,

0.39 ,

0.51

i

i

i

e

e

se







 
 
 
 
  
 

 

 

 

 

2 0.5

2 0.9

2 0.6

0.59 ,

0.69 ,

0.71

i

i

i

e

e

e







 
 
 
 
  
 

 

 

 

 

2 0.8

2 0.6

2 0.8

0.59 ,

0.69 ,

0.51

i

i

i

e

e

e







 
 
 
 
  
 

 

 

 

 

2 0.7

2 0.5

2 0.8

0.61 ,

0.39 ,

0.89

i

i

i

e

e

e







 
 
 
 
  
 

 

 

 

 

2 0.7

2 0.8

2 0.9

0.79 ,

0.49 ,

0.61

i

i

i

e

e

e







 
 
 
 
  
 

 

3   

 

 

2 0.7

2 0.4

2 0.6

0.51 ,

0.89 ,

0.79

i

i

i

e

e

e







 
 
 
 
  
 

 

 

 

 

2 0.8

2 0.6

2 0.6

0.69 ,

0.49 ,

0.89

i

i

i

e

e

e







 
 
 
 
  
 

 

 

 

 

2 0.4

2 0.7

2 0.8

0.79 ,

0.91 ,

0.59

i

i

i

e

e

e







 
 
 
 
  
 

 

 

 

 

2 0.5

2 0.9

2 0.6

0.89 ,

0.79 ,

0.39

i

i

i

e

e

e







 
 
 
 
  
 

 

 

 

 

2 0.7

2 0.5

2 0.6

0.89 ,

0.61 ,

0.79

i

i

i

e

e

e







 
 
 
 
  
 

 

4   

 

 

2 0.6

2 0.7

2 0.5

0.89 ,

0.79 ,

0.91

i

i

i

e

e

e







 
 
 
 
  
 

 

 

 

 

2 0.6

2 0.7

2 0.7

0.79 ,

0.49 ,

0.59

i

i

i

e

e

e







 
 
 
 
  
 

 

 

 

 

2 0.7

2 0.5

2 0.6

0.89 ,

0.61 ,

0.79

i

i

i

e

e

e







 
 
 
 
  
 

 

 

 

 

2 0.6

2 0.5

2 0.4

0.79 ,

0.89 ,

0.71

i

i

i

e

e

e







 
 
 
 
  
 

 

 

 

 

2 0.8

2 0.3

2 0.4

0.69 ,

0.55 ,

0.88

i

i

i

e

e

e







 
 
 
 
  
 

 

 
Table 4: Decision matrix of 4  

 1  2  3  4  5  

1

 

 

 

 

2 0.4

2 0.6

2 0.7

0.68 ,

0.87 ,

0.79

i

i

i

e

e

e







 
 
 
 
  
 

 

 

 

 

2 0.5

2 0.4

2 0.6

0.67 ,

0.48 ,

0.89

i

i

i

e

e

e







 
 
 
 
  
 

 

 

 

 

2 0.6

2 0.3

2 0.6

0.88 ,

0.69 ,

0.78

i

i

i

e

e

e







 
 
 
 
  
 

 

 

 

 

2 0.7

2 0.4

2 0.6

0.77 ,

0.68 ,

0.92

i

i

i

e

e

e







 
 
 
 
  
 

 

 

 

 

2 0.8

2 0.5

2 0.9

0.89 ,

0.49 ,

0.68

i

i

i

e

e

e







 
 
 
 
  
 

 

2

 
 

 

 

2 0.6

2 0.4

2 0.5

0.87 ,

0.49 ,

0.78

i

i

i

e

e

e







 
 
 
 
  
 

 

 

 

 

2 0.5

2 0.6

2 0.8

0.57 ,

0.78 ,

0.68

i

i

i

e

e

e







 
 
 
 
  
 

 

 

 

 

2 0.5

2 0.6

2 0.4

0.86 ,

0.72 ,

0.58

i

i

i

e

e

e







 
 
 
 
  
 

 

 

 

 

2 0.7

2 0.5

2 0.6

0.77 ,

0.69 ,

0.89

i

i

i

e

e

e







 
 
 
 
  
 

 

 

 

 

2 0.6

2 0.4

2 0.8

0.88 ,

0.72 ,

0.58

i

i

i

e

e

e







 
 
 
 
  
 

 

3
 

 

 

 

2 0.7

2 0.4

2 0.8

0.88 ,

0.67 ,

0.58

i

i

i

e

e

e







 
 
 
 
  
 

 

 

 

 

2 0.8

2 0.4

2 0.6

0.58 ,

0.49 ,

0.88

i

i

i

e

e

e







 
 
 
 
  
 

 

 

 

 

2 0.7

2 0.6

2 0.4

0.59 ,

0.47 ,

0.78

i

i

i

e

e

e







 
 
 
 
  
 

 

 

 

 

2 0.5

2 0.6

2 0.4

0.77 ,

0.68 ,

0.91

i

i

i

e

e

e







 
 
 
 
  
 

 

 

 

 

2 0.6

2 0.4

2 0.3

0.88 ,

0.78 ,

0.68

i

i

i

e

e

e







 
 
 
 
  
 

 

4

 
 

 

 

2 0.5

2 0.9

2 0.4

0.89 ,

0.48 ,

0.69

i

i

i

e

e

e







 
 
 
 
  
 

 

 

 

 

2 0.4

2 0.5

2 0.6

0.78 ,

0.57 ,

0.69

i

i

i

e

e

e







 
 
 
 
  
 

 

 

 

 

2 0.7

2 0.5

2 0.9

0.57 ,

0.68 ,

0.78

i

i

i

e

e

e







 
 
 
 
  
 

 

 

 

 

2 0.4

2 0.7

2 0.5

0.59 ,

0.89 ,

0.68

i

i

i

e

e

e







 
 
 
 
  
 

 

 

 

 

2 0.5

2 0.8

2 0.6

0.48 ,

0.77 ,

0.86

i

i

i

e

e

e







 
 
 
 
  
 

 

Step 2: Applying the CPFWG aggregation operator to aggregate all individual matrices into a single matrix, where 

 0.20,0.10,0.40,0.30 T  and  4q  . 

Table 5: Collective decision-matrix E  
 1  2  3  4  5  

1

 

 

 

 

2 0.58

2 0.61

2 0.67

0.72 ,

0.73 ,

0.84

i

i

i

e

e

e







 
 
 
 
  
 

 

 

 

 

2 0.65

2 0.55

2 0.62

0.71 ,

0.56 ,

0.80

i

i

i

e

e

e







 
 
 
 
  
 

 

 

 

 

2 0.63

2 0.34

2 0.60

0.94 ,

0.72 ,

0.86

i

i

i

e

e

e







 
 
 
 
  
 

 

 

 

 

2 0.74

2 0.47

2 0.64

0.89 ,

0.77 ,

0.94

i

i

i

e

e

e







 
 
 
 
  
 

 

 

 

 

2 0.83

2 0.56

2 0.96

0.98 ,

0.56 ,

0.72

i

i

i

e

e

e







 
 
 
 
  
 

 

2

 
 

 

 

2 0.68

2 0.42

2 0.54

0.70 ,

0.67 ,

0.69

i

i

i

e

e

e







 
 
 
 
  
 

 

 

 

 

2 0.55

2 0.61

2 0.70

0.57 ,

0.68 ,

0.81

i

i

i

e

e

e







 
 
 
 
  
 

 

 

 

 

2 0.58

2 0.67

2 0.45

0.96 ,

0.72 ,

0.68

i

i

i

e

e

e







 
 
 
 
  
 

 

 

 

 

2 0.77

2 0.55

2 0.68

0.89 ,

0.75 ,

0.96

i

i

i

e

e

e







 
 
 
 
  
 

 

 

 

 

2 0.68

2 0.42

2 0.84

0.90 ,

0.72 ,

0.65

i

i

i

e

e

e







 
 
 
 
  
 

 

3
 

 

 

 

2 0.62

2 0.46

2 0.70

0.67 ,

0.79 ,

0.78

i

i

i

e

e

e







 
 
 
 
  
 

 

 

 

 

2 0.68

2 0.49

2 0.59

0.68 ,

0.55 ,

0.90

i

i

i

e

e

e







 
 
 
 
  
 

 

 

 

 

2 0.75

2 0.64

2 0.48

0.68 ,

0.59 ,

0.86

i

i

i

e

e

e







 
 
 
 
  
 

 

 

 

 

2 0.54

2 0.68

2 0.45

0.89 ,

0.75 ,

0.96

i

i

i

e

e

e







 
 
 
 
  
 

 

 

 

 

2 0.65

2 0.42

2 0.37

0.96 ,

0.83 ,

0.75

i

i

i

e

e

e







 
 
 
 
  
 

 

4

 
 

 

 

2 0.53

2 0.75

2 0.71

0.81 ,

0.67 ,

0.85

i

i

i

e

e

e







 
 
 
 
  
 

 

 

 

 

2 0.44

2 0.56

2 0.62

0.83 ,

0.65 ,

0.78

i

i

i

e

e

e







 
 
 
 
  
 

 

 

 

 

2 0.74

2 0.53

2 0.92

0.65 ,

0.75 ,

0.86

i

i

i

e

e

e







 
 
 
 
  
 

 

 

 

 

2 0.43

2 0.72

2 0.56

0.68 ,

0.95 ,

0.73

i

i

i

e

e

e







 
 
 
 
  
 

 

 

 

 

2 0.58

2 0.82

2 0.64

0.56 ,

0.83 ,

0.97

i

i

i

e

e

e







 
 
 
 
  
 

 

Step 3:  Next, again applying the CPFWG operator, with  0.30,0.10,0.30,0.10,0.20 T  , we have the following 

preference values:  

      2 0.66 2 0.48 2 0.80
1 0.85 ,0.67 ,0.85i i ie e e          2 0.64 2 0.52 2 0.67

2 0.81 ,0.70 ,0.77i i ie e e   

      2 0.66 2 0.51 2 0.58
3 0.74 ,0.68 ,0.81i i ie e e          2 0.57 2 0.66 2 0.80

4 0.69 ,0.70 ,0.89 .i i ie e e     

Step 4: By using Definition 6, we get the score functions as below. 

 1 0.64S   ,  2 0.79S   ,  3 0.74S   ,  4 0.50S   . 

Step 5: Thus the best option is 2 . 
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4   

 

 

2 0.6

2 0.7

2 0.5

0.89 ,

0.79 ,

0.91

i

i

i

e

e

e







 
 
 
 
  
 

 

 

 

 

2 0.6

2 0.7

2 0.7

0.79 ,

0.49 ,

0.59

i

i

i

e

e

e







 
 
 
 
  
 

 

 

 

 

2 0.7

2 0.5

2 0.6

0.89 ,

0.61 ,

0.79

i

i

i

e

e

e







 
 
 
 
  
 

 

 

 

 

2 0.6

2 0.5

2 0.4

0.79 ,

0.89 ,

0.71

i

i

i

e

e

e







 
 
 
 
  
 

 

 

 

 

2 0.8

2 0.3

2 0.4

0.69 ,

0.55 ,

0.88

i

i

i

e

e

e







 
 
 
 
  
 

 

 
Table 4: Decision matrix of 4  

 1  2  3  4  5  

1

 

 

 

 

2 0.4

2 0.6

2 0.7

0.68 ,

0.87 ,

0.79

i

i

i

e

e

e







 
 
 
 
  
 

 

 

 

 

2 0.5

2 0.4

2 0.6

0.67 ,

0.48 ,

0.89

i

i

i

e

e

e







 
 
 
 
  
 

 

 

 

 

2 0.6

2 0.3

2 0.6

0.88 ,

0.69 ,

0.78

i

i

i

e

e

e







 
 
 
 
  
 

 

 

 

 

2 0.7

2 0.4

2 0.6

0.77 ,

0.68 ,

0.92

i

i

i

e

e

e







 
 
 
 
  
 

 

 

 

 

2 0.8

2 0.5

2 0.9

0.89 ,

0.49 ,

0.68

i

i

i

e

e

e







 
 
 
 
  
 

 

2

 
 

 

 

2 0.6

2 0.4

2 0.5

0.87 ,

0.49 ,

0.78

i

i

i

e

e

e







 
 
 
 
  
 

 

 

 

 

2 0.5

2 0.6

2 0.8

0.57 ,

0.78 ,

0.68

i

i

i

e

e

e







 
 
 
 
  
 

 

 

 

 

2 0.5

2 0.6

2 0.4

0.86 ,

0.72 ,

0.58

i

i

i

e

e

e







 
 
 
 
  
 

 

 

 

 

2 0.7

2 0.5

2 0.6

0.77 ,

0.69 ,

0.89

i

i

i

e

e

e







 
 
 
 
  
 

 

 

 

 

2 0.6

2 0.4

2 0.8

0.88 ,

0.72 ,

0.58

i

i

i

e

e

e







 
 
 
 
  
 

 

3
 

 

 

 

2 0.7

2 0.4

2 0.8

0.88 ,

0.67 ,

0.58

i

i

i

e

e

e







 
 
 
 
  
 

 

 

 

 

2 0.8

2 0.4

2 0.6

0.58 ,

0.49 ,

0.88

i

i

i

e

e

e







 
 
 
 
  
 

 

 

 

 

2 0.7

2 0.6

2 0.4

0.59 ,

0.47 ,

0.78

i

i

i

e

e

e







 
 
 
 
  
 

 

 

 

 

2 0.5

2 0.6

2 0.4

0.77 ,

0.68 ,

0.91

i

i

i

e

e

e







 
 
 
 
  
 

 

 

 

 

2 0.6

2 0.4

2 0.3

0.88 ,

0.78 ,

0.68

i

i

i

e

e

e







 
 
 
 
  
 

 

4

 
 

 

 

2 0.5

2 0.9

2 0.4

0.89 ,

0.48 ,

0.69

i

i

i

e

e

e







 
 
 
 
  
 

 

 

 

 

2 0.4

2 0.5

2 0.6

0.78 ,

0.57 ,

0.69

i

i

i

e

e

e







 
 
 
 
  
 

 

 

 

 

2 0.7

2 0.5

2 0.9

0.57 ,

0.68 ,

0.78

i

i

i

e

e

e







 
 
 
 
  
 

 

 

 

 

2 0.4

2 0.7

2 0.5

0.59 ,

0.89 ,

0.68

i

i

i

e

e

e







 
 
 
 
  
 

 

 

 

 

2 0.5

2 0.8

2 0.6

0.48 ,

0.77 ,

0.86

i

i

i

e

e

e







 
 
 
 
  
 

 

Step 2: Applying the CPFWG aggregation operator to aggregate all individual matrices into a single matrix, where 

 0.20,0.10,0.40,0.30 T  and  4q  . 

Table 5: Collective decision-matrix E  
 1  2  3  4  5  

1

 

 

 

 

2 0.58

2 0.61

2 0.67

0.72 ,

0.73 ,

0.84

i

i

i

e

e

e







 
 
 
 
  
 

 

 

 

 

2 0.65

2 0.55

2 0.62

0.71 ,

0.56 ,

0.80

i

i

i

e

e

e







 
 
 
 
  
 

 

 

 

 

2 0.63

2 0.34

2 0.60

0.94 ,

0.72 ,

0.86

i

i

i

e

e

e







 
 
 
 
  
 

 

 

 

 

2 0.74

2 0.47

2 0.64

0.89 ,

0.77 ,

0.94

i

i

i

e

e

e







 
 
 
 
  
 

 

 

 

 

2 0.83

2 0.56

2 0.96

0.98 ,

0.56 ,

0.72

i

i

i

e

e

e







 
 
 
 
  
 

 

2

 
 

 

 

2 0.68

2 0.42

2 0.54

0.70 ,

0.67 ,

0.69

i

i

i

e

e

e







 
 
 
 
  
 

 

 

 

 

2 0.55

2 0.61

2 0.70

0.57 ,

0.68 ,

0.81

i

i

i

e

e

e







 
 
 
 
  
 

 

 

 

 

2 0.58

2 0.67

2 0.45

0.96 ,

0.72 ,

0.68

i

i

i

e

e

e







 
 
 
 
  
 

 

 

 

 

2 0.77

2 0.55

2 0.68

0.89 ,

0.75 ,

0.96

i

i

i

e

e

e







 
 
 
 
  
 

 

 

 

 

2 0.68

2 0.42

2 0.84

0.90 ,

0.72 ,

0.65

i

i

i

e

e

e







 
 
 
 
  
 

 

3
 

 

 

 

2 0.62

2 0.46

2 0.70

0.67 ,

0.79 ,

0.78

i

i

i

e

e

e







 
 
 
 
  
 

 

 

 

 

2 0.68

2 0.49

2 0.59

0.68 ,

0.55 ,

0.90

i

i

i

e

e

e







 
 
 
 
  
 

 

 

 

 

2 0.75

2 0.64

2 0.48

0.68 ,

0.59 ,

0.86

i

i

i

e

e

e







 
 
 
 
  
 

 

 

 

 

2 0.54

2 0.68

2 0.45

0.89 ,

0.75 ,

0.96

i

i

i

e

e

e







 
 
 
 
  
 

 

 

 

 

2 0.65

2 0.42

2 0.37

0.96 ,

0.83 ,

0.75

i

i

i

e

e

e







 
 
 
 
  
 

 

4

 
 

 

 

2 0.53

2 0.75

2 0.71

0.81 ,

0.67 ,

0.85

i

i

i

e

e

e







 
 
 
 
  
 

 

 

 

 

2 0.44

2 0.56

2 0.62

0.83 ,

0.65 ,

0.78

i

i

i

e

e

e







 
 
 
 
  
 

 

 

 

 

2 0.74

2 0.53

2 0.92

0.65 ,

0.75 ,

0.86

i

i

i

e

e

e







 
 
 
 
  
 

 

 

 

 

2 0.43

2 0.72

2 0.56

0.68 ,

0.95 ,

0.73

i

i

i

e

e

e







 
 
 
 
  
 

 

 

 

 

2 0.58

2 0.82

2 0.64

0.56 ,

0.83 ,

0.97

i

i

i

e

e

e







 
 
 
 
  
 

 

Step 3:  Next, again applying the CPFWG operator, with  0.30,0.10,0.30,0.10,0.20 T  , we have the following 

preference values:  

      2 0.66 2 0.48 2 0.80
1 0.85 ,0.67 ,0.85i i ie e e          2 0.64 2 0.52 2 0.67

2 0.81 ,0.70 ,0.77i i ie e e   

      2 0.66 2 0.51 2 0.58
3 0.74 ,0.68 ,0.81i i ie e e          2 0.57 2 0.66 2 0.80

4 0.69 ,0.70 ,0.89 .i i ie e e     

Step 4: By using Definition 6, we get the score functions as below. 

 1 0.64S   ,  2 0.79S   ,  3 0.74S   ,  4 0.50S   . 

Step 5: Thus the best option is 2 . 

6.2  Induced Aggregation Operators:
Step 1: Construct the following matrices based on expert’s ideas: 
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6.2  Induced Aggregation Operators: 
Step 1: Construct the following matrices based on expert’s ideas:  

Table 6: Decision matrix of 1 on induced aggregation operator 
 1  2  3  4  5  

1

 

 

 

 

2 0.4

2 0.6

2 0.7

0.65 ,

0.8, 0.87 ,

0.78

i

i

i

e

e

e







 
 
 
 
  
 

 

 

 

 

2 0.5

2 0.4

2 0.6

0.68 ,

0.5, 0.47 ,

0.86

i

i

i

e

e

e







 
 
 
 
  
 

 

 

 

 

2 0.6

2 0.3

2 0.6

0.88 ,

0.6, 0.67 ,

0.78

i

i

i

e

e

e







 
 
 
 
  
 

 

 

 

 

2 0.7

2 0.4

2 0.6

0.78 ,

0.6, 0.67 ,

0.88

i

i

i

e

e

e







 
 
 
 
  
 

 

 

 

 

2 0.8

2 0.5

2 0.9

0.89 ,

0.4, 0.48 ,

0.72

i

i

i

e

e

e







 
 
 
 
  
 

 

2

 
 

 

 

2 0.6

2 0.4

2 0.5

0.89 ,

0.7, 0.48 ,

0.77

i

i

i

e

e

e







 
 
 
 
  
 

 

 

 

 

2 0.5

2 0.6

2 0.8

0.58 ,

0.4, 0.78 ,

0.67

i

i

i

e

e

e







 
 
 
 
  
 

 

 

 

 

2 0.5

2 0.6

2 0.4

0.89 ,

0.5, 0.67 ,

0.57

i

i

i

e

e

e







 
 
 
 
  
 

 

 

 

 

2 0.7

2 0.5

2 0.6

0.78 ,

0.5, 0.67 ,

0.89

i

i

i

e

e

e







 
 
 
 
  
 

 

 

 

 

2 0.6

2 0.4

2 0.8

0.89 ,

0.3, 0.68 ,

0.57

i

i

i

e

e

e







 
 
 
 
  
 

 

3
 

 

 

 

2 0.7

2 0.4

2 0.8

0.87 ,

0.6, 0.67 ,

0.58

i

i

i

e

e

e







 
 
 
 
  
 

 

 

 

 

2 0.8

2 0.4

2 0.6

0.57 ,

0.3, 0.48 ,

0.87

i

i

i

e

e

e







 
 
 
 
  
 

 

 

 

 

2 0.7

2 0.6

2 0.4

0.58 ,

0.4, 0.47 ,

0.79

i

i

i

e

e

e







 
 
 
 
  
 

 
 

 

 

2 0.5

2 0.6

2 0.4

0.78 ,

0.4, 0.67 ,

0.88

i

i

i

e

e

e







 
 
 
 
  
 

 

 

 

 

2 0.6

2 0.4

2 0.3

0.87 ,

0.2, 0.78 ,

0.67

i

i

i

e

e

e







 
 
 
 
  
 

 

4

 
 

 

 

2 0.5

2 0.9

2 0.4

0.89 ,

0.5, 0.47 ,

0.67

i

i

i

e

e

e







 
 
 
 
  
 

 

 

 

 

2 0.4

2 0.5

2 0.6

0.78 ,

0.2, 0.56 ,

0.68

i

i

i

e

e

e







 
 
 
 
  
 

 

 

 

 

2 0.7

2 0.5

2 0.9

0.58 ,

0.3 0.68 ,

0.78

i

i

i

e

e

e







 
 
 
 
  
 

 

 

 

 

2 0.4

2 0.7

2 0.5

0.58 ,

0.3, 0.87 ,

0.67

i

i

i

e

e

e







 
 
 
 
  
 

 

 

 

 

2 0.5

2 0.8

2 0.6

0.47 ,

0.1, 0.78 ,

0.89

i

i

i

e

e

e







 
 
 
 
  
 

 
 

Table 7: Decision matrix of 2  on induced aggregation operator 
 1  2  3  4  5  

1

 

 

 

 

2 0.7

2 0.5

2 0.6

0.58 ,

0.5, 0.68 ,

0.79

i

i

i

e

e

e







 
 
 
 
  
 

 

 

 

 

2 0.8

2 0.7

2 0.6

0.59 ,

0.6, 0.81 ,

0.79

i

i

i

e

e

e







 
 
 
 
  
 

 

 

 

 

2 0.3

2 0.6

2 0.7

0.59 ,

0.7, 0.87 ,

0.78

i

i

i

e

e

e







 
 
 
 
  
 

 

 

 

 

2 0.7

2 0.5

2 0.8

0.78 ,

0.8, 0.79 ,

0.92

i

i

i

e

e

e







 
 
 
 
  
 

 

 

 

 

2 0.7

2 0.6

2 0.4

0.89 ,

0.9, 0.57 ,

0.72

i

i

i

e

e

e







 
 
 
 
  
 

 

2

 
 

 

 

2 0.7

2 0.6

2 0.4

0.48 ,

0.4, 0.89 ,

0.78

i

i

i

e

e

e







 
 
 
 
  
 

 

 

 

 

2 0.9

2 0.5

2 0.4

0.47 ,

0.5, 0.86 ,

0.69

i

i

i

e

e

e







 
 
 
 
  
 

 

 

 

 

2 0.5

2 0.8

2 0.8

0.68 ,

0.6, 0.89 ,

0.48

i

i

i

e

e

e







 
 
 
 
  
 

 

 

 

 

2 0.6

2 0.4

2 0.9

0.69 ,

0.7, 0.47 ,

0.78

i

i

i

e

e

e







 
 
 
 
  
 

 

 

 

 

2 0.6

2 0.7

2 0.5

0.87 ,

0.6, 0.37 ,

0.69

i

i

i

e

e

e







 
 
 
 
  
 

 

3
 

 

 

 

2 0.4

2 0.7

2 0.8

0.78 ,

0.3, 0.67 ,

0.56

i

i

i

e

e

e







 
 
 
 
  
 

 

 

 

 

2 0.6

2 0.4

2 0.5

0.78 ,

0.4, 0.86 ,

0.89

i

i

i

e

e

e







 
 
 
 
  
 

 

 

 

 

2 0.4

2 0.5

2 0.9

0.78 ,

0.5, 0.87 ,

0.56

i

i

i

e

e

e







 
 
 
 
  
 

 

 

 

 

2 0.7

2 0.6

2 0.8

0.56 ,

0.6, 0.47 ,

0.38

i

i

i

e

e

e







 
 
 
 
  
 

 

 

 

 

2 0.7

2 0.5

2 0.8

0.87 ,

0.5, 0.39 ,

0.48

i

i

i

e

e

e







 
 
 
 
  
 

 

4

 
 

 

 

2 0.8

2 0.7

2 0.8

0.39 ,

0.2, 0.67 ,

0.87

i

i

i

e

e

e







 
 
 
 
  
 

 

 

 

 

2 0.8

2 0.5

2 0.6

0.62 ,

0.3, 0.69 ,

0.72

i

i

i

e

e

e







 
 
 
 
  
 

 

 

 

 

2 0.8

2 0.9

2 0.4

0.39 ,

0.4, 0.58 ,

0.79

i

i

i

e

e

e







 
 
 
 
  
 

 

 

 

 

2 0.9

2 0.7

2 0.6

0.68 ,

0.5, 0.32 ,

0.47

i

i

i

e

e

e







 
 
 
 
  
 

 

 

 

 

2 0.9

2 0.5

2 0.8

0.68 ,

0.4, 0.37 ,

0.51

i

i

i

e

e

e







 
 
 
 
  
 

 

 
 

Table 8: Decision matrix of 3  on induced aggregation operator 
 1  2  3  4  5  

1

 

 

 

 

2 0.8

2 0.6

2 0.5

0.68 ,

0.9, 0.69 ,

0.87

i

i

i

e

e

e







 
 
 
 
  
 

 

 

 

 

2 0.8

2 0.7

2 0.6

0.68 ,

0.3, 0.47 ,

0.69

i

i

i

e

e

e







 
 
 
 
  
 

 

 

 

 

2 0.5

2 0.9

2 0.5

0.79 ,

0.5, 0.38 ,

0.78

i

i

i

e

e

e







 
 
 
 
  
 

 

 

 

 

2 0.9

2 0.6

2 0.8

0.47 ,

0.7, 0.68 ,

0.87

i

i

i

e

e

e







 
 
 
 
  
 

 

 

 

 

2 0.6

2 0.8

2 0.6

0.78 ,

0.8, 0.89 ,

0.69

i

i

i

e

e

e







 
 
 
 
  
 

 

2

 
 

 

 

2 0.8

2 0.7

2 0.6

0.57 ,

0.7, 0.39 ,

0.52

i

i

i

e

e

e







 
 
 
 
  
 

 

 

 

 

2 0.5

2 0.9

2 0.6

0.62 ,

0.2, 0.68 ,

0.72

i

i

i

e

e

e







 
 
 
 
  
 

 

 

 

 

2 0.8

2 0.6

2 0.8

0.59 ,

0.3, 0.73 ,

0.49

i

i

i

e

e

e







 
 
 
 
  
 

 

 

 

 

2 0.7

2 0.5

2 0.8

0.58 ,

0.6, 0.39 ,

0.92

i

i

i

e

e

e







 
 
 
 
  
 

 

 

 

 

2 0.7

2 0.8

2 0.9

0.82 ,

0.5, 0.48 ,

0.59

i

i

i

e

e

e
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6.2  Induced Aggregation Operators: 
Step 1: Construct the following matrices based on expert’s ideas:  

Table 6: Decision matrix of 1 on induced aggregation operator 
 1  2  3  4  5  

1

 

 

 

 

2 0.4

2 0.6

2 0.7

0.65 ,

0.8, 0.87 ,

0.78

i

i

i

e

e

e







 
 
 
 
  
 

 

 

 

 

2 0.5

2 0.4

2 0.6

0.68 ,

0.5, 0.47 ,

0.86

i

i

i

e

e

e







 
 
 
 
  
 

 

 

 

 

2 0.6

2 0.3

2 0.6

0.88 ,

0.6, 0.67 ,

0.78

i

i

i

e

e

e







 
 
 
 
  
 

 

 

 

 

2 0.7

2 0.4

2 0.6

0.78 ,

0.6, 0.67 ,

0.88

i

i

i

e

e

e







 
 
 
 
  
 

 

 

 

 

2 0.8

2 0.5

2 0.9

0.89 ,

0.4, 0.48 ,

0.72

i

i

i

e

e

e







 
 
 
 
  
 

 

2

 
 

 

 

2 0.6

2 0.4

2 0.5

0.89 ,

0.7, 0.48 ,

0.77

i

i

i

e

e

e







 
 
 
 
  
 

 

 

 

 

2 0.5

2 0.6

2 0.8

0.58 ,

0.4, 0.78 ,

0.67

i

i

i

e

e

e







 
 
 
 
  
 

 

 

 

 

2 0.5

2 0.6

2 0.4

0.89 ,

0.5, 0.67 ,

0.57

i

i

i

e

e

e







 
 
 
 
  
 

 

 

 

 

2 0.7

2 0.5

2 0.6

0.78 ,

0.5, 0.67 ,

0.89

i

i

i

e

e

e







 
 
 
 
  
 

 

 

 

 

2 0.6

2 0.4

2 0.8

0.89 ,

0.3, 0.68 ,

0.57

i

i

i

e

e

e







 
 
 
 
  
 

 

3
 

 

 

 

2 0.7

2 0.4

2 0.8

0.87 ,

0.6, 0.67 ,

0.58

i

i

i

e

e

e







 
 
 
 
  
 

 

 

 

 

2 0.8

2 0.4

2 0.6

0.57 ,

0.3, 0.48 ,

0.87

i

i

i

e

e

e







 
 
 
 
  
 

 

 

 

 

2 0.7

2 0.6

2 0.4

0.58 ,

0.4, 0.47 ,

0.79

i

i

i

e

e

e







 
 
 
 
  
 

 
 

 

 

2 0.5

2 0.6

2 0.4

0.78 ,

0.4, 0.67 ,

0.88

i

i

i

e

e

e







 
 
 
 
  
 

 

 

 

 

2 0.6

2 0.4

2 0.3

0.87 ,

0.2, 0.78 ,

0.67

i

i

i

e

e

e







 
 
 
 
  
 

 

4

 
 

 

 

2 0.5

2 0.9

2 0.4

0.89 ,

0.5, 0.47 ,

0.67

i

i

i

e

e

e







 
 
 
 
  
 

 

 

 

 

2 0.4

2 0.5

2 0.6

0.78 ,

0.2, 0.56 ,

0.68

i

i

i

e

e

e







 
 
 
 
  
 

 

 

 

 

2 0.7

2 0.5

2 0.9

0.58 ,

0.3 0.68 ,

0.78

i

i

i

e

e

e







 
 
 
 
  
 

 

 

 

 

2 0.4

2 0.7

2 0.5

0.58 ,

0.3, 0.87 ,

0.67

i

i

i

e

e

e







 
 
 
 
  
 

 

 

 

 

2 0.5

2 0.8

2 0.6

0.47 ,

0.1, 0.78 ,

0.89

i

i

i

e

e

e







 
 
 
 
  
 

 
 

Table 7: Decision matrix of 2  on induced aggregation operator 
 1  2  3  4  5  

1

 

 

 

 

2 0.7

2 0.5

2 0.6

0.58 ,

0.5, 0.68 ,

0.79

i

i

i

e

e

e







 
 
 
 
  
 

 

 

 

 

2 0.8

2 0.7

2 0.6

0.59 ,

0.6, 0.81 ,

0.79

i

i

i

e

e

e







 
 
 
 
  
 

 

 

 

 

2 0.3

2 0.6

2 0.7

0.59 ,

0.7, 0.87 ,

0.78

i

i

i

e

e

e







 
 
 
 
  
 

 

 

 

 

2 0.7

2 0.5

2 0.8

0.78 ,

0.8, 0.79 ,

0.92

i

i

i

e

e

e







 
 
 
 
  
 

 

 

 

 

2 0.7

2 0.6

2 0.4

0.89 ,

0.9, 0.57 ,

0.72

i

i

i

e

e

e







 
 
 
 
  
 

 

2

 
 

 

 

2 0.7

2 0.6

2 0.4

0.48 ,

0.4, 0.89 ,

0.78

i

i

i

e

e

e







 
 
 
 
  
 

 

 

 

 

2 0.9

2 0.5

2 0.4

0.47 ,

0.5, 0.86 ,

0.69

i

i

i

e

e

e







 
 
 
 
  
 

 

 

 

 

2 0.5

2 0.8

2 0.8

0.68 ,

0.6, 0.89 ,

0.48

i

i

i

e

e

e







 
 
 
 
  
 

 

 

 

 

2 0.6

2 0.4

2 0.9

0.69 ,

0.7, 0.47 ,

0.78

i

i

i

e

e

e







 
 
 
 
  
 

 

 

 

 

2 0.6

2 0.7

2 0.5

0.87 ,

0.6, 0.37 ,

0.69

i

i

i

e

e

e







 
 
 
 
  
 

 

3
 

 

 

 

2 0.4

2 0.7

2 0.8

0.78 ,

0.3, 0.67 ,

0.56

i

i

i

e

e

e







 
 
 
 
  
 

 

 

 

 

2 0.6

2 0.4

2 0.5

0.78 ,

0.4, 0.86 ,

0.89

i

i

i

e

e

e







 
 
 
 
  
 

 

 

 

 

2 0.4

2 0.5

2 0.9

0.78 ,

0.5, 0.87 ,

0.56

i

i

i

e

e

e







 
 
 
 
  
 

 

 

 

 

2 0.7

2 0.6

2 0.8

0.56 ,

0.6, 0.47 ,

0.38

i

i

i

e

e

e







 
 
 
 
  
 

 

 

 

 

2 0.7

2 0.5

2 0.8

0.87 ,

0.5, 0.39 ,

0.48

i

i

i

e

e

e







 
 
 
 
  
 

 

4

 
 

 

 

2 0.8

2 0.7

2 0.8

0.39 ,

0.2, 0.67 ,

0.87

i

i

i

e

e

e







 
 
 
 
  
 

 

 

 

 

2 0.8

2 0.5

2 0.6

0.62 ,

0.3, 0.69 ,

0.72

i

i

i

e

e

e







 
 
 
 
  
 

 

 

 

 

2 0.8

2 0.9

2 0.4

0.39 ,

0.4, 0.58 ,

0.79

i

i

i

e

e

e







 
 
 
 
  
 

 

 

 

 

2 0.9

2 0.7

2 0.6

0.68 ,

0.5, 0.32 ,

0.47

i

i

i

e

e

e







 
 
 
 
  
 

 

 

 

 

2 0.9

2 0.5

2 0.8

0.68 ,

0.4, 0.37 ,

0.51

i

i

i

e

e

e







 
 
 
 
  
 

 

 
 

Table 8: Decision matrix of 3  on induced aggregation operator 
 1  2  3  4  5  

1

 

 

 

 

2 0.8

2 0.6

2 0.5

0.68 ,

0.9, 0.69 ,

0.87

i

i

i

e

e

e







 
 
 
 
  
 

 

 

 

 

2 0.8

2 0.7

2 0.6

0.68 ,

0.3, 0.47 ,

0.69

i

i

i

e

e

e







 
 
 
 
  
 

 

 

 

 

2 0.5

2 0.9

2 0.5

0.79 ,

0.5, 0.38 ,

0.78

i

i

i

e

e

e







 
 
 
 
  
 

 

 

 

 

2 0.9

2 0.6

2 0.8

0.47 ,

0.7, 0.68 ,

0.87

i

i

i

e

e

e







 
 
 
 
  
 

 

 

 

 

2 0.6

2 0.8

2 0.6

0.78 ,

0.8, 0.89 ,

0.69

i

i

i

e

e

e







 
 
 
 
  
 

 

2

 
 

 

 

2 0.8

2 0.7

2 0.6

0.57 ,

0.7, 0.39 ,

0.52

i

i

i

e

e

e







 
 
 
 
  
 

 

 

 

 

2 0.5

2 0.9

2 0.6

0.62 ,

0.2, 0.68 ,

0.72

i

i

i

e

e

e







 
 
 
 
  
 

 

 

 

 

2 0.8

2 0.6

2 0.8

0.59 ,

0.3, 0.73 ,

0.49

i

i

i

e

e

e







 
 
 
 
  
 

 

 

 

 

2 0.7

2 0.5

2 0.8

0.58 ,

0.6, 0.39 ,

0.92

i

i

i

e

e

e







 
 
 
 
  
 

 

 

 

 

2 0.7

2 0.8

2 0.9

0.82 ,

0.5, 0.48 ,

0.59

i

i

i

e

e

e







 
 
 
 
  
 

 

3
 

 

 

 

2 0.7

2 0.4

2 0.6

0.48 ,

0.6, 0.87 ,

0.79

i

i

i

e

e

e







 
 
 
 
  
 

 

 

 

 

2 0.8

2 0.6

2 0.6

0.67 ,

0.2, 0.51 ,

0.89

i

i

i

e

e

e







 
 
 
 
  
 

 

 

 

 

2 0.4

2 0.7

2 0.8

0.78 ,

0.2, 0.89 ,

0.58

i

i

i

e

e

e







 
 
 
 
  
 

 

 

 

 

2 0.5

2 0.9

2 0.6

0.89 ,

0.4, 0.79 ,

0.38

i

i

i

e

e

e







 
 
 
 
  
 

 

 

 

 

2 0.7

2 0.5

2 0.6

0.87 ,

0.3, 0.57 ,

0.78

i

i

i

e

e

e







 
 
 
 
  
 

 

4

 
 

 

 

2 0.6

2 0.7

2 0.5

0.87 ,

0.2, 0.82 ,

0.89

i

i

i

e

e

e







 
 
 
 
  
 

 

 

 

 

2 0.6

2 0.7

2 0.7

0.76 ,

0.1, 0.47 ,

0.57

i

i

i

e

e

e







 
 
 
 
  
 

 

 

 

 

2 0.7

2 0.5

2 0.6

0.89 ,

0.1, 0.61 ,

0.78

i

i

i

e

e

e







 
 
 
 
  
 

 

 

 

 

2 0.6

2 0.5

2 0.4

0.79 ,

0.4, 0.87 ,

0.67

i

i

i

e

e

e







 
 
 
 
  
 

 

 

 

 

2 0.8

2 0.3

2 0.4

0.67 ,

0.1, 0.51 ,

0.89

i

i

i

e

e

e







 
 
 
 
  
 

 

 
 

Table 9: Decision matrix of 4  on induced aggregation operator 
 1  2  3  4  5  

1

 

 

 

 

2 0.5

2 0.7

2 0.8

0.89 ,

0.8, 0.62 ,

0.68

i

i

i

e

e

e







 
 
 
 
  
 

 

 

 

 

2 0.6

2 0.5

2 0.7

0.78 ,

0.5, 0.69 ,

0.58

i

i

i

e

e

e







 
 
 
 
  
 

 

 

 

 

2 0.5

2 0.4

2 0.8

0.67 ,

0.6, 0.89 ,

0.48

i

i

i

e

e

e







 
 
 
 
  
 

 

 

 

 

2 0.5

2 0.6

2 0.9

0.87 ,

0.8, 0.56 ,

0.79

i

i

i

e

e

e







 
 
 
 
  
 

 

 

 

 

2 0.5

2 0.6

2 0.7

0.72 ,

0.7, 0.91 ,

0.58

i

i

i

e

e

e







 
 
 
 
  
 

 

2

 
 

 

 

2 0.6

2 0.4

2 0.5

0.78 ,

0.7, 0.69 ,

0.59

i

i

i

e

e

e







 
 
 
 
  
 

 

 

 

 

2 0.6

2 0.7

2 0.7

0.47 ,

0.4, 0.89 ,

0.48

i

i

i

e

e

e







 
 
 
 
  
 

 

 

 

 

2 0.6

2 0.7

2 0.5

0.79 ,

0.3, 0.61 ,

0.78

i

i

i

e

e

e







 
 
 
 
  
 

 

 

 

 

2 0.6

2 0.4

2 0.9

0.67 ,

0.6, 0.49 ,

0.78

i

i

i

e

e

e







 
 
 
 
  
 

 

 

 

 

2 0.8

2 0.5

2 0.6

0.68 ,

0.4, 0.78 ,

0.89

i

i

i

e

e

e







 
 
 
 
  
 

 

3
 

 

 

 

2 0.5

2 0.6

2 0.5

0.68 ,

0.5, 0.78 ,

0.92

i

i

i

e

e

e







 
 
 
 
  
 

 

 

 

 

2 0.7

2 0.5

2 0.9

0.89 ,

0.3, 0.57 ,

0.49

i

i

i

e

e

e







 
 
 
 
  
 

 

 

 

 

2 0.4

2 0.5

2 0.6

0.68 ,

0.2, 0.57 ,

0.86

i

i

i

e

e

e







 
 
 
 
  
 

 

 

 

 

2 0.6

2 0.5

2 0.4

0.68 ,

0.4, 0.57 ,

0.79

i

i

i

e

e

e







 
 
 
 
  
 

 

 

 

 

2 0.9

2 0.4

2 0.5

0.67 ,

0.3, 0.48 ,

0.92

i

i

i

e

e

e







 
 
 
 
  
 

 

4

 
 

 

 

2 0.4

2 0.7

2 0.9

0.78 ,

0.3, 0.69 ,

0.77

i

i

i

e

e

e







 
 
 
 
  
 

 

 

 

 

2 0.6

2 0.7

2 0.7

0.76 ,

0.2, 0.51 ,

0.59

i

i

i

e

e

e







 
 
 
 
  
 

 

 

 

 

2 0.4

2 0.6

2 0.8

0.78 ,

0.1, 0.89 ,

0.37

i

i

i

e

e

e







 
 
 
 
  
 

 

 

 

 

2 0.7

2 0.4

2 0.5

0.89 ,

0.2, 0.68 ,

0.57

i

i

i

e

e

e







 
 
 
 
  
 

 

 

 

 

2 0.7

2 0.4

2 0.5

0.87 ,

0.3, 0.46 ,

0.78

i

i

i

e

e

e







 
 
 
 
  
 

 
Step 2: Applying the I-CPFOWG aggregation operator to aggregate all individual matrices into a single matrix, where 

 0.30,0.10,0.40,0.20 T  and  4q  , we have: 

Table 10: Combined Decision-matrix E  on induced aggregation operator 
 1  2  3  4  5  

1   

 

 

2 0.57

2 0.60

2 0.68

0.71 ,

0.72 ,

0.85

i

i

i

e

e

e







 
 
 
 
  
 

 

 

 

 

2 0.64

2 0.56

2 0.61

0.72 ,

0.57 ,

0.79

i

i

i

e

e

e







 
 
 
 
  
 

 

 

 

 

2 0.62

2 0.35

2 0.59

0.93 ,

0.71 ,

0.87

i

i

i

e

e

e







 
 
 
 
  
 

 

 

 

 

2 0.73

2 0.45

2 0.65

0.88 ,

0.78 ,

0.93

i

i

i

e

e

e







 
 
 
 
  
 

 

 

 

 

2 0.84

2 0.55

2 0.95

0.99 ,

0.57 ,

0.73

i

i

i

e

e

e







 
 
 
 
  
 

 

2   

 

 

2 0.70

2 0.40

2 0.55

0.69 ,

0.68 ,

0.68

i

i

i

e

e

e







 
 
 
 
  
 

 

 

 

 

2 0.55

2 0.61

2 0.71

0.56 ,

0.69 ,

0.79

i

i

i

e

e

e







 
 
 
 
  
 

 

 

 

 

2 0.57

2 0.66

2 0.46

0.95 ,

0.71 ,

0.69

i

i

i

e

e

e







 
 
 
 
  
 

 

 

 

 

2 0.77

2 0.55

2 0.68

0.89 ,

0.75 ,

0.96

i

i

i

e

e

e







 
 
 
 
  
 

 

 

 

 

2 0.68

2 0.42

2 0.84

0.90 ,

0.72 ,

0.65

i

i

i

e

e

e







 
 
 
 
  
 

 

3   

 

 

2 0.68

2 0.46

2 0.69

0.66 ,

0.80 ,

0.78

i

i

i

e

e

e







 
 
 
 
  
 

 

 

 

 

2 0.69

2 0.50

2 0.60

0.68 ,

0.56 ,

0.89

i

i

i

e

e

e







 
 
 
 
  
 

 

 

 

 

2 0.75

2 0.64

2 0.48

0.68 ,

0.59 ,

0.86

i

i

i

e

e

e







 
 
 
 
  
 

 

 

 

 

2 0.54

2 0.68

2 0.45

0.89 ,

0.75 ,

0.96

i

i

i

e

e

e







 
 
 
 
  
 

 

 

 

 

2 0.65

2 0.42

2 0.37

0.96 ,

0.83 ,

0.75

i

i

i

e

e

e







 
 
 
 
  
 

 

4   

 

 

2 0.52

2 0.74

2 0.70

0.80 ,

0.66 ,

0.86

i

i

i

e

e

e







 
 
 
 
  
 

 

 

 

 

2 0.44

2 0.57

2 0.63

0.84 ,

0.66 ,

0.80

i

i

i

e

e

e







 
 
 
 
  
 

 

 

 

 

2 0.74

2 0.53

2 0.92

0.65 ,

0.75 ,

0.86

i

i

i

e

e

e







 
 
 
 
  
 

 

 

 

 

2 0.43

2 0.72

2 0.56

0.68 ,

0.95 ,

0.73

i

i

i

e

e

e







 
 
 
 
  
 

 

 

 

 

2 0.58

2 0.80

2 0.65

0.56 ,

0.82 ,

0.98

i

i

i

e

e

e







 
 
 
 
  
 

 

Step 3:  Next, again applying the I-CPFOWG operator, with  0.30,0.10,0.30,0.10,0.20 T  , we have the following 

preference values:  
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3
 

 

 

 

2 0.7

2 0.4

2 0.6

0.48 ,

0.6, 0.87 ,

0.79

i

i

i

e

e

e







 
 
 
 
  
 

 

 

 

 

2 0.8

2 0.6

2 0.6

0.67 ,

0.2, 0.51 ,

0.89

i

i

i

e

e

e







 
 
 
 
  
 

 

 

 

 

2 0.4

2 0.7

2 0.8

0.78 ,

0.2, 0.89 ,

0.58

i

i

i

e

e

e







 
 
 
 
  
 

 

 

 

 

2 0.5

2 0.9

2 0.6

0.89 ,

0.4, 0.79 ,

0.38

i

i

i

e

e

e







 
 
 
 
  
 

 

 

 

 

2 0.7

2 0.5

2 0.6

0.87 ,

0.3, 0.57 ,

0.78

i

i

i

e

e

e







 
 
 
 
  
 

 

4

 
 

 

 

2 0.6

2 0.7

2 0.5

0.87 ,

0.2, 0.82 ,

0.89

i

i

i

e

e

e







 
 
 
 
  
 

 

 

 

 

2 0.6

2 0.7

2 0.7

0.76 ,

0.1, 0.47 ,

0.57

i

i

i

e

e

e







 
 
 
 
  
 

 

 

 

 

2 0.7

2 0.5

2 0.6

0.89 ,

0.1, 0.61 ,

0.78

i

i

i

e

e

e







 
 
 
 
  
 

 

 

 

 

2 0.6

2 0.5

2 0.4

0.79 ,

0.4, 0.87 ,

0.67

i

i

i

e

e

e







 
 
 
 
  
 

 

 

 

 

2 0.8

2 0.3

2 0.4

0.67 ,

0.1, 0.51 ,

0.89

i

i

i

e

e

e







 
 
 
 
  
 

 

 
 

Table 9: Decision matrix of 4  on induced aggregation operator 
 1  2  3  4  5  

1

 

 

 

 

2 0.5

2 0.7

2 0.8

0.89 ,

0.8, 0.62 ,

0.68

i

i

i

e

e

e







 
 
 
 
  
 

 

 

 

 

2 0.6

2 0.5

2 0.7

0.78 ,

0.5, 0.69 ,

0.58

i

i

i

e

e

e







 
 
 
 
  
 

 

 

 

 

2 0.5

2 0.4

2 0.8

0.67 ,

0.6, 0.89 ,

0.48

i

i

i

e

e

e







 
 
 
 
  
 

 

 

 

 

2 0.5

2 0.6

2 0.9

0.87 ,

0.8, 0.56 ,

0.79

i

i

i

e

e

e







 
 
 
 
  
 

 

 

 

 

2 0.5

2 0.6

2 0.7

0.72 ,

0.7, 0.91 ,

0.58

i

i

i

e

e

e







 
 
 
 
  
 

 

2

 
 

 

 

2 0.6

2 0.4

2 0.5

0.78 ,

0.7, 0.69 ,

0.59

i

i

i

e

e

e







 
 
 
 
  
 

 

 

 

 

2 0.6

2 0.7

2 0.7

0.47 ,

0.4, 0.89 ,

0.48

i

i

i

e

e

e







 
 
 
 
  
 

 

 

 

 

2 0.6

2 0.7

2 0.5

0.79 ,

0.3, 0.61 ,

0.78

i

i

i

e

e

e







 
 
 
 
  
 

 

 

 

 

2 0.6

2 0.4

2 0.9

0.67 ,

0.6, 0.49 ,

0.78

i

i

i

e

e

e







 
 
 
 
  
 

 

 

 

 

2 0.8

2 0.5

2 0.6

0.68 ,

0.4, 0.78 ,

0.89

i

i

i

e

e

e







 
 
 
 
  
 

 

3
 

 

 

 

2 0.5

2 0.6

2 0.5

0.68 ,

0.5, 0.78 ,

0.92

i

i

i

e

e

e







 
 
 
 
  
 

 

 

 

 

2 0.7

2 0.5

2 0.9

0.89 ,

0.3, 0.57 ,

0.49

i

i

i

e

e

e







 
 
 
 
  
 

 

 

 

 

2 0.4

2 0.5

2 0.6

0.68 ,

0.2, 0.57 ,

0.86

i

i

i

e

e

e







 
 
 
 
  
 

 

 

 

 

2 0.6

2 0.5

2 0.4

0.68 ,

0.4, 0.57 ,

0.79

i

i

i

e

e

e







 
 
 
 
  
 

 

 

 

 

2 0.9

2 0.4

2 0.5

0.67 ,

0.3, 0.48 ,

0.92

i

i

i

e

e

e







 
 
 
 
  
 

 

4

 
 

 

 

2 0.4

2 0.7

2 0.9

0.78 ,

0.3, 0.69 ,

0.77

i

i

i

e

e

e







 
 
 
 
  
 

 

 

 

 

2 0.6

2 0.7

2 0.7

0.76 ,

0.2, 0.51 ,

0.59

i

i

i

e

e

e







 
 
 
 
  
 

 

 

 

 

2 0.4

2 0.6

2 0.8

0.78 ,

0.1, 0.89 ,

0.37

i

i

i

e

e

e







 
 
 
 
  
 

 

 

 

 

2 0.7

2 0.4

2 0.5

0.89 ,

0.2, 0.68 ,

0.57

i

i

i

e

e

e







 
 
 
 
  
 

 

 

 

 

2 0.7

2 0.4

2 0.5

0.87 ,

0.3, 0.46 ,

0.78

i

i

i

e

e

e







 
 
 
 
  
 

 
Step 2: Applying the I-CPFOWG aggregation operator to aggregate all individual matrices into a single matrix, where 

 0.30,0.10,0.40,0.20 T  and  4q  , we have: 

Table 10: Combined Decision-matrix E  on induced aggregation operator 
 1  2  3  4  5  

1   

 

 

2 0.57

2 0.60

2 0.68

0.71 ,

0.72 ,

0.85

i

i

i

e

e

e







 
 
 
 
  
 

 

 

 

 

2 0.64

2 0.56

2 0.61

0.72 ,

0.57 ,

0.79

i

i

i

e

e

e







 
 
 
 
  
 

 

 

 

 

2 0.62

2 0.35

2 0.59

0.93 ,

0.71 ,

0.87

i

i

i

e

e

e







 
 
 
 
  
 

 

 

 

 

2 0.73

2 0.45

2 0.65

0.88 ,

0.78 ,

0.93

i

i

i

e

e

e







 
 
 
 
  
 

 

 

 

 

2 0.84

2 0.55

2 0.95

0.99 ,

0.57 ,

0.73

i

i

i

e

e

e







 
 
 
 
  
 

 

2   

 

 

2 0.70

2 0.40

2 0.55

0.69 ,

0.68 ,

0.68

i

i

i

e

e

e







 
 
 
 
  
 

 

 

 

 

2 0.55

2 0.61

2 0.71

0.56 ,

0.69 ,

0.79

i

i

i

e

e

e







 
 
 
 
  
 

 

 

 

 

2 0.57

2 0.66

2 0.46

0.95 ,

0.71 ,

0.69

i

i

i

e

e

e







 
 
 
 
  
 

 

 

 

 

2 0.77

2 0.55

2 0.68

0.89 ,

0.75 ,

0.96

i

i

i

e

e

e







 
 
 
 
  
 

 

 

 

 

2 0.68

2 0.42

2 0.84

0.90 ,

0.72 ,

0.65

i

i

i

e

e

e







 
 
 
 
  
 

 

3   

 

 

2 0.68

2 0.46

2 0.69

0.66 ,

0.80 ,

0.78

i

i

i

e

e

e







 
 
 
 
  
 

 

 

 

 

2 0.69

2 0.50

2 0.60

0.68 ,

0.56 ,

0.89

i

i

i

e

e

e







 
 
 
 
  
 

 

 

 

 

2 0.75

2 0.64

2 0.48

0.68 ,

0.59 ,

0.86

i

i

i

e

e

e







 
 
 
 
  
 

 

 

 

 

2 0.54

2 0.68

2 0.45

0.89 ,

0.75 ,

0.96

i

i

i

e

e

e







 
 
 
 
  
 

 

 

 

 

2 0.65

2 0.42

2 0.37

0.96 ,

0.83 ,

0.75

i

i

i

e

e

e







 
 
 
 
  
 

 

4   

 

 

2 0.52

2 0.74

2 0.70

0.80 ,

0.66 ,

0.86

i

i

i

e

e

e







 
 
 
 
  
 

 

 

 

 

2 0.44

2 0.57

2 0.63

0.84 ,

0.66 ,

0.80

i

i

i

e

e

e







 
 
 
 
  
 

 

 

 

 

2 0.74

2 0.53

2 0.92

0.65 ,

0.75 ,

0.86

i

i

i

e

e

e







 
 
 
 
  
 

 

 

 

 

2 0.43

2 0.72

2 0.56

0.68 ,

0.95 ,

0.73

i

i

i

e

e

e







 
 
 
 
  
 

 

 

 

 

2 0.58

2 0.80

2 0.65

0.56 ,

0.82 ,

0.98

i

i

i

e

e

e







 
 
 
 
  
 

 

Step 3:  Next, again applying the I-CPFOWG operator, with  0.30,0.10,0.30,0.10,0.20 T  , we have the following 

preference values:  

      2 0.67 2 0.49 2 0.79
1 0.84 ,0.68 ,0.84 ,i i ie e e          2 0.63 2 0.51 2 0.67

2 0.80 ,0.69 ,0.76 ,i i ie e e   

      2 0.65 2 0.49 2 0.58
3 0.73 ,0.68 ,0.80i i ie e e    ,       2 0.57 2 0.66 2 0.79

4 0.68 ,0.70 ,0.90 .i i ie e e     

Step 4: Using Definition 6, and get the score functions as below. 

 1 0.63S   ,  2 0.80S   ,  3 0.73S   ,  4 0.49S   . 

Step 5: Thus the best option is 2 . 

Table11: Score functions of different operators 
Operators Score functions Ranking 

CPFWG        2 3 1 4S S S S   
 2 3 1 4     

CPFOWG        2 3 1 4S S S S   
 2 3 1 4     

CPFHG        2 3 1 4S S S S   
 2 3 1 4     

I-CPFOWG        2 3 1 4S S S S   
 2 3 1 4     

I-CPFHG        2 3 1 4S S S S   
 2 3 1 4     

 

7. Comparative Analysis  

Complex Polytopic fuzzy set is a refinement of earlier work, including: FSs, IFSs, PFSs, FFSs, CFSs, CIFSs, and CPFSs 

by taking into account a lot more details about an object when processing it and managing two-dimensional data as a 

single set. For instance, CFSs (only complex-valued membership degrees), IFSs, PFSs, FFSs (consisting of both real-

valued membership and real-valued non-membership degrees), FSs (consisting of just membership degrees), and CIFSs 

and CPFSs (contain complex-valued membership and complex-valued non-membership degrees with conditions such as 

their sum and square sum less than or equal to one respectively). Additionally, information contained in the complex 

Polytopic fuzzy set (membership, neutral and non-membership degrees with condition that sum of their q-th power less 

than or equal to one). As a result, the suggested model is more flexible than their prior studies. 

8. Sensitivity Analysis 

The proposed technique is not only applicable to complex Polytopic fuzzy data, as it may be used to Polytopic fuzzy data 

by setting the phase terms to zero. Moreover, it can also be applied to complex q-Rung orthopair fuzzy information 

without taking of neutral and similarly, it can be applied to q-Rung orthopair fuzzy information by setting their neutral 

and phase terms zero. The suggested operators are therefore more adaptable and elastic to get around the constraints and 

limits of their present aggregate operators. 

 

 
Table 12: Sensitivity analysis 

Model Uncertainty Falsity Hesitation Periodicity 2-D information q in Power 
FSs ✓ ✕ ✕ ✕ ✕ ✕ 

IFSs ✓ ✓ ✓ ✕ ✕ ✕ 

PFSs ✓ ✓ ✓ ✕ ✕ ✕ 

FFSs ✓ ✓ ✓ ✕ ✕ ✕ 

CFSs ✓ ✕ ✕ ✓ ✓ ✕ 

CIFSs ✓ ✓ ✓ ✓ ✓ ✕ 

CPFSs ✓ ✓ ✓ ✓ ✓ ✓ 

 

9. Limitations: 

7. Comparative Analysis 
Complex Polytopic fuzzy set is a refinement of earlier work, including: FSs, IFSs, PFSs, FFSs, CFSs, CIFSs, and CPFSs by 
taking into account a lot more details about an object when processing it and managing two-dimensional data as a single set. For 
instance, CFSs (only complex-valued membership degrees), IFSs, PFSs, FFSs (consisting of both real-valued membership and 
real-valued non-membership degrees), FSs (consisting of just membership degrees), and CIFSs and CPFSs (contain complex-
valued membership and complex-valued non-membership degrees with conditions such as their sum and square sum less than or 
equal to one respectively). Additionally, information contained in the complex Polytopic fuzzy set (membership, neutral and non-
membership degrees with condition that sum of their q-th power less than or equal to one). As a result, the suggested model is more 
flexible than their prior studies.

8. Sensitivity Analysis
The proposed technique is not only applicable to complex Polytopic fuzzy data, as it may be used to Polytopic fuzzy data by setting 
the phase terms to zero. Moreover, it can also be applied to complex q-Rung orthopair fuzzy information without taking of neutral 
and similarly, it can be applied to q-Rung orthopair fuzzy information by setting their neutral and phase terms zero. The suggested 
operators are therefore more adaptable and elastic to get around the constraints and limits of their present aggregate operators.
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      2 0.67 2 0.49 2 0.79
1 0.84 ,0.68 ,0.84 ,i i ie e e          2 0.63 2 0.51 2 0.67

2 0.80 ,0.69 ,0.76 ,i i ie e e   

      2 0.65 2 0.49 2 0.58
3 0.73 ,0.68 ,0.80i i ie e e    ,       2 0.57 2 0.66 2 0.79

4 0.68 ,0.70 ,0.90 .i i ie e e     

Step 4: Using Definition 6, and get the score functions as below. 

 1 0.63S   ,  2 0.80S   ,  3 0.73S   ,  4 0.49S   . 

Step 5: Thus the best option is 2 . 

Table11: Score functions of different operators 
Operators Score functions Ranking 

CPFWG        2 3 1 4S S S S   
 2 3 1 4     

CPFOWG        2 3 1 4S S S S   
 2 3 1 4     

CPFHG        2 3 1 4S S S S   
 2 3 1 4     

I-CPFOWG        2 3 1 4S S S S   
 2 3 1 4     

I-CPFHG        2 3 1 4S S S S   
 2 3 1 4     

 

7. Comparative Analysis  

Complex Polytopic fuzzy set is a refinement of earlier work, including: FSs, IFSs, PFSs, FFSs, CFSs, CIFSs, and CPFSs 

by taking into account a lot more details about an object when processing it and managing two-dimensional data as a 

single set. For instance, CFSs (only complex-valued membership degrees), IFSs, PFSs, FFSs (consisting of both real-

valued membership and real-valued non-membership degrees), FSs (consisting of just membership degrees), and CIFSs 

and CPFSs (contain complex-valued membership and complex-valued non-membership degrees with conditions such as 

their sum and square sum less than or equal to one respectively). Additionally, information contained in the complex 

Polytopic fuzzy set (membership, neutral and non-membership degrees with condition that sum of their q-th power less 

than or equal to one). As a result, the suggested model is more flexible than their prior studies. 

8. Sensitivity Analysis 

The proposed technique is not only applicable to complex Polytopic fuzzy data, as it may be used to Polytopic fuzzy data 

by setting the phase terms to zero. Moreover, it can also be applied to complex q-Rung orthopair fuzzy information 

without taking of neutral and similarly, it can be applied to q-Rung orthopair fuzzy information by setting their neutral 

and phase terms zero. The suggested operators are therefore more adaptable and elastic to get around the constraints and 

limits of their present aggregate operators. 

 

 
Table 12: Sensitivity analysis 

Model Uncertainty Falsity Hesitation Periodicity 2-D information q in Power 
FSs ✓ ✕ ✕ ✕ ✕ ✕ 

IFSs ✓ ✓ ✓ ✕ ✕ ✕ 

PFSs ✓ ✓ ✓ ✕ ✕ ✕ 

FFSs ✓ ✓ ✓ ✕ ✕ ✕ 

CFSs ✓ ✕ ✕ ✓ ✓ ✕ 

CIFSs ✓ ✓ ✓ ✓ ✓ ✕ 

CPFSs ✓ ✓ ✓ ✓ ✓ ✓ 

 

9. Limitations: 
9. Limitations
Compared with previous studies, complex Polytopic fuzzy sets are more powerful tool for decision-making problems, such as, FSs, 
IFSs, PFSs, FFSs, CFSs, CIFSs, and CPFSs, which consider more information about objects in the process, and in Work with two-
dimensional data in a collection.

Compared with previous studies, complex Polytopic fuzzy sets are more powerful tool for decision-making problems, 

such as, FSs, IFSs, PFSs, FFSs, CFSs, CIFSs, and CPFSs, which consider more information about objects in the process, 

and in Work with two-dimensional data in a collection. 

However, there are some drawbacks to the suggested model, including: let  , , ,ia ib ine e e   be complex Polytopic 

fuzzy number, where 1i   , , , [0,1]  , , , [0,2 ]a b n   with conditions 0  + 1q q q   and

 0   + + 1
2 2 2

q q qa b n
  

           
     

. Therefore, in this study, we only take into account complex Polytopic fuzzy 

numbers that meet the aforementioned requirements.   

10. Conclusion 

This paper is concerned to the study of complex Polytopic fuzzy set, complex Polytopic fuzzy numbers and some of their 

essential operational laws. We have developed the score function and accuracy degree for the novel model. Using the 

CPFNs and developed various new techniques, namely, CPFWG operator, CPFOWG operator, I-CPFOWG operator, 

CPFHG operator, and I-CPFHG operator with their structure characteristics such as idempotency, monotonicity and 

boundedness. This novel model is explained with an illustrative example related to the selection of the more suitable 

alternative among the existing alternatives. Finally, a comparison and sensitivity analysis of the innovative model is 

given, demonstrating the potency of the strategy being offered. 

Furthermore, this study can be expanded to complex Logarithmic operators, complex linguistic terms, complex inducing 

variables, complex Hamacher operators, complex confidence level, complex interval-valued approach, complex 

symmetric operators, complex Dombi approach, complex power operators, complex Hamacher interval approach, 

complex Dombi interval approach, complex Einstein interval, complex Einstein approach, etc. 
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10. Conclusion
This paper is concerned to the study of complex Polytopic fuzzy set, complex Polytopic fuzzy numbers and some of their essential 
operational laws. We have developed the score function and accuracy degree for the novel model. Using the CPFNs and developed 
various new techniques, namely, CPFWG operator, CPFOWG operator, I-CPFOWG operator, CPFHG operator, and I-CPFHG 
operator with their structure characteristics such as idempotency, monotonicity and boundedness. This novel model is explained 
with an illustrative example related to the selection of the more suitable alternative among the existing alternatives. Finally, a 
comparison and sensitivity analysis of the innovative model is given, demonstrating the potency of the strategy being offered.

Furthermore, this study can be expanded to complex Logarithmic operators, complex linguistic terms, complex inducing variables, 
complex Hamacher operators, complex confidence level, complex interval-valued approach, complex symmetric operators, complex 
Dombi approach, complex power operators, complex Hamacher interval approach, complex Dombi interval approach, complex 
Einstein interval, complex Einstein approach, etc.
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