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Abstract

This paper is concerned to the study of complex Polytopic fuzzy sets (CPFSs), some of their basic operational laws and their
corresponding aggregation operators, which extends the notion of q-Rung orthopair fuzzy sets (q-ROFSs) and Polytopic fuzzy
sets (PFSs). We introduce some basic operations, such as union, intersection and complement under complex Polytopic fuzzy
numbers (CPFNs). Moreover, we establish some new operators such as, complex Polytopic fuzzy ordered weighted geometric
(CPFOWG) operator, complex Polytopic fuzzy weighted geometric (CPFWG) operator, complex Polytopic fuzzy hybrid geometric
(CPFHG) operator, induced complex Polytopic fuzzy ordered weighted geometric (I-CPFOWG) operator and induced complex
Polytopic fuzzy hybrid geometric (I-CPFHG) operator coupled with the boundedness, idempotency and monotonicity of their
structure properties. The efficiency and effectiveness this method is shown with an illustrative example.

Keywords: CPFOWG Operator, CPFWG Operator, CPFHG Operator, -CPFOWG Operator, I-CPFHG Operator, MAGDM
Problem.

1. Introduction
Emergency decision-making is a crucial and valuable tool for communities and nations. It increases the dependability and

efficacy of emergency response, reducing the number of casualties, ecological damage, and financial losses. Making
decisions is one of the best ways to sort through all of your options and choose the best one. In the past, it has been
widely believed that all the data pertaining to the alternative's criteria and accompanying weights are given as clear
numbers. However, most judgments in real-life circumstances are made in a setting where the objectives and restrictions
are generally not well-defined or ambiguous. In order to handle these situations in real life problems different theories
were developed with passage of time such as, fuzzy set (FS) theory [1], rough sets (RS) theory [2] and soft sets (SS)

theory [3]. All of the aforementioned theories have unique, noteworthy applications.

It is important to keep in mind that Zadeh [1], the author of fuzzy set theory, was the one who began this journey by
introducing the idea of fuzzy set (FS), with one element known as the membership function and only describes
satisfaction’s degree of an object without mentioning the object's dissatisfaction. Later on, the theory fails to handle data
that acquire unsatisfactory and satisfactory information of interest. In order to address this deficiency, Atanassov [4]
developed the concept of IFS by presenting each set element as an ordered pair, (a, p), where p and « stand for the
degree of non-membership and membership, respectively. Later on, this field used in various situations where the IFS

was not appropriate since the data was interval-based. In order to get over the aforementioned challenges, mathematician

requires some more potent techniques. Following that, Atanassov and Gargov [5] expanded on the notion of an
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intuitionistic fuzzy set and introduced the concept of an interval-valued intuitionistic fuzzy set, in which the grades of
membership and non-membership are intervals instead of real values with constraints that bounded by 0 and 1.
According to the criteria of addressing the problem, each technique requires some operators that serve as a backbone, as
demonstrated in the aforementioned literature. As a result, aggregation operators are crucial instruments for gathering the
provided data on various alternatives in various sectors. Many scholars have examined at the utility of operators related
to intuitionistic fuzzy environments and interval valued IFS in [6-10], and they have developed a variety of operators

with these different domains and applied them on decision-making problems. Wei [11] presented the concept of
Hamacher and image fuzzy aggregation operators and constructed a multi-attribute group decision-making issue based on

the recommended operators while taking into account the importance of these operators. Wang et al. [12] proposed the
use of image fuzzy numbers to create new operators called Muirhead mean operators. Based on intuitionistic fuzzy
numbers, Rahman [13] established the idea of various geometric logarithmic and averaging aggregation operators.
Shapley fuzzy measure was applied by Tian et al. [14] who developed the concepts of power operator and weighted
geometric operator. Many aggregation operators have been developed using intuitionistic fuzzy environments by Ding et

al. [15], Yang et al. [16], He et al. [17], Zhang et al. [18], Li et al. [19], Meng et al. [20].

Yager [21] developed a model idea of g-rung orthopair fuzzy set (QROFS) in response to the increasing of scientific
knowledge modelling in relation to decision-making problems of theories, which needed additional refinement to handle
the maximum powers of IFS. In q-ROFS, g-th power of non-membership with the sum of q-th power of membership is
equal to or less than one which covers the excluded information of IFS. Furthermore, it is shown that IFS and PFS are
particular instances of q-ROFS. It demonstrates that qROFS is an extension of the approaches outlined before, covering a
wide range of information and handling uncertain environments more effectively. Furthermore, Yager examined certain
fundamental q-ROFS characteristics in [22] and employed them in additional research pertaining to this class. Liu et al.
[23] then investigated the g-rung technique for operators such orthopair fuzzy weighted averaging (q-ROFWA) and
orthopair fuzzy weighted geometric (-ROFWG), and based on these, they resolved further decision-making issues. The
concept of g-ROFS information measures, such as entropy, similarity measure, inclusion measure, and distance measure,

was recently developed by Peng et al. [24].

The aforementioned approaches fail miserably of producing the desired outcome since there are so many real-world
issues where the computation of the neutral membership degree is crucial. Cuong et al. [25] presented the idea of an
image fuzzy set to deal with this kind of problem. Three terms membership degree, neutral membership degree, and
nonmembership degree were utilised in their work, and their combined sum did not surpass 1. Ashraf [26] extended this
idea to the spherical fuzzy set in order to address the drawbacks of the picture fuzzy set. Based on this concept, Kutlu and
Kahraman [27, 28] expanded the aforementioned methods by creating TOPSIS and VIKOR. Additionally, the authors
expanded the idea of spherical fuzzy sets to spherical soft fuzzy sets in [29], and on the basis of these cutting-edge
techniques, they presented several new aggregation operations. In consideration of the above mentioned methods, there
were some problems which cannot be handled by these methods such as, in situation like when the sum of squares of the
membership degree, neutral membership and nonmembership degree (0.7, 0.5, 0.9) exceeds 1. To address such
complicated issues, Ismat et al. [30] developed the concept of polytopic fuzzy sets as an extension of g-rung orthopair

fuzzy sets and spherical fuzzy sets. It is significant to highlight that Polytopic fuzzy set theory may be used to solve
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According to the research described above, these approaches have flaws and are unable to represent the partial ignorance
of the data and its fluctuations during a particular time period. As a result, only non-periodic information may be handled
by any of the FS theory extensions indicated above. But in complicated data sets, ambiguity and vagueness also coexist
with changes to the data's periodicity. For instance, large volumes of data from image analysis, facial recognition, audio,
medical research, and government biometric databases are included in complex data sets. These databases also have a lot
of contradictory and incomplete information in them. In order to circumvent these circumstances, Ramot et al. [31]
proposed the concept of complex fuzzy set (CFS) theory, in which the degree of alternatives is expressed as a complex

fuzzy number (CFN) rather than a real integer from the unit circle. Later on Alkouri and Salleh [32] generalized this idea

by introducing the idea of CFS into complex intuitionistic fuzzy sets (CIFS), based on the membership grade he' and

non-membership grade %e” with some conditional restrictions 0<#%+% <1 , 0< 21 + e <1, where f,Ae [O, 1] and
T 2z

a,be [O, 27[]. Complex fuzzy numbers (CFNs) were applied by Ma et al. [33] to develop the CFS-based technique, a

unique approach for solving multiperiodic factors. Several operational laws for CFS for decision-making issues were
provided by Dick et al. [34]. The results of [34] were altered by Liu and Zhang [35] and presented in a brand-new,
sophisticated manner. Different types of aggregation operators in complex intuitionistic fuzzy environments were studied
by Garg and Rani [36], Kumar and Bajaj [37], and Rani and Garg [38]. Greenfield et al. [39] also introduced the idea of
complex interval-valued fuzzy set theory. Although the CIFS concept has been used in several contexts, due to its
structural limitations, the principle only has a restricted range of applications. The CIFS concept will fail in instances
where the total of the real part and imaginary part of the duplet exceeds the unit interval, for example, and neither the
membership grade nor the non-membership grade with the restricted requirement will be given any information in such

cases.

1. To introduce the notion of complex Polytopic fuzzy set theory. CPFS is an extension of Polytopic fuzzy set. Thus CPFS is more
effective, broad, and efficient than existing theories like CIFS and CPyFS in dealing with uncertain information throughout the
decision-making process. Moreover, there is no research work up to date on the CPFS.

ii. To provide some fundamental operational principles for complex Polytopic fuzzy numbers.

iii. To introduce the aggregation operators, such as the CPFWG operator, CPFOWG operator, CPFHG operator, [-CPFOWG operator
and [-CPFHG operator.

iv. To establish a decision-making technique on the basis of this novel model.

v. To demonstrate the validity and usefulness of the new method through an example.

The remaining paper is organized as: Section 2 presents some fundamental definitions. PFSs are discussed in Section 3 along with
some of their basic operation laws. In Section 4 different aggregation operators under CPF environment are studied. Moreover,
Section 5 includes emergency decision-making model under the novel approach. Section 6 contains illustrative example under
different techniques. Section 7 and Section 8 presents the comparative analysis sensitivity analysis, respectively. Next, Section 9 and
10 contains the limitations and conclusion of the novel model.

2. Preliminaries
Some fundamental ideas and terminology that are necessary later on are presented in this section.

Definition 1: [42] Let C be a non-empty complex fuzzy set (CFS) defined on a finite set X by
C ={ Xhc( )()eiac ). reX } with %z.(y): X —[0,1] is called the complex membership degree (MED) of y with

i= \/—_1 in the complex plane.

Definition 2: [43] Let X be a fixed set; a complex intuitionistic fuzzy set [ in a finite X is given by
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1:{<Z,hI(Z)@ial(l),xl(l)eib’(l)>:;(eX} with 0< 7,(2),4,(x) <1, i=<-1 anda; (x),b; (x)e[0,27] such that

b
0<h,(+i,(»<,VyeX, 0< + I(Z)Sl and 7%,(y),%,(y) represents MED and non-membership

degree (NOMED) respectively.
Definition 3: [44] Let X be a fixed set, then the Complex Pythagorean fuzzy set is defined as

P={{xhp(0e "D R p(0)e" D) 1 e x| with 0<(hp() +(Rp(0)) SLVzEX,
(D)) (b))
0< y— + ey <1 and #,(y),%,(y) represents MED and NOMED respectively.
T T

In addition, its hesitancy or indeterminacy can be find out by wusing the following formula:

1{(hp () +H(kp (1))
Z)e\/ (( P +re )), then the term GP(Z) is called the grade of

Gp(x)= \/1‘((7713()())2 +(2p(0)

indeterminacy or hesitancy of the element y € X .

Definition 4: [45] Let X be a fixed set, then the complex g-Rung orthopair fuzzy set (q-CROFS) is defined as

0= {<z,hq(Z)eia"(l)ﬁq(z)eib"(l)> ‘xe X} with0<(1, (1)) +(rg(0)' SLVZ € X.q21,

q q
a b
0< (%J J{%LZ)J <1 and % _(x),X,(x) represents MED and NOMED respectively.

In addition, its hesitancy or indeterminacy can be find out by using the following formula:

G(2)= [1-((hq<z))q (1, (0)" D; e[l—((hM)q (g 0)'|Jf

indeterminacy or hesitancy of the element y € X .

, then the term G, (y) is called the grade of

3. Complex Polytopic Fuzzy Sets

This section introduces the concept of Complex Polytopic fuzzy sets (CPFS), Complex Polytopic fuzzy numbers, and some of its
fundamental operational laws, score function and accuracy function are investigated. Furthermore, various aggregation operators
and their features are described, which will be useful in tackling MADM problems. The notion of Polytopic fuzzy set (PFS) extends
the concepts of q-rung orthopair fuzzy set and spherical fuzzy set.

Definition 5: Let X be a fixed set, then the mathematical form CPFS p is written as
p={<z,hpme’”p(”,x,,(z)e"bp("),épme""ﬂ(”>:zeX} with h () X [0, 1],

Kp(;():X—>[O, l],fp(;():X—>[O, 1], a, (}()E[O,Zﬂ],bp (;()6[0,27[],71/3 (}()E[O,27Z], and

. . . q q q
Og(hp(l)emp(x))q+(xp(l)elbp(z))q+(§p(l)emp(x))q <L VyeX. qzl, 0< ["p(l)J {bp(l)J _{np(l)j
2z 2z 2z

<l and 7 ,(x),k ,(x),&,(x) represents membership degree (MED), neutral membership degree (NMED) and non-

‘membership degree (NOMED) respectively.
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Remark 1: Some special cases of Definitions 1-4 are stated as follows:

i) Complex fuzzy set: If we consider the phase term such as: a-(y) =0, then it can be reduces to fuzzy set.
i) Complex intuitionistic fuzzy: If we consider the phase terms such as:a; () =0,b;(x)=0, then it can be

reduces to intuitionistic fuzzy set.

iii) Complex Pythagorean fuzzy: If we consider the phase terms such as: ap( 7)=0, bp (x)=0, then it can be

reduces to Pythagorean fuzzy set.

iv) Complex g-Rung orthopair fuzzy set: If we consider the phase terms such as: a, (=0, bq (x)=0, then it

can be reduces to g-Rung orthopair fuzzy set.

V) Complex Polytopic fuzzy set: If we consider the phase terms such as: a,(x) =0, bp( 7)=0 and np( 7)=0,
then it can be reduces to Polytopic fuzzy set.

Definition 6: Let a family of CPF numbers be such that v, =(h jemj A jeibf & jemf )( j=12), and y >0, be a real

number, then

) v Ov, =

o ety I 20 e
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Definition 7: Let v =(hem,7ieib,§em),be a CPF number, then its score function S(v) and accuracy function A(v) is

defined in the following mathematical form:
1 .
S() = 5[(1 WY )+(1 +al +b7 —nd )} with S(v)e[-2,2], and
A(v) = %[(1+ max(hq,xq)— &d ) + (1+ max(aq,bq )—nq )} with A(v) €[0,2].
o . _ ia,(x) iby (%) ing (1) .
Definition 8: Let P=X.hy(1)e Ap(X)e Sp(X)e yeX and

p= {< X-hy( )()eia¢ ( ),K¢( ;()e%(l ), So( ;()ein"’(l )> yeX } , be the two CPFNs then, some of its basic operations are

stated as follows:
. _ ia¢u¢ () % ibgpu¢ ¢2) in(puq} ¢2) .
1) Union: pU¢ =4 7,7 ,09(X)e Apup(x)e sSpug(X)e xeX

R g (1) = max (B, (0),h g (0} g () = max { K (1), Xy (1)}
Epop(0) =min{E,(2),84(0)

where
(i) = max {ay (10,050} bpup(0) =max {by (1), by (1)}
Rpop () =min{n, (1), ns(2)}
2) Intersection: 9 N = {< X png( ;()eia‘/’mj 2 A g ( ;()eib‘/mj ) »Song( ;()ein‘”“¢ @) > cyeX }

R g () =min{h (), h 5O} Rpng () = min {1, (1), K ()}
Epmg () =max (&, (2,44 (1)}

where

| Gorp (D= min{a, (1), a3()}»bprg(x) =min {by (1), by(1)}
an

Mg () =max {n, (1), 14 (20)}
3) Complement: ¢° = {<;(, f(z)ein(’(),K(;()eib(l),h(;()eia(;()> iy e X}

Definition 9: Let v} = (hleial ,Xleibl , §leinl )and Uy = (h 2eiaz , Xzeib2 , §2ei”2 ) are any two CPFNss, then
i) If iy <h,, a<ay, Ry <Ky, by <by,& >&,m > ny, then vy >0y
i) If iy >hy, ay>ay, Ry >Ry, by >by,& <&,n <ny, then v >0y
i) If hy =hy, ay =ay, Ry =hy, by =by,& =&,m =ny, then v =0,
Theorem 1: Let a family of CPF numbers be such that v; = (h jeiaj ,K{ieibf & ]-einf )( j =1,2,3), then the following laws

hold:

1) Commutative laws:

i) VBV =0, By
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i) U Ovy =y By
2) Associative laws:
) (4®0)Ou =0 ®(v, u3)

i) (0 ®0)®us =0 ® (v, ®u;)

3) Distributive laws:
) uB(ou)=u B Gy By

ii) (N @0y By =0 BV; BV, By
Proof: Sincev, =( 1€ K™ g ‘) and v, = (hze D Rpel2 £ )are two CPFNs, then, by using Definition 6, v

have

(h‘l +hd —nin

q
1
o) (2

[\OLN

v Qv =

1
_ (hq+hq hqhq)q

(7L27L1 ) .eih[zfj(;;j , (5251 ) 'eizﬂ( ;3[ J(%j

=0, DY,

Moreover, the remaining parts of this Theorem can be proved easily by using definition 6.
Theorem 2: Let a family of CPF numbers be such that v; = (h jeiaj R jeibj & jeinj )( j=1,2,3), with »,71,7, >0, then

the following laws hold:
D r(v®v)=r(v)®r(v)

2) (0®0,) =(n) ®(v,)
3) n(n)@r(n)=(1n®r)u

4) (01)71 ®(Ul)7z :(01)71@72

5) (v) =(mr)

o Ao

Proof: Letv; = (h jeiaj v jeib-f & jein/ )( j=1,2,...,n) be a family of CPFNSs, then, by using Definition 6, we have
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(1— 1211(1—;73. )J; .eizn{lﬁl[l[;]qﬂ i

Q| —

y(u®uvy)=y|\ = j=1
o (2]
m(&)e VN7
i(s)
1
11271'1—1211—61—] 2 lgle]y
2 7 \q J=1 27 2 y i j=1\ 27
1—n(1—hq) e T (R) e :
= ]=1 ]:1
RV

) iZE[lg[[;]J J

e N
(&) e
fi(s)

=y(v)®7(v2)

Next, we prove 5), whereas, the remaining parts can be proved easily with the help of Definition 6.

(Ulc)y = (&) -eizﬂ[gjy’(xl)y -eiZH(;jy,[l—(l—h‘{ )7J; ,eiZ”[l[l[;jrj J J
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Theorem 3: Let L= (hj

.ei“J , xjeib.i ,gjeinf )( j=1,2) be a family of CPFNs, and y >0, be a real number then the

resulting values ofv; ® vy, v; ® v, ,0” and 7 (v)are also CPFNG.

Proof: The required result can be proved easily with a straight forward calculation by using Definition 6. Hence, the

proof is omitted here.

Theorem 4: Let v; = (hjeiaf ,Kjeibf ,§jeinf )be a family of CPFNs, then v ® v, c v} ®v,.

Proof: Let v; = (h jeiaj ,Kjeibj ,é‘jemj )(j =1,2) are two CPFNs, then by Definition 6, we have:

v ®vy =

Again, by using Definition 6, we have

v ®v, =

eap A

By using a well-known classical result that arithmetic mean is greater than or equal to geometric mean such that:

1 1
2 g 2 2 g 2
MZ hihy hence, we have |I1- I (l—hz) 5 h; . Similarly, |1-1] (1—7&3) > 1 A;, and
2 j=1 j=1 j=1 j=1
1 1 1
- q q
2 2 2 a; Y4 2(a; 2 b: Y14 2 (b;
1—n(1—§7)qzn§j T { RS, I I B P -1 22| | 22|  and
j=1 j=1 j=1 2 j=1\ 27 j=1 27 j=1\ 27

1

2 nj 9 q 2 nj

2| 1-T1 1-| = > [1| = |. So, we conclude that:v; ®v, cv; Pv;,.
Jj=1 2 j=1\ 27

Theorem 5: Letvo = (heia , Mib, §ein) be a CPFN, and a real number y > 0, then the following conditions hold.

i) v’ cy(v) ifand only if y 21

i) y(v)c(v) ifand only if 0<y <1
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Proof: By using Definition 6, we have

=

1 1
- 1 — 1
7 g - 7 \q -
that 277 1-[1-(%)? 22%(%Jy,(1—(1—ﬁ4)7jq >3 1_[1_[%)(1} z(%)y, (1_(1_54)7]61 >

1

AL S

2| 1-| 1- [—j 22r (2—j . Thus, we havev” 7(1)) . Moreover, on similar way, the second part can be
V4

proved.
Theorem 6: Letv; =(h jemj A jeibj ,E jeinf ) be a family of CPFNs, and a real number y >0, then the following
conditions hold.

L UL =0yUY

. v NV =vyNY

iii. (o) =y(vr)Nr(v2)

iv.  y(own)=y(o)vr(v)

v. (nuu) =) u(v)

vii  (ono)) =(v) (v
Proof: i. Since v =(hleia1,7lleib1 L Ge™ )and vy =(hzeia2,K2eib2,§zem2) are two CPFNs, then by Definition 8, we

have:
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0 UL, = qmax{hl,hz} ei[max{a1,a2}lmax {11,12} ei[max{bl’bZ}],min{cfl,.fz} ei[min{nl,nz}]:D

= ([max {ho. iy } ei[max{az,dl}],max {7@2, xl} ei[max{bz by }],min {52’ & } ei[min{nz,nl}] }j
“LL VY

Next, we prove result iv. The remaining parts can be prove directly by using Definition 8.

iv. Let y >0, we have:

7/(,)1 UUZ) - y[[max{hl,hz}ei[max{al’a2}],max{Xl,xz}ei[max{bl’b2}],min{§l,§2} ei[min{nl’"z}]D

=y(v)wr(v2)
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Theorem 7: Letv; =(h jeiaj A jeibf ,E jeinj) be a family of CPFNs, and a real number y >0, then the following

conditions hold.
i (o) =) ()
i (vnv) =) N (v)
iii. (0 ®02)° =(v1)" ()

iv.  (0®y) =(v) &)

Proof: We prove part ii, and iv, the remaining parts can be proved by using the same process. i. Since

v = (hleial , Kleibl ,§1ei"1 ), Uy = (hzeiaz ,7L2eib2 , .f;‘zei”Z )are two CPFNs, then Definition 8, we have

(Ul Aoy )c _ ([max{hl,hz} ei[max{al,az}lmax {11, xz} ei[max{bl’bz}],min{é‘l,fz}ei[min{nl’nz H :D

=[x eial,K eibl,gﬁeinl Ul A eiaz,K eibz,cf ém )= “u(v)
1 1 1 2 2 2 Y 2

Next, let

v = (hleial K™, g ) , Uy = (hzeiaz Kopel2 &6 )are two CPFNs, then Definition 6, we have

(0 ®vy ) | (1] +1%—n

=(n) ®(vy)

Q|-

J Math Techniques Comput Math, 2024
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Theorem 8: Letv; = (h jeia-f A jeib-’ & jein-’ ) be a family of CPFNs, and a real number, then the following conditions
hold:

D (0 v0)® (v nvy) =0 @0,

2) (nw0)®(vNvy) =0 ®v)

3) (nvwv)nu =y

4) (nnv)uo =y

5) (nvm)noy=v,

6) (v Nvy)Uvy =0y
Proof: In the proof, we just prove part 5, the remaining part can be prove easily just by using Definition 8, let

v = (hleial i Ee™ ), vy = (h 262 7062 e )are two CPFNs, then we have:

max {hl,hz}ei[max{al,az}]’max (R, s) ei[max{blabz}],

ULy )N .
(Ul 2) 2 mln{g]jéz} ei[l’nll’l{l’ll,l’IQ}:I ﬁ(ﬁzeiaz ,xzeibz ’feinz )

min {max {hl, By } s } el[min{max{al,az},az }J

B

]

=| min {max {R1.%2}. %) } ei[min{max{bl ’bz}’bzﬂ

max{min{51,6:2}’52}el[max{min{nl,nz}’nzﬂ
= (hzeiaz , Kzein , fzeinZ ) .

Theorem 9: Letv; = (h jeia-’ A jeib-’ & jein-’ ) be a family of CPFNs, and a real number, then the following conditions

hold:
D (uuvy)noy=(0 Ny )u(vyns)
2) (unvy)wvs=(vws) (v 0s)
3) (1 v0)®u =(1 Buy) (v, Bu3)
4 (01N0)®uy=( ®v3) (0, D3)
5) (0 wn)®us =(v ®vs) (v ®uvy)
6) (v Mv)®u3 =(1 ®vs) (v ®v3)

Proof: The proof can easily by using Definition 5 and 8 with a straight forward calculation.

Theorem 10: Letv; =|7 jemj R jeibj ,E jeinj ) be a family of CPFNs, and a real number, then the following hold true:

1) ypuovyVuy=uVo3UDy

2) yyNLy NV =V ND3NDy

J Math Techniques Comput Math, 2024 Volume 3 | Issue 4 | 13



3) VOV BV =1 BV; OV,

4) VOV, BV =0 BV; BV,

Proof: Let three CPFNs be v, v, and v;, then according to Definition 8, we get

UIUUZ Vs

max {hlahZa } [max{al,az 613}] max{?;l,xz,?;3} [max{bl ,by by }]’
m1n{§ &, 53} mln{nl,nz,n3}]
max{h s,k } z[max al,a3,a2}] maX{K1,7[.3,7L2} l[max b b3,b2}]’

mm {51,53 52} mln{nl,n3,n2}:|

LLVYU3 VD)

Next, we prove part 3, the remaining parts can be prove easily by using Definition 5 and 8.

3) By using Definition 5,

we have

v Do, Doy
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4. Complex Polytopic fuzzy geometric operators

This section introduces the concept of several complex aggregation operators, including the -CPFOWG operator, I-CPFHG operator,
CPFWG operator, CPFOWG operator, and CPFHG operator, as well as its structural qualities, namely idempotency, boundedness,
and monotonicity.

Definition 10: Let uj:(h jeiaj,K jeibj,é’jemj )(IS j<n), a family of CPF numbers with weighted vector

n
w:(wl,wz,...,wn)T, such that (1£w j Sn) and ¥ @; =1 .Then the complex Polytopic fuzzy weighted geometric
j=1

aggregation operator is mathematically given by:

CPFWG,, (Ul,l)z,...,l)n)

n(a: \%J n (b \%J
" - 27 11 2—’ . - 27 11 2—1
(k)7 e N0 (k)Y e T
Jj=

Theorem 11: Letv; =(h jeia-/ A jeibf ,§jeinf )(IS j<n), be a group of CPFVs, then their resulting value under

CPFWG operator remains a CPFV, such that
CPFWG,, (ul,uz,..., un)

n(a; % w (b \%
p - 27 11 2—/ " - 27 11 2—/
J J=I\ 47 J j=1\ 27
11 (hj) e I1 (7&.]-) e

Jj=1 Jj=1

) A
1 27| 1-11 1—[5}

@ \g J=1 z
@—ﬁ@—ﬁ)’ye

Jj=1

Proof: The required result can be proved by mathematical induction principle, the major steps are as follows:

Step 01: As v = (hjeiaj ’xjeibf ,gjeinf )(1 <j< n), then for n =2, we have

(o) = (1) Ol ()™ o) ’(1—(1-& ) ﬁ [U ]
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()"

Next, by using Definition 10, we have

CPFWG,, (vy,07) =

|

2
1-11
j=1

1
(1_57_ )w_, Jq .

Step 02: In step 01, it is proved forn =2 . Next, suppose that Eq. (2) holds forn =k, k > 0, then it follows that

CPFWG,, (Ul,Uz,...,Uk) =

Step 03: Next, forn =k +1
CPFWG,, (v1,02,...,U11)

t

k
2z 11

(hj)mj e 7

a

J
2z

ok (a\ ok
' lZﬂ'H 2' k . 1271'H
j=1
1
(2
' k nj g\ J |4
1 2z11-11 1—5
k w q j=1
H(l—gjq-)j N
j=1
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1
k+1 @ \g
1—ﬁ@—#)’qe
j=1

Hence, it holds forn =k +1. As a result, Eq. (2) holds for all positive integers according to the principle of mathematical

induction. So, the proof is completed.

Property 1 (Idempotency): Let uj:(h jeia/,K jeibj,fjemj )(1S j<n), be a family of CPFNs, and let

v = (h*em ,K*eib ,§*em j be another CPFN satisfyingv; = 0", then

n(a; “J n(b; @j
- 27 11 2—1 " - 2z 11 2—1
()7 PR (k)

1 j=1

N=F

CPFWG,, (UI,UZ,...,Un ) =

1
@—ﬁ@—ﬁfﬂ?e

j=1

Property II (Boundedness): Let uvz(}‘z jeia/,i jeibj,fjeinj)(lﬁjﬁn), be a family of CPFNs, and let

J
Vmax = (hmaxelamax ,xmaxelbmax ,é:maxemmax ), with hmax = l’IlE.lX {h]} s Amax = max {g]} ’ Kmax = qu {7{,]} ,
J J J
b. — b - — = (h [amin ro ibmin . omin ith
max = MAX1\0; Emax = max gj » Mmax =MAX ;0 5 Umin = | Amin€ >Amin€ >Smin€ ;o W1
J J J

7 min =rrljin{hj}, Amin :m}n{aj}, A min :m}n{Kj} » Dmin :m}n{bj} Emin =111Jin{§j} » Mimin =rrljin{nj} then , we

Vmin SCPFWG,, (U1, 05,...,0, ) < Uax (3)

min =

Proof: Let v; =(hjeiaj ,Kjeibj ,§jeinf )(1 < j <n), then for v;, we have
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Q=
Q|-

Q[[m}n{h““}]q};{lﬁl(lhi)"”J

1

s[(m;x{hmax}ﬂ

_1(1 )" ]q < max (A oy )

Jj= J

min {hmin} [1 -
J

Moreover, we have min { a ]} a; < max{ j} . Similarly, for neutral membership, we have
J J

@mm{%}<7L <max (%} < f [min{xj}]wj <1 (k)" < I (max{ij}jwj

J J=I\J Jj=1 =1\ J
(mln J

Thus, on the same way min b } <b; < max{bj}

H M=

an
D <(max{xj}jf=lw’ esminfi} < fi (1, )7 <max{a,}
J

|| :J=

em

<:>Irljjn{§j}£§jﬁm?x{§j}<:> 1[m}n{§f}J ' ﬁ (é:j)wj < {ﬁ (m?"{‘ff}j j

j=1 =

J

n
ij

S a;

o minfer} |7 < i (6)7 < maxles ) [ o minley) < i ()7 <]

J J J J= J

Also, we have that min {n J} <n; <max {n /} . The above expression, yields that
J J

Umin < CPFWG (01,02,1)3,...,1)”) < Upax - Hence, the proof'is completed.

Property III (Monotonicity): Let the two CPFNs families be such that v; =(h jeiaf A jeib«f & jein«/ )(1 <j<n)and

[;*e’a/ x* ibj g;‘em j(1<]<n)be satisfying the conditions, 4 ; <h J-Sa; s R S?L’;-, b; Sb;f fjﬁé‘j ,

n:<n ;- then the following hold:
CPFWG,, (01,02.03.....0, ) < CPEWG,, (ul*,u;‘,ul*,...,u;) (4)
Proof: To avoid the repetition again and again its proof is omitted.

Definition 11:  Let v; =(h jeiaj A jeibj & jeinj )(léan), be a family of CPFNs with its weighted vector

o =(o,@,,...0, )T satisfying (1 <w; < n)and Z @ ; =1.Then the complex Polytopic fuzzy ordered weighted geometric
Jj=1

aggregation operator is given by:

CPFOWGy, (0},07,03,...,0; )
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1
= . q @ ; (5)
1 ig1-11 {1{ ‘e(’)] }
" i \q j=l 2w

=i (1-(e ][

J=1

with (oc (1),5¢(2),...,¢ (n)),be arranged such thatv, ;) 20, ;).

Theorem 12: Letv; =(h jeiaj R jeibj & jeinf )(ISj Sn), be a family of CPFVs, for which their output under the

CPFOWG operator remains a CPFV.
Proof: Required result can be proved as Theorem 11.

Definition 12: The complex Polytopic fuzzy hybrid geometric aggregation operator is mathematically given by:

CPFHGE’W (01,1)2,1)3,...,Un ) =

a, . @j o j
i2r ﬁ (/) i2r flI (/)
n . @ j=1| 27 n N @ ; j=1| 27
”1( ux(,)) < “1( Uocm) ¢

1
n q @ ;
1- 1- .
(e (6] ¢

Where, v; =(hjel f,?&jeibf,fjeinf )(ISan), be a family of CPFNs, with weighted vector @ =(w,@,....a,)" and

. —_ —_ - — \I . . .. .. n —
associated vector E =(n1,n2,...,nn) satisfying the additional conditions (1 Sw;< n) , L@ =1, (OS;SI) and

j=l1
n = .
Y E;=1. Moreover, Vse( ) :(u 5 )n /', and n be the balancing coefficient. Let the weighted vector o =(a,@5,...@, )"
j=1
11y = = = \7 T
approaches to (—,—,...,—j , then ((Ul )n“1 ,(02 )n“2 ,...,(Un )n“") approaches to (ul,uz,...,un) .
nn o n

Definition 13: Let a family<$ 70 j>(1 <j< n) of 2-tuple, along with their weighted vector @ =(wy,m,.....a, )T such that

n
(1 <w; < n) and ¥ @; =1. Then the induced complex Polytopic fuzzy ordered weighted geometric aggregation operator
j=1

can be stated as:
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I-CPFOWG,, ((31,01),(32.02)5-:(T2.02)) =

A\ A\
x| “0) i 20
n @ j=1l 27 n @ j=ll 27
. I . .

l =
-1 e U

j=1

where <3 o0 j> be the pair of CPFOWG having the jth largest value is known as the order -inducing variable and v j as

the complex Polytopic fuzzy argument.
Definition 14: Let <3 ja0 j>(1£ j<n)be a 2-tuple family, along with their weighted vector wz(wl,wz,...,wn)T and
n n
E=(2.E;,...5, )T satisfying the conditions (1 <@; < n), Y @;=1,(0<E<1) with ¥ Z;=1. Following that, the
j=1 j=1

mathematical expression for the induced complex Polytopic fuzzy hybrid geometric aggregation operator is:

I-CPFHGz 5 ((31.01),(32.09),00:(3,0) ) =

a aj b aj
oot | ) | )
P2zl | — 27 11
n @ ; j=1| 27 n @; j=1| 2rm
19) . N 19} . B

n Mo 1) ’
2z 1-11 | 1=
Jj=1 2

1

n q Dj\q

1- 1- .
,Ei [f0.0) J ‘

[1]

gecey

where Var( ) =(z)j )n e

T
P . . . 11 1
j /", with n being the balancing coefficient. If & =(@y,@,....0, )T approaches to (—,— —j , then

_ _ = \T
((Ul)m1 (02)™2 (0 )mn) approaches (o (v1,02,.0,)’ -

5. An application of the proposed aggregation operators
The CPFWG operator, CPFOWG operator, CPFHG operator, -CPFOWG operator, and [-CPFHG operator are some of the novel
techniques we design for decision-making in this section.

Algorithm: Let A:{Al,Az,...,Am} be a fixed set of m alternatives andN:{Nl,Nz,...,Nn}be a fixed set of n criteria

n
whose weighted vector is & = (o, @,,....a, )T with restriction, such as (1 <w;< n)and > @

; Z ;=1. LetE={E,,E,,...E;} be a

J

K
set of k experts/decision makers whose weight is 3=(3,,3,,..,3;)" with restriction (lsa ; Sn) and Y 3, =1. To find the
j=l

suitable option, we develop a MAGDM under the CPF environment. The main steps are as follows:
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Step 1: Develop matrices based on the expertise of experts.

Step 2: Make a single matrix out of all the separate matrices by combining them using the specified operators.
Step 3: Again compute all of the preference values using the specified techniques.

Step 4: Calculating the scores uses all preference values.

Step 5: Choose the one with the highest score value.

6. Illustrative Example
Consider a businessman intends to invest his money in a certain business. After a very careful consideration, he choosing

the four alternatives, such as, A;: Medicine Company, A,: Mobile Company, Aj: Cement Company and A4: Cloth
Company. The businessman will decide based on the following five attributes, namely, NX;: Growth Analysis, N5 :

Environmental analysis, X3: Corporate Reputation, N4 : Economic Benefit and X5 : Enterprise Management level,
whose weighted vector is @ = (0.30,0. 10,0.30,0. 10,0.20)T . Furthermore, there are four decision makers E; (k =12, 3,4)

for decision with weighted vector 3= (0.20,0. 10,0.40,0.30)T and let g =4.

6.1 By Algebraic Aggregation Operators:
Step 1: Decision matrices can be constructed on the expert’s ideas as follows:

Table 1: Decision matrix of E

Ay 0.9061'271'(0.5)’ 0.806i2”(0'6), 0.7061'271'(0.5), 0.9061'271'(0.5)’ 0.7061'27!(0.5),
0.60¢2707) | | 0.70¢27(05). 0.90¢27(04), 0.60¢27(06), 0.90¢27(06),
07062708 | | 0.60£27(07) 0.50/27(03) 0.80/27(09) 0.60£2%(07)

A2 (0.8062706) ) (0.50¢27(06) 0.80¢27(06) 0.70¢127(06). 0.70¢27(08),
0.70¢2704) | | 0.90¢27(07) 0.60¢27(07) 0.50¢27(04) 0.80¢27(05),
0.6062703) | | 0 60627(07) 0.80¢27(0:5) 0.80¢27(09) 0.90¢/27(06)

A3 (0.7062705) ) (0.90¢2707) 0.70¢27(04) 0.70¢27(06) 0.70627(09),
0.806i2”(0'6), 0.6Oei2”(0‘5), 0.60€i2”(0'5), 0.6Oei2”(0'5), O.50€i2”(0‘4),
0902709 | | 0 50427(09) 0.90¢27(06) 0.80¢27(04) 0.90¢27(05)

Ay 0.806i2”(0'4) i 0.806i2”(0'6) ’ 0.8Oei2”(0'4) i 0.9061'27[(0.7) ’ 0.90€i2”(0'7) ’
0.70¢2707) | | 0.50¢27(07) 0.90¢27(06), 0.70¢127(04) 0.50¢27(04)
0.8062709) | | 0 60627(0.7) 0.40¢/27(03) 0.60¢27(0:5) 0.80¢27(0:5)
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Table 2: Decision matrix of E,

0. 59ei27z(0.7)’

0.71£27(05)

El

0.8127(06)

0.49¢27(07)

s

0.91¢27(06)

s

0.7961'271(0.4)

0.79¢27(04)

>

0.71£:27(0.7)

il

0.5961.2”(0‘8)

0.3961‘2”(0.8)

s

0.71£127(0.7)

5

0.89¢/27(08)

0.59¢/27(08)

)

0.79¢/27(0.7)

El

0.8127(06)

0.51¢/27(09)

s

0.79¢27(03)

bl

0.69ei2”(0'4)

0.81¢127(0),

0.91¢/27(04)

s

0.89¢27(05)

0.59¢27(0:%)

s>

0.69¢/27(0)

>

0.71¢127(06)

Table 3: Decision matrix of E5

0.6127(03)

0.91¢/27(06),

0.816i2”(0'7)

0.68¢27(03)

b}

0.91¢27(0:8)

bl

0.49¢27(0:%)
0.7961'2;1(0.4)’

0.91¢127(03),
0.59¢27(09)

0.41¢27(08)

0.59¢/27(09)

0‘7961'27!'(0.4)

0.7961‘2;;(0.7)’

0.81¢727(09),
0.89¢/27(08)

0.68¢/27(0:0)

s

4)

s

05 1ei27r(0.
0.81¢/27(0)

0.59¢27(07).
0.49¢27(06)

0.39¢27(0%)

0.7127(09)

5

0.39¢/27(07)

>

0.49¢/27(06)

0.89ei2”(0'7),

0.61¢127(00)

0.69ei2ﬂ(0'4)

0.91¢/27(06)

s

0.39ei27r(0.7)

s

0.71¢/27(%)

0.89¢27(07)

£}

0.39¢27(05)

£}

0.51¢/27(08)

0.60¢/27(09)

s

0.39¢/27(05)

s

0.49¢27(08)

0.71¢/27(08)

)

0.69¢/27(0:6)

£}

0.8961.2”(0‘5)

0.59¢

0.39¢27(07),

(06)

i27(0.8)
b

0.5 lseih

0.51¢127(07),
0.89ei27r(0.4)’

0.79¢/27(06)

0.89¢/27(06)

0.79¢/ 2707

0.91¢127(%9)

0.69¢/27(08)

il

0.49¢/27(0.7)

El

0.71¢27(06)

0.59¢27(%9)

s

0.69¢/27(9)

b}

0.71¢27(00)
0.69¢27(0%)

0.49¢27(0:6).
0.89¢127(0:6)

0.79¢/27(0)

’

0.49¢/27(07)

s

0.59¢/27(07)

Table 4: Decision matrix of E4

0.79ei27r(0.5)’

0.41¢27(09),

O.SIeﬂ”(O'S)

0.59¢27(0%)

5

0.69¢/27(0)

b

0.51¢/27(0%)

0'796i2ﬂ(044)

£}

0.91¢27(°7)

il

0.59¢/27(0:8)

0.89¢27(07),

0.61¢27(05)

0.79¢/>7(06)

0.49¢27(0)

£}

0.69¢27(09)

>

0.91¢/27(0%)

0.61¢:27(0.7)

s

0.39¢/27(05)

>

0.89¢27(0-8)

0.89¢/27(°3),

0.79¢/27(09)

0.39¢/27(06)

0.79¢/27(06)

s

0.89¢/27(03)

s

0.71¢/27(04)

0.79¢27(06),
0.91¢27(08),

0.79¢27(0:0)

0.79ei27r(0.7)

s

0.49¢27(08)

s

0.61£127(09)

0.89¢/27(%7)

s

0.61¢:27(05)

s

0.79¢/27(06)

0.69¢/27(0%)

s

0.55¢/27(03)

>

0.88ei2”(0'4)

0.68¢27(04),
0.87¢27(09),

0.79¢/27(0.7)

0.87¢/27(06)
0.49¢27(04)

i27(0.5)

0.78¢

0.67¢"27(03),
0.48¢27(04).

0.89¢/27(06)

0.57¢"27(09)
i27(0.6)

>

s

0.78¢
O.688i2”(0‘8)

0.88¢127(06),
0.69¢127(03),

0.78¢/27(06)

0.86¢/27(0)

>

0.72¢27(0)

>

0. 586i27r(0.4)

0.77¢27(07),

0. 68ei2”(0'4),

0.92¢/27(0:6)

O.77ei2”(0'7)

5

0.69¢/>7(3)

>

0.89¢/27(06)

0.89¢27(08),
0.49¢27(0),

0.680/27(09)

0.88¢/27(00)

>

0.7261‘2;;(0.4)’

0.58¢/27(08)
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0.88¢/27(07)

0.67ei2”(0'4)

0.58¢/27(0%)

0.89¢/27(03)
0.48¢/27(09)

0. 6961'2;:(0.4)

>

s>

>

s

0.580/27(08)

0.49¢/27(04)

0.88¢/27(06)

0.78¢/>7(04)
0.57¢"27(09)
0.69¢27(0¢)

5

s

>

s

0.59¢127(07),

0.47¢27(06),

0.78@i2”(0'4)

0.57¢>7(07)

>

0.68¢'27(°)

s

0.78¢27(09)

0.77¢27(3),

0.68¢' 2700

0.91¢27(04)

0.59¢/27(04)

s

0.89¢/27(07)

>

0.68¢27(0%)

0.88¢27(06),
0.78¢27(04),
0.68¢27(03)

0.486i2”(0‘5)

>

0.77¢27(08)

s

0.86¢127(0¢)

Step 2: Applying the CPFWG aggregation operator to aggregate all individual matrices into a single matrix, where

I= (0.20,0.10,0.40,0.30)Tand q=4.

Table 5: Collective decision-matrix £

Al (726127(058) 0.71¢/27(0:65) 0.94¢27(0:63) 0.89¢:27(0:74) 0.98¢127(0:83)
0.73¢/27(061) 0.56¢27(0-55) 0.72¢27(034) 0.7727(0:47) 0.56¢127(0:56)
0.84¢:27(0:67) 0.80¢27(062) 0.86¢27(0:60) 0.94¢:27(0:64) 0.72¢/27(0.96)

Ar| [ 0.7027(0-68) 0.57¢127(055) 0.96¢/27(0-58) 0.89¢27(077) 0.90¢/27(0:68)
0.6727(0:42) 0.68¢/27(0:61) 0.72¢/27(067) 0.75¢/27(0:55) 0.72¢27(0:42)
0.60¢127(0:54) 0.81¢/27(070) 0.680'27(043) 0.96¢'27(0:68) 0.65¢/27(0:84)

Az (0.67027(062) 0.680/27(068) 0.680/27(075) 0.89¢:27(0:54) 0.96¢127(0:65)
0.79¢:27(0:46) 0.55¢:27(0:49) 0.50¢127(0:64) 0.75¢:27(0:68) 0.83¢/27(0:42)
0.78¢/27(0:70) 0.90¢27(059) 0.86¢:27(0:48) 0.96¢'27(0:4) 0.75¢:27(0:37)

As (0.81427(0:53) 0.83¢/27(0:44) 0.650/27(074) 0.68¢/27(0:43) 0.56¢/27(0:38)
0.67¢27(0.75) 0.65¢'27(0:56) 0.75¢27(0.53) 0.95¢/27(0:72) 0.83¢/27(0:82)
0.85¢27(0.71) 0.78¢127(0:62) 0.86¢27(0:92) 0.73¢/27(0:56) 0.97127(064)

Step 3: Next, again applying the CPFWG operator, WichD'=(0.30,0.10,0.30,0.10,0.20)T , we have the following

preference values:

G- (0.8 561’27[(0.66)’0‘ 6761’27[(0.48)’0.8 561’27:(0.80)) = (0.8161'27:(0.64),0'7061'27:(0.52)’0'77ei27r(0.67))
G = ( 0.7 4ei27r(0.66)’ 0. 68ei2”(0'51), 0.81ei2”(0'58)) o= ( 0. 69ei27r(0.57),0.7oei27r(0.66)’ 0.8961'27;(0.80))'
Step 4: By using Definition 6, we get the score functions as below.

S(51)=0.64, 5(52)=0.79,8(53)=0.74, §(54)=0.50.
Step S: Thus the best option is A, .

6.2 Induced Aggregation Operators:
Step 1: Construct the following matrices based on expert’s ideas:
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Table 6: Decision matrix of E; on induced aggregation operator

Aq 0.656i2”(0'4), 0.68ei27r(0.5)’ 0,88ei2”(0'6), 0.78ei2”(0'7), 0'8961'2”(0.8)’
0.8, 0.8762°) 0.5, 04762704, 0.6, 0676270, 0.6, 0.67¢2704), 04, 04862703
0.7827(07) 0.8662709) 0.78627(06) 0.88¢27(06) 0.72627(09)
Ay 0.89627(06) 0,586 27(03), 0.8962705) 0.7862707) 0.89¢27(06)
0.7, 048204, 04, 0.786709), 0.5, 0.67¢2709), 0.5, 0.67¢27%9), 0.3, 0.68¢2704),
0.77627(053) 0.67¢27(08) 057¢27(04) 0.89¢27(06) 0.57¢27(08)
As 0.87¢2(07) 0.57¢270%), 0.58¢27(07), 0.78¢27(0 0.87¢/27(06)
06, 06764, 03, 048”4, 04047670, 0.4, 06762 0.2, 0.78¢27%4),
0.586270%) 0.87¢27(06) 0.79¢°%4) 0880270 0.67¢27(03)
A4 0.89¢2709), 0.78¢2704), 0.58¢7(07), 0.58¢27(0 047¢2703),
0.5, 04767709, 02, 0.5662703), 03] 0.68¢2709), 03, 087912” 0.1, 0.78¢27(0%)
0.67627(04) 0.68¢27(09) 0.78¢27(09) 0676270 0.89¢27(06)

Table 7: Decision matrix of E, on induced aggregation operator

A4 0.58ei2”(0'7), 0'59ei27r(0.8)’ 0.5961'27!(0.3)’ 0.786i2”(o'7), 0.89¢ i27(0
0.5,] 0.68¢27(%3), 0.6, 0.81¢2707), 0.7,| 0.87¢2708), 08, 0.79¢2705), 09, 057e’2”
0.76627(09) 0.79¢27(09) 0.78627(07) 0.92£2708) 072270

A, 0,486i2”(o'7), 0.4761‘27[(049), 0.688i2”(0'5), 0.69ei2”(0'6), 0.87¢ t2/r
0.4, 0.8962706). 0.5, 0.86¢ 209, 0.6, 0.89¢27(08) 0.7, 047¢2704), 0.6, 037e’2”
0.786i2”(0'4) 0.69ei2ﬂ(0'4) 0.4861127[(08) 0.788127[(09) 0.69¢ 127z

Aj 0.78ei2”(0'4), 0.7861'27:(0.6), 0.78ei2”(0'4), 0.56ei2”(0‘7), 0876270
03| 06762707, 04, 0862704, 0.5, 0.87¢27(03), 06, 047¢2709), 05, 039e’2”
0.56ei2”(0'8) 0.89ei2ﬂ(0'5) 0.56ei2”(0'9) 0.386112”(0‘8) 0.48¢ 127r

Ay 0‘3961'271:(0.8)’ 0.626i2ﬂ(0'8), 0.3961'277(0.8), 0.686i2”(0'9), 0.68¢ 1271'
020676207, 03, 0.69¢2703), 0.4,] 05862709, 0.5, 0.3262707), 0.4, 0376270
0,876i2ﬂ(0'8) 0'7261‘27[(0.6) 0'7961'271'(0.4) 0.47€i2”(0'6) 0.51¢ t27z

Table 8: Decision matrix of E; on induced aggregation operator

A 068627(08) 0.68627(08), 0.79¢27(03) 0.476209). 078627(06),
09,] 0.69¢27(06). 0310472407 05, 0.38¢27(09), 0.7, 0i68¢27(05)] 08, 0.89¢27(08),
0.87427(09) 0,496 27(09) 0.78¢27(09) 0.8742709) 0.49627(09)
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Ay 0_5761‘2;:(0.8)’ O.62ei2”(0‘5), 0.5981'27[(0.8)’ 0.58ei27r(0.7), 0.82ei2”(0‘7),

0.7, 039¢207), 02, 0.68¢2709). 0.3, 0.73¢'27(06). 06, 039¢2703) 05, 0.48¢27(08),
0:526209) 0.7262(08) 04962709 0,926 27(0%) 0.59¢27(09)

A; 0.48627(07) 0.67627(08) 0.78627(04) 0.89627(05) 08762(07)
06, 08762704, 02| 0.51¢27(06) 02, 0.89627(07), 0.4, 0.7962709). 0.3, 0.576203)
0.7962709) 0.8962709) 0.5862708) 0.386209) 0.78¢2(09)

Ay 0872409) 07627(09) 08962707, 0.79¢27(08) 0672708
02, 0826207, 0.1, 0476207, 0.1, 0612703, 04, 0.8762703). 0.1, 0.51627(03),
0.89/2709) 0,5702A07) 0.78627(09) 06762704 0.89¢27(04)

Table 9: Decision matrix of E;, on induced aggregation operator

Ay O.ggeizn(os)’ 0.7881'271(046), 0.67ei2”(°‘5), 0.8791'2;:(0.5)’ 0_7261'2;;(0.5)7
08 0.62¢2707) 0.5, 0.69¢27(03), 0.6, 0.89¢27(04). 08 0.56¢27(06). 0.7,| 0.9162705),
0.6827(09) 0.5862707) 04862708 0.79¢27(09) 0.58¢27(07)

A, 078 208) 0.47627(09) 0.79¢2408) 0,676209). 0.6882708),
0.7 0.696204) 040896207, 03, 0.61¢07), 0.6, 0.49¢2704). 04, 0.78¢27(09),
0.5961'27[(0.5) 0.4861'27[(0.7) 0.786i2”(0'5) 0.7861.2”(0‘9) 0 896i2ﬂ(0 6)

A; 0.68¢203). 0.89627(07) 0.68¢2704) 0.68827(08) 06727109,
0.5, 0.78¢27(08) 03, 0.5762703), 02,| 0.572703), 0.4,| 0.57¢2703), 03, 0.48¢2704),
0.92427(03) 0.49627(09) 0.8662709) 0.79¢27(04) 0.92¢27(09)

Ay 0.786i2ﬂ(0'4), 0.76ei2ﬂ(0'6), 0.788[2”(0'4), 0.89ei2ﬂ(0'7), 087 127r(0 7)7

030696207, 0205162707, 0.1, 0.896 206 02, 0.68¢27(4). 03.| 04662704
0.7762709) 0.5962707) 03702709 0.57¢27(05) 0.78627(05)

Step 2: Applying the -CPFOWG aggregation operator to aggregate all individual matrices into a single matrix, where

3=(0.30,0.10,0.40,0.20)" and g = 4, we have:

Table 10: Combined Decision-matrix £ on induced aggregation operator

A 0.71£/27(057), 0.72¢/27(064). 0.93¢27(062). 0.88¢27(073). 0.99¢/27(084).
0.72¢127(0:60) 0.57¢/27(056), 0.71£/27(039) 0.78¢27(045), 0.57¢/27(055),
0.850/27(0.68) 0.79¢i27(0:61) 0.87¢/27(059) 0.93¢127(0:65) 0.73¢/27(099)

Ay 0.69¢27(0.70) 0.56¢/27(055), 0.95¢27(057) 0.89¢127(0.77) 0.90¢27(0:68)
0.68¢127(0:40) 0.69¢/27(061), 0.71¢/27(0:66) 0.75627(059). 0.726127(042)
0.68¢/27(0:55) 0.79¢/27(071) 0.69/27(0:46) 0.96¢/27(0-68) 0.650/27(084)
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0.66¢27(0:68)

0.80/27(046)

0,780/ 27(0:69)

0.80¢/27(0:52)

0.66¢'27(074)

i27(0.70)

0.86e

0.68¢27(0:69). 0.68¢127(075). 0.89¢27(0:54), 0.96¢27(0.65),
0.56¢/27(0:50), 0.59¢127(0:64) 0.75¢127(0:68) 0.83¢27(042),
0.89¢/27(0:60) 0.860/27(048) 0.960/27(045) 0.75¢/27(0:37)
0.84¢/27(044). 0.65¢27(074). 0.68¢27(04). 0.56¢27(058),
0.66¢27(057), 0.75¢27(0:53), 0.95¢27(0.72) 0.82¢27(080).
0.80¢/27(0:63) 0.86¢/27(092) 0.73¢127(0:56) 0.98¢/27(0:65)

Step 3: Next, again applying the -CPFOWG operator, witha@ =(0.30,0.10,0.30,0.10,0.20)T, we have the following

preference values:

g = (0.8 4627(067) () 68,i27(049) g 4ei27r(0.79))’ o = (0‘8061'27[(0.63)’ 0.69¢'27(0:51) 0 76,i27(067) )

i27(0.65) i27(0.49) i27(0.57) i27(0.66)

,0.68¢ ,0.80e ,0.70e ,0.90¢e

5= (0.736 i27z(0‘58))

, G4 = (0686 i27r(0.79))'

Step 4: Using Definition 6, and get the score functions as below.
S(51)=0.63, S(s)= 0.80,S(g3) =0.73, S(c4)=0.49.
Step 5: Thus the best option is A, .

Tablel1: Score functions of different operators

Operators Score functions Ranking
CPFWG S(2)=S(c3)=S(g1) > S(cs) Ay = Ay = A=Ay
CPFOWG S(62)=S(g3)=5(c1) = S(ca) Ay = A=A~ Ay
CPFHG S(62)=S(c3)=S(g1) = S(cs) Ay = Ay A=Ay
I-CPFOWG S(¢2)>S(g3)>S(c1)>S(ss) Ay = Ay > A=Ay
I-CPFHG S(62)=S(¢3)=5(c1) = S(ca) Ay = Ay = A=Ay

7. Comparative Analysis

Complex Polytopic fuzzy set is a refinement of earlier work, including: FSs, IFSs, PFSs, FFSs, CFSs, CIFSs, and CPFSs by
taking into account a lot more details about an object when processing it and managing two-dimensional data as a single set. For
instance, CFSs (only complex-valued membership degrees), IFSs, PFSs, FFSs (consisting of both real-valued membership and
real-valued non-membership degrees), FSs (consisting of just membership degrees), and CIFSs and CPFSs (contain complex-
valued membership and complex-valued non-membership degrees with conditions such as their sum and square sum less than or
equal to one respectively). Additionally, information contained in the complex Polytopic fuzzy set (membership, neutral and non-
membership degrees with condition that sum of their g-th power less than or equal to one). As a result, the suggested model is more
flexible than their prior studies.

8. Sensitivity Analysis

The proposed technique is not only applicable to complex Polytopic fuzzy data, as it may be used to Polytopic fuzzy data by setting
the phase terms to zero. Moreover, it can also be applied to complex q-Rung orthopair fuzzy information without taking of neutral
and similarly, it can be applied to q-Rung orthopair fuzzy information by setting their neutral and phase terms zero. The suggested
operators are therefore more adaptable and elastic to get around the constraints and limits of their present aggregate operators.
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Table 12: Sensitivity analysis

9. Limitations

Compared with previous studies, complex Polytopic fuzzy sets are more powerful tool for decision-making problems, such as, FSs,
IFSs, PFSs, FESs, CFSs, CIFSs, and CPFSs, which consider more information about objects in the process, and in Work with two-
dimensional data in a collection.

However, there are some drawbacks to the suggested model, including: letv =(heia,ieib,§em ), be complex Polytopic
fuzzy number, where i= J-1 , hAE€[01] , a,bne[0,27] with conditions 0<#A? A7 +£9<1 and

q q q
0< (fj +(2i] +(2ij <1. Therefore, in this study, we only take into account complex Polytopic fuzzy
T T /4

numbers that meet the aforementioned requirements.

10. Conclusion

This paper is concerned to the study of complex Polytopic fuzzy set, complex Polytopic fuzzy numbers and some of their essential
operational laws. We have developed the score function and accuracy degree for the novel model. Using the CPFNs and developed
various new techniques, namely, CPFWG operator, CPFOWG operator, I-CPFOWG operator, CPFHG operator, and I-CPFHG
operator with their structure characteristics such as idempotency, monotonicity and boundedness. This novel model is explained
with an illustrative example related to the selection of the more suitable alternative among the existing alternatives. Finally, a
comparison and sensitivity analysis of the innovative model is given, demonstrating the potency of the strategy being offered.

Furthermore, this study can be expanded to complex Logarithmic operators, complex linguistic terms, complex inducing variables,
complex Hamacher operators, complex confidence level, complex interval-valued approach, complex symmetric operators, complex
Dombi approach, complex power operators, complex Hamacher interval approach, complex Dombi interval approach, complex
Einstein interval, complex Einstein approach, etc.
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