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Abstract
Translation of preclinical efficacy of an antibody drug conjugate (ADC) was done to determine dose and dosing regimen 
for first in human (FIH) study by simulating clinical trial in virtual cancer patients. Clinical trial simulations were done 
in 50 virtual subjects, systems parameters of PK/PD model were adapted to NSCLC patients for these simulations. It 
was found that at doses above 1.6 mg/kg Q1W, steady state trough concentrations (Ctrough-ss) were above TSC. The 
predicted progression free survival (PFS) was approximately 55, 72 and 85% at doses of 0.5, 1 and 2 mg/kg Q1W, while 
at doses of 1.3, 2.6 and 3.9 mg/kg Q3W survival was predicted to be 50, 65, 80%. Clinical efficacy at high doses and less 
frequent dosing, wherein average steady state concentrations of conjugated antibody are maintained above TSC was 
similar to that obtained by maintaining Ctrough-ss at TSC at low dose and more frequent dosing regimen. Therefore, 
maintaining Ctroughss above the TSC may not be required for improving PFS. A human dose which maintains average 
steady state concentrations at predicted TSC is sufficient to obtain clinical efficacy and therefore maintaining steady 
state trough concentrations above TSC may not be desired. 
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1. Introduction
Antibody drug conjugate (ADCs) are one of the modalities that 
hold significant promise in improving therapeutic outcome in 
cancer patients. Their unique ability to deliver a molecule to 
the target cell makes them standout as a modality compared 
to small molecule or antibodies. However, complexities in 
the optimization of their key attributes as well as challenges 
in understanding efficacy-toxicity window has led several 
pharmaceutical companies to abandon their development [1]. 
Nevertheless, recent approval of six more ADCs has revived 
interest in the field and has spurred evaluation of innovative 
approaches to develop next generation ADCs with improved 
efficacy and tolerability [2,3,4]. 
 
Like any other therapeutic, developing understanding of target 
modulation and downstream efficacy are important for ADCs 
because of their narrow therapeutic window [4,5]. Designing 
preclinical studies to establish robust exposure response is the 
first step in this direction. Translation of preclinical efficacy to 
human is a subsequent step, which needs to be supported by 
sound pharmacology rationale, understanding of preclinical-
clinical differences and population heterogeneity [6,7,8]. These 
two key steps form the basis of a successful clinical outcome. 
PK/PD (Pharmacokinetic/Pharmacodynamic) modeling and 

simulation can play a pivotal role in establishing concentration-
effect relationship and translation of preclinical efficacy to 
clinical efficacy [9,10]. In particular, its value has been seen in 
supporting justification for safe starting dose and relevant dose 
escalations for oncology and immuno-oncology therapeutics 
[9,11]. 
 
In addition to understanding concentration-effect relationship 
or threshold concentration required to see target modulation 
from preclinical studies, accurate translation of human 
pharmacokinetics from preclinical data is also very important 
for effective preclinical to clinical translation [8]. Variability in 
pharmacokinetics of a therapeutic candidate in patient population 
is an important factor which is often neglected in first-in-human 
(FIH) dose selection. Evaluating inter-subject variability in drug 
pharmacokinetics and pharmacodynamics helps to ensure that 
all patients attain suitable drug exposure to achieve efficacy 
or avoid toxicity. Population modelling is a useful tool to 
identify important covariates that effect pharmacokinetics thus 
aiding in the understanding factors contributing to inter-subject 
variability (12). Based on prior information or experiences, this 
evaluation can be employed early in drug discovery setting to 
predict human pharmacokinetic prior to clinical trials [13,14]. 
Combining predicted human PK variability with apriori 
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prediction of clinical efficacy can serve as a powerful tool for not 
only selecting appropriate dosing regimen but also efficacious 
dose for FIH studies. 
 
We have translated preclinical efficacy of an ADC to human 
using PK/PD modelling and simulation to define human dose and 
regimen for FIH study. ADC evaluated is chimeric monoclonal 
antibody conjugated to payload using a non-cleavable linker. 
Preclinical efficacy of ADC was evaluated in H292 xenograft 
SCID mice at various dose levels (1.5 to 15 mg/kg). Blood 
samples were collected from mice by staggered sampling such 
that samples were collected from all mice. Data of H292 efficacy 
study was used to build the PK/PD relationship of ADC in 
mice using tumor growth inhibition model to enable estimation 
of tumoristatic concentration (TSC). The pharmacokinetics 
of ADC was also characterized in cynomolgus monkey. 
Cynomolgus monkey concentration-time data was scaled to 
human using species time-invariant method to estimate human 
pharmacokinetic parameters. Population PK/PD modelling 
was done to capture inter-animal variability in the efficacy of 
ADC. Inter-subject variability in pharmacokinetic of total and 
conjugated antibody in human was also incorporated during 
simulation of human pharmacokinetic profile using body weight 
as a covariate as well as by using residual variability in scaled 
pharmacokinetic parameters. Tumor regression was predicted in 
50 patients using a population clinical PK/PD model, wherein 
tumor growth inhibition parameters determined from PK/PD 
modelling of xenograft mice were used, while systemic specific 
parameters were modified to represent NSCLC (non-small 
cell lung cancer) patient population. Progression free survival 
(PFS) was determined at various clinical doses and regimens to 
establish whether predicted efficacious dose and regimen could 
produce desired clinical outcome. 

2. Materials and Method 
2.1.  H292 Xenograft Study 
The study was conducted at University of Western Ontario 
(UWO) and was approved by local Institutional Animal Care and 
Use Committee (IACUC). All the animal studies were conducted 
after the approval of the study protocol by UWO animal ethics 
and IACUC. Briefly, male SCID mice were randomized apriori 
into groups of 4 mice per treatment group. H292 NSCLC cells 
(ATCC, Manassas, VA) were injected into both the right and left 
flanks of each mouse (6 X 106 cells per injection site) and allowed 
to grow into tumors of 100 mm3. When tumors in each mouse 
reach the desired volume (100 mm3), each mouse was injected 
with the planned treatment agent (Day 0). The test article was 
administered i.p. at dose levels of 1.5, 3.0, 7.5 and 15 mg/kg 
on days 0, 7, 11, 15 and 19 which correspond to cycles 1, 2, 3, 
4 and 5. Blood samples were collected by staggered sampling 
to alternate the blood collection at each time-point (n= 1/time 
point/group). Samples were collected at 0.25, 2, 24, 48, 72, 120 
and 168 h post-dose in cycle 1 and cycle 5; at 0, 2, 24 and 120 
h post-dose in cycle 3 and at 0.25, 48, 72 and 168 h post-dose 
in cycle 4. 
 
Blood samples were processed to serum and analyzed for the 
quantitation of total antibody, conjugated antibody and free 

payload. Caliper measurements were done for estimating tumor 
volumes. Tumor volumes were measured on days 0, 7, 11, 14, 
18, 21, 25, 30, 37, 44, 51 and 57 and the percent of the volume 
for each tumor was calculated with respect to Day 0. 
 
2.2. Cynomolgus Monkey Study 
The study was conducted at University of Western Ontario 
(UWO) and was approved by local Institutional Animal Care 
and Use Committee (IACUC). All the animal studies were 
conducted after the approval of the study protocol by UWO 
animal ethics and IACUC. ADC was administered via one-hour 
intravenous infusion once weekly for 4 weeks to cynomolgus 
monkeys at 10 or 20 mg/kg. Blood was collected pre-infusion, 
1, 3, 6, 9, 24, 72, 120 and 168 h post-infusion and was processed 
to serum. Processed samples were used for measuring serum 
concentration of total and conjugated antibody, free payload and 
anti-ADC antibodies. 

3. Bioanalysis  
3.1. Total Antibody and Conjugated Antibody 
Mice and monkey serum samples were diluted appropriately 
with PBS containing 1% BSA. Diluted samples were loaded 
onto ELISA plates were coated with target antigen for total 
antibody assay. ELISA plates coated with anti-payload mouse 
antibody were used for detection of conjugated antibody. Goat 
anti-human IgG AP (Jackson Immuno) was used as a secondary 
antibody for both assays. The signals were developed with 
para-nitrophenylphosphate and absorbance was measured at 
405 nm (Envision plate Reader, Perkin Elmer Inc., Waltham, 
Massachusetts). Standard curves with 5PL fitting and 
interpolation of unknown samples were analyzed using Envision 
software (Perkin Elmer Inc., Waltham, Massachusetts). 

3.2. Pharmacokinetic Data Analysis 
Pharmacokinetic parameters were estimated using Phoenix 
NLME 8.0 (Certara, St. Louis, Missouri, USA). The nominal 
dose administered to each dose group was determined by 
NanoDrop spectrophotometer (Thermo Fisher Scientific, 
Waltham, Massachusetts) and was used for pharmacokinetic 
analysis. A two-compartment model was used to fit total and 
conjugated antibody serum concentration data. Population 
estimates for absorption rate constant (Ka), clearance (CL, CL2), 
and volume (V, V2) were used for subsequent PK/PD modeling 
of tumor regression data. 
 
3.3. Estimation of TSC in H292 Xenograft Mice 
A tumor growth inhibition model was used to describe antitumor 
activity of ADC in H292 xenograft mice using pharmacokinetic 
and efficacy data [15]. In this model, the population 
pharmacokinetic parameter estimates for Ka, CL, CL2, V and 
V2 generated from the pharmacokinetic analysis were used as 
initial estimates for the population PK/PD model. Since efficacy 
was considered to be driven by conjugated antibody, subsequent 
PK/PD modelling was done using concentration-time data 
of this analyte. A simultaneous PK and PD model-fitting was 
done using First-Order Conditional Estimation Extended Least 
Squares (FOCE ELS). Following parameters were estimated by 
PK/PD modelling: pharmacokinetic parameters of conjugated 
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antibody, pharmacodynamic parameters of net tumor growth rate 
in the absence of drug (Kgro), tumor death rate constant (Kout), 
half maximal tumor growth inhibitory concentration (IC50), hill 
coefficient (gamma), tumor net growth rate (Kng), E is the effect 
and Kmax is maximal tumor growth inhibition effect constant. 

TSC (tumoristatic concentration), the predicted concentration 
at which there is no net tumor growth was calculated using 
the differential equation describing tumor growth as shown in 
equation 6. The following equations were used for deriving the 
pharmacodynamics parameters: 

5  
  

Total Antibody and Conjugated Antibody  151 
Mice and monkey serum samples were diluted appropriately with PBS containing 1% BSA. Diluted 152 
samples were loaded onto ELISA plates were coated with target antigen for total antibody assay. 153 
ELISA plates coated with anti‐payload mouse antibody were used  for detection of conjugated 154 
antibody. Goat anti‐human IgG AP (Jackson Immuno) was used as a secondary antibody for both 155 
assays.  The  signals  were  developed  with  para‐nitrophenylphosphate  and  absorbance  was 156 
measured  at  405  nm  (Envision  plate  Reader,  Perkin  Elmer  Inc.,  Waltham,  Massachusetts). 157 
Standard  curves with 5PL  fitting  and  interpolation of unknown  samples were  analyzed using 158 
Envision software (Perkin Elmer Inc., Waltham, Massachusetts).   159 
Pharmacokinetic data analysis  160 
Pharmacokinetic  parameters  were  estimated  using  Phoenix  NLME  8.0  (Certara,  St.  Louis, 161 
Missouri, USA). The nominal dose administered to each dose group was determined by NanoDrop 162 
spectrophotometer  (Thermo  Fisher  Scientific,  Waltham,  Massachusetts)  and  was  used  for 163 
pharmacokinetic  analysis.  A  two‐compartment model  was  used  to  fit  total  and  conjugated 164 
antibody  serum  concentration  data.  Population  estimates  for  absorption  rate  constant  (Ka), 165 
clearance  (CL, CL2),  and  volume  (V, V2) were used  for  subsequent PK/PD modeling of  tumor 166 
regression data.  167 
  168 
Estimation of TSC in H292 xenograft mice  169 
A  tumor  growth  inhibition model  was  used  to  describe  antitumor  activity  of  ADC  in  H292 170 
xenograft mice  using  pharmacokinetic  and  efficacy  data  [15].  In  this model,  the  population 171 
pharmacokinetic  parameter  estimates  for  Ka,  CL,  CL2,  V  and  V2  generated  from  the 172 
pharmacokinetic analysis were used as initial estimates for the population PK/PD model. Since 173 
efficacy was considered to be driven by conjugated antibody, subsequent PK/PD modelling was 174 
done using concentration‐time data of this analyte. A simultaneous PK and PD model‐fitting was 175 
done  using  First‐Order  Conditional  Estimation  Extended  Least  Squares  (FOCE  ELS).  Following 176 
parameters were  estimated  by  PK/PD modelling:  pharmacokinetic  parameters  of  conjugated 177 
antibody, pharmacodynamic parameters of net tumor growth rate in the absence of drug (Kgro), 178 
tumor death rate constant (Kout), half maximal tumor growth inhibitory concentration  (IC50), hill 179 
coefficient (gamma), tumor net growth rate (Kng), E is the effect and Kmax is maximal tumor growth 180 
inhibition effect constant. TSC (tumoristatic concentration), the predicted concentration at which 181 
there  is no net tumor growth was calculated using the differential equation describing tumor 182 
growth  as  shown  in  equation  6.  The  following  equations  were  used  for  deriving  the 183 
pharmacodynamics parameters:  184 
 Inh = Kmax * (C / ( tvIC50 + C))                ……..Equ 1 185 
deriv(E1 = (Kgro ‐ Inh * Kout) * E11^(2/3))            ……..Equ 2 186 
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     191 
Human PK Prediction  192 
The serum concentration‐time profiles of total and conjugated antibody in cynomolgus monkeys 193 
following IV infusion at 10 and 20 mg/kg were transformed to human concentration‐time profiles 194 

3.4 Human PK Prediction 
The serum concentration-time profiles of total and conjugated 
antibody in cynomolgus monkeys following IV infusion at 10 
and 20 mg/kg were transformed to human concentration-time 

profiles using the species invariant time method described by 
Dedrick [16]. Briefly, the equivalent times were transformed 
from monkey data using the following equations: 
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The human-like concentrations were estimated using the following equation: 

Wherein, Timecyno, concentrationcyno, dosecyno, body weightcyno 
are observed time, concentration, and administered dose in 
cynomolgus monkeys and body weight of monkeys, respectively. 
Timehuman, concentrationhuman, body weighthuman, dosehuman are 
predicted human parameters. Allometric equations used scaling 
exponents of 0.85 for CL and 1 for V, respectively [17,18]. Since 
non-linearity was observed for clearance in monkeys, systemic 
clearance was accounted by linear and nonlinear elimination. The 
bi-exponential pharmacokinetic profiles estimated for human 
using the above equations were fit to a two compartmental model 
with linear and non-linear clearance from central compartment 
using Berkley Madonna 8.3.18 (Macey and Oster, Berkeley, 
CA) to estimate human pharmacokinetic parameters. Since 
conjugated antibody was considered as pharmacological active 
analyte all modelling and simulations were performed only for 
conjugated antibody. The estimates of V1, V2, Cl1, Km and Vmax 
were determined by fitting predicted human profiles at 10 and 20 
mg/kg. Estimated parameters served as input for simulations of 
serum conjugated antibody concentrations in human. Population 
modelling was done using non-linear mixed effects modelling 
in order to predict variability in human pharmacokinetics. 
Simulations were done in different dosing regimen scenarios 
in 50 healthy subjects using body weight as a covariate using 
Berkley Madonna 8.3.18 (Macey and Oster, Berkeley, CA). 
 
3.4. Clinical Trial Simulations 
Tumor regression was simulated in 50 patients in different 
dosing regimens and doses using pharmacodynamic 
parameters estimated from preclinical efficacy models. Two 
compartment model with linear and non-linear clearance 
from central compartment was used for pharmacokinetics and 
pharmacodynamic was described by Jumbe transduction model 

[15]. Pharmacokinetic and pharmacodynamic parameters 
mentioned in Tables 1 and 2 were used as estimates in population 
PK/PD model. Residual variability in PD model was assumed to 
be 30% while pharmacokinetic variability was simulated by using 
body weight as a covariate. Tumor growth rate represented by Kg 
in the PD model was changed according to tumor doubling time 
values reported in literature for NSCLC [19,20]. Tumor volume 
was simulated for 3 months in Q1W regimen and 6 months for 
Q3W regimen to mimic typical protocol in clinical settings. All 
simulations were done in Berkley Madonna 8.3.18, Macey and 
Oster, Berkeley, CA) and data was transformed in GraphPad 
Prism 7.05 (GraphPad Software Inc., San Diego, California). 
For each simulated clinical trial, predicted tumor volumes were 
determined over time and progression free survivals (PFS) were 
calculated. Tumor regression data was subsequently translated 
to obtain Kalpan-Meier curves to compare therapeutic benefit 
of ADC in different dose and dosing regimen scenarios. For 
estimating PFS, Response Evaluation Criteria in Solid Tumor 
(RECIST 1.1) criteria was applied [21, 22]. According to 
RECIST 1.1 criteria, definitions of minimum size of measurable 
lesion is ≥ 10 mm by CT and MRI. The criteria to categorize 
response rates for progressive disease, stable disease, partial 
regression, and complete regression for lung cancer were more 
than 20% increase in tumor diameter, less than 30% reduction in 
tumor diameter, more than 30% decrease in tumor diameter but 
still detectable, and below the detection limit of 10 mm tumor 
diameter, respectively. 
 
4. Results 
The serum-concentration profiles of conjugated antibody and 
of the total antibody after single i.p. administration to tumor 
bearing mice at different dose levels are shown in Figure 1.
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Figure 5. Model fit and (B) estimated parameters of monkey pharmacokinetic data using   two 622 
compartment model with  parallel  and  non‐linear  elimination  from  the  central  compartment 623 
following IV administration. 624 
 625 
Figure 6. Simulated concentration‐time profile of ADC in human at the doses of (a) 0.8 mg/kg, (b) 626 
1.6 mg/kg and (c) 2.6 mg/kg once every week for six weeks. TSC was estimated to be 1.7 µg/mL 627 
from  PK/PD  modelling  of  tumor  regression  data  obtained  form  H292  xenograft  mice. 628 
Concentration range in grey represents the 95% confidence interval of TSC estimate. 629 
 630 
Figure 7. Kaplan Meier survival analysis of simulated therapeutic benefit of  ADC in human at the 631 
doses of 0.5 ‐2 mg/kg and 1.3‐3.9  mg/kg once every week or once every three weeks for a total 632 
of 14 or  7 doses,  respectively.  The  tumor  regression produced  in  clinic was  simulated  in 50 633 
patients using Jumbe transduction model. For estimating patient survival tumor diameter  less 634 
than 1.5 cm was assumed an arbitrary measure of survival.  635 
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Figure 1: Serum-concentration time profiles of total antibody and conjugated antibody after i.p. administration to H292 tumor 
bearing SCID mice. ADC was administered by intraperitoneal injection at doses of 1.5, 3.0, 7.5 or 15 mg/kg on Days 0, 7, 11, 15 and 
19. Blood samples were collected after dosing on Day 1 to measure serum concentrations of total antibody and conjugated antibody. 
Samples were collected by staggered sampling such that n= 3/time point/dose group.

Free payload concentrations were below LLOQ at all 
timepoints. Exposure of both conjugated and total antibody 
increased proportionally with dose. The serum-concentration 
profiles at all dose levels were found to fit a two-compartment 

model. Since blood samples were collected from different 
mice at different time points, PK parameters were derived by 
population modelling. The data from all dosing cycles was used 
for estimating pharmacokinetics parameters (Table 1).

Absorption rate constant (Ka) was determined to be 2.39 day-

1. Distribution volumes V1 and V2 were 49.8 and 105 mL/day, 
respectively. Cl1 was 24.3 mL/kg/day and Cl2 was estimated to 
be 110 mL/kg/day, respectively. Precision of was low for some 
of the estimated population parameters because data of all 4 
cycles was taken in account for estimating pharmacokinetic 
parameters.  
 
H292 cells were inoculated on both flanks of SCID mice and 
allowed to grow until they reached 100 mm3. After the desired 

tumor size was reached, mice were randomized into different 
groups. Animals of control group were administered vehicle 
control while remaining mice were treated with ADC. The tumor 
volume measurements were done on days 0, 7, 11, 14, 18, 21, 25, 
30, 37, 44, 51 and 57. As seen in Figure 2, tumors continued to 
grow well in control group while those treated with ADC showed 
inhibited growth. At 1.5 mg/kg tumor growth was markedly 
reduced compared to control group, however, high inter-animal 
variability was observed in tumor volumes. Complete tumor 
regression was observed at doses of 3, 7.5 and 15 mg/kg. 

Parameter Unit Estimate SD
Ka (1/day) 2.39 1.41
V (mL/kg) 49.8 23.1
Cl (mL/kg/day) 24.3 1.88
V2 (mL/kg) 105 40.4
Cl2 (mL/kg/day) 109 47.2

  Table 1: Population Pharmacokinetic Parameters of ADC in H292 Xenograft Mice
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Figure 2: Repeat-Dose of ADC results in tumor reduction and elimination in a Non-Small Cancer Cell Xenograft mouse model 
(H292 Cells).

A tumor growth inhibition model was used to describe antitumor 
activity of ADC in H292 xenograft mice using pharmacokinetic 
data. Non-linear mixed effects modeling was used to enable 
population modeling of the data so that inter-animal variability 
in observed data could be captured and translated to human. 
Gamma was fixed to 1.0 based on analysis of diagnostics 

and maximum log likelihood. Despite high inter-individual 
variability in pharmacodynamic response and relatively small 
size of this preclinical dataset, population PK/PD model was 
able to capture dose-dependent efficacy of ADC reasonably 
well. Population pharmacodynamic parameter estimates are 
listed in Table 2.

Parameter Estimate Unit SD

tvKgro 0.88 1/day 0.07
tvKout 1.59 1/day 1.78
tvKmax 3.49 1/day 8.48

tvIC50 14.3 µg/mL 32.5
tvTSC 1.06 µg/mL 0.66

 Table 2: Population Pharmacodynamic Parameters Obtained After Fitting Tumor Volume Data to Tumor Growth Inhibition 
Model

Estimated values of Kgro, Kout and Kmax were 0.88, 1.59, 3.49 
day-1, respectively. In vivo IC50 of conjugated antibody was 
determined to be 14.3 µg/mL. TSC was determined to be 1.06 
µg/mL with 95% confidence interval ranging from 0.30 to 
1.30 µg/mL. Estimated TSC of 1.06 µg/mL was considered a 
conservative target for achieving efficacy in clinical setting. 
For the purpose of predicting human concentrations of ADC, 
data obtained from toxicology study conducted in cynomolgus 
monkey was leveraged. Serum samples from this study were 
analyzed for conjugated antibody, total antibody and free 
payload. Free payload concentrations were measurable only 
for first few timepoints postdosing and were not used for any 
subsequent analysis. Terminal half-life of conjugated antibody 
was shorter than that of total antibody with values of 30 h for 
conjugated antibody and 34.7 h for total antibody at 10 mg/
kg. At 20 mg/kg, terminal half-lives were estimated to be 48.5 
and 62.3 h for conjugated and total antibody, respectively 
(Supplementary Information). Average total systemic clearance 
as determined by non-compartmental analysis in cycle 1 at 10 

mg/kg was approximately 1.44 and 1.16 mL/h/kg for conjugated 
and total antibody. Clearance was found to decrease to 1.01 and 
0.93 mL/h/kg (conjugated and total antibody) with increase in 
dose to 20 mg/kg. Volume of distribution at steady state was 
between 53.6 and 50.9 mL/kg (conjugated and total antibody) 
at 10 mg/kg and 53.6 and 65.2 mL/kg (conjugated and total 
antibody) at 20 mg/kg and suggesting ADC was primarily 
distributed in the central compartment. Serum concentration 
data of both conjugated and total antibody in cynomolgus 
monkey were scaled to human using species time-invariant 
method as mentioned in the method section. The transformed 
concentration data is shown in Figure 6. Evidence of non-linear 
pharmacokinetics of conjugated as well as total antibody was 
evident from change in clearance of both analytes with change 
in dose. With this prior information, 2-compartment model with 
linear and non-linear clearance from the central compartment 
was used to capture non-linearity in scaled human concentration 
time data. The estimated human parameters are listed in Table 3.
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Parameter Estimate Unit SD
Cl1 48.4 mL/day 1.34
V1 154 mL /kg 3.11
Vmax 2347 mL/day 42.5
Km 1.23 g/mL 0.71
Cl2 84.6 mL/day 17.0
V2 270  mL 10.5

       Table 3: Estimated Values of Clearance Saturation Model Used for Simulation.

Linear clearance (Cl1) and distribution clearance (Cl2) values 
were determined to be 48.3 and 84.6 mL/day. Population 
estimates for volumes, V1 and V2 were 154 and 271 mL. Km 
and Vmax, parameters describing non-linear clearance from the 
central compartment obtained from model fit were 1.23 µg/mL 
and 2347 mL/day. Human PK simulations were done using TSC 
as a target concentration required to achieve clinical efficacy. 
Two different scenarios were considered 1) average steady 
concentrations (Cavg-ss) are maintained at population mean TSC 
2) Ctrough-ss concentrations are above population TSC. As seen in 
Figure 6 at dose of  0.5 mg/kg, steady state concentrations were 
approximately at mean TSC. At the doses of 1.6 and 2.6 mg/kg 
Q1W, Ctrough concentrations stayed above mean TSC or above 
confidence interval of TSC. In Q3W dosing regimen, Ctrough 
concentrations could not be maintained above population mean 
TSC at dose levels upto 3.9 mg/kg. At doses greater than 4 mg/

kg safety multiples could not be maintained (data not shown), 
therefore simulations were not conducted at doses greater 
than 3.9 mg/kg Q3W.  Clinical trial simulations were done in 
50 subjects using information translated from preclinical PK/
PD modelling and cynomolgus monkey pharmacokinetic data. 
Most of pharmacodynamic parameters used in the clinical PK/
PD model were borrowed from preclinical model, however, 
to provide clinical relevance and predict efficacy of ADC in 
cancer patients, tumor growth rate and initial tumor volume 
were changed to the values reported clinically [19, 20]. PFS was 
determined from simulated cancer growth curves using RECIST 
1.1 criteria. Population mean PFS at doses of 0.5, 1 and 2 mg/kg 
Q1W was approximately 55, 72 and 85 % (Figure 7). At doses 
of 1.3, 2.6 and 3.9 mg/kg Q3W survival was 50, 65, 80% (Figure 
7). 
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Figure 3: (a) Tumor volume PK/PD model fit for H292 xenograft tumor response to following intraperitoneal dosing of vehicle 
(black) or ADC dosed once on days 0, 7, 11, 15 and 19 at 1.5 mg/kg (orange), 3 mg/kg (magenta), 7.5 mg/kg (green) or 15 mg/
kg (blue). Solid lines represent predicted data while data points are observed data. (b) Goodness of fit diagnostic plots: individual 
prediction (IPRED) versus DV and corrected weighted residual (CWRES) versus IVAR. Prediction were scattered on the line of 
unity suggesting very good correlation between observed and predicted tumor volume regression. CWRES were scattered mostly 
within 2-fold error, there was no change in weighted residuals as function of independent variable (time). 
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5. Discussion 
PK/PD study was conducted in H292 xenograft mice in order 
to predict exposure response of our ADC in NSCLC cancer 
patients. Mice were administered doses ranging from 1.5 
to 15 mg/kg and blood samples were collected from all mice 
in a staggered manner so that there is sufficient data to build 
robust understanding of efficacy in mice. Selection of these 
doses was based on prior studies conducted in the same model 
(data not shown). As seen in Figure 1, systemic concentrations 
of conjugated antibody as well as total antibody increased with 
increase in dose. It is important to mention that concentrations 
of free payload were below LLOQ at all doses. No evidence of 
changes in clearance of either conjugated or total antibody was 
observed with increase in dose, suggesting linear clearance. Our 
antibody does not bind to mouse antigen, therefore, TMDD was 
not anticipated to play role in clearance of this ADC in mice. 
 
All implanted tumors were found to regress after first dose 
(Figure 2). Tumor growth inhibition was even marked as the 
study progressed, except at 1.5 mg/kg, wherein tumors were seen 
to regrow after first 2 doses. At doses greater than 1.5 mg/kg, no 
tumor regrowth was observed even 20 days after treatment was 
completed. In some mice, tumor was not palpable towards the 
end of the study, suggesting remarkable efficacy of this ADC. 

 
PK/PD modelling was done with tumor volume and 
pharmacokinetic data obtained from H292 xenograft study. 
Several mechanistic models have been developed and reported 
for PK/PD modelling of ADCs [15,23,24, 5]. Model developed 
by Jumbe et al., 2010 remains one of the most applied models 
for preclinical translation of efficacy of ADCs. This model 
has been successfully shown to translate preclinical efficacy 
of T-DM1 to clinic. Because of aforementioned reasons and 
ease of identifiability of modelling parameters, we have used 
Jumbe’s model for building concentration-effect relationship 
and deriving TSC. Population modelling was done to capture 
inter-animal variability in pharmacokinetics as well as tumor 
growth inhibition. Reasonably good fit was observed for tumor 
growth inhibition at all doses as seen in tumor volume data fit 
and diagnostic plots (Figure 3).

All parameters were estimated with a good precision as seen in 
Table 2. Estimated population TSC estimate was 1.06 µg/mL 
(confidence interval, 0.31 to 1.30 g/mL). Non-linearity in 
pharmacokinetics of ADC was evident from concentration-time 
profiles of both total and conjugated antibody at 10 to 20 mg/
kg and corresponding change in estimated systemic clearance 
(Figure 4, Supplementary information).
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Figure 4: Serum concentration profiles of total antibody and conjugated antibody following repeated intravenous infusions of ADC 
to cynomolgus monkey at 10 mg/kg and 20 mg/kg. Solid lines represent data of 20 mg/kg while dash line represent data of 10 mg/
kg. Circles and squares are serum concentrations of total antibody and conjugated antibody, respectively. 
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This non-linearity can be explained by TMDD due to binding of 
total and conjugated antibody to target antigen in cynomolgus 
monkey. Cynomolgus monkey serum concentration time data 
was scaled to human using species time-invariant method [16]. 
Allometric exponents of 0.85 and 1 were used for clearance and 
volume as reported previously [18]. It is important to mention 
that ADC binds to cynomolgus monkey and human target 
antigen with similar binding affinity, therefore, based on monkey 

pharmacokinetic data, non-linearity in pharmacokinetics ADC 
was also assumed in human. Two compartment model with 
linear and non-linear clearance from central compartment was 
found to fit observed serum concentration time data at both doses 
better than Michaelis-Menten model (data not shown). As seen 
in diagnostic plots (Figure 5) linear correlation was observed 
between observed and predicted data with most of the numbers 
scattered around line of unity.

Figure 5: Model fit and diagnostic plots to demonstrate the goodness of fit the model used to fit monkey pharmacokinetics data 
using two compartment model with parallel and non-linear elimination from the central compartment following IV administration.

In addition, weighted residuals were within 2-fold, suggesting 
model fit observed concentration data very well. A closer 
examination of visual predicted check plots further revealed 
that quantiles of observed data fell within predicted quantiles 
corroborating goodness of the fit of the model. Human 
pharmacokinetic parameters: Cl1, Cl2, V1, V2, Km and Vmax 
derived from scaled pharmacokinetic data were used for 

subsequent simulations. Population average TSC was used as a 
target translation parameter driving clinical efficacy. Simulations 
were performed in 50 virtual individuals at doses between 0.2 to 
2 mg/kg Q1W and 1 to 4 mg/kg Q3W to keep Cavg-ss at population 
TSC estimate or Ctrough-ss above the TSC. Simulated profiles are 
shown in Figure 6. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Model fit and dianostic plots to dmeostrate the goodness of fit the model used to fit monkey 

pharmacokinetic data using  two compartment model with parallel and non-linear elimination from the 

central compartment following IV administration. 
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Figure 6: Simulated concentration-time profile of ADC in human at the doses of 0.5 mg/kg and 1.0 mg/kg once every week and 
at 1.3 mg/kg and 3.9 mg/kg once every three week for six weeks. TSC was estimated to be 1.7 µg/mL from PK/PD modelling of 
tumor regression data obtained form H292 xenograft mice. Concentration range in grey represents the 95% confidence interval of 
TSC estimate.
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Figure 7: Kaplan Meier survival analysis of simulated therapeutic benefit of ADC in human at the doses of 0.5 -2 mg/kg and 1.3-3.9 
mg/kg once every week or once every three weeks for a total of 14 or 7 doses, respectively. The tumor regression produced in clinic 
was simulated in 50 patients using Jumbe transduction model. For estimating patient survival tumor diameter less than 1.5 cm was 
assumed an arbitrary measure of survival. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. Simulated concentration-time profile of ADC in human at the doses of 0.5 mg/kg and 1.0 

mg/kg once every week and at 1.3 mg/kg and 3.9 mg/kg once every three week for six weeks. TSC was 

estimated to be 1.7 µg/mL from PK/PD modelling of tumor regression data obtained form H292 

xenograft mice. Concentration range in grey represents the 95% confidence interval of TSC estimate. 
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Minimum systemic concentrations were found to vary about 
25-30% in the simulated population, however a reasonable 
coverage of estimated TSC was observed (Figure 6). Population 
average steady state concentrations remained within estimated 
95% confidence interval of TSC for doses greater than 0.5 mg/
kg Q1W and 1.3 mg/kg Q3W for all simulated individuals. Our 
simulations showed that at dose of 1.6 mg/kg, concentrations of 
all simulated individuals were above 1.06 ug/mL. However, in 
Q3W regimen, trough concentrations could not be maintained 
above TSC in the simulated dose range. 
 
In order to further understand whether maintaining systemic 
exposure above TSC could translate into desired therapeutic 
benefit in human, clinical trial simulations were conducted 
using pharmacodynamic parameters estimated from preclinical 
efficacy models. Premise of this modelling work was based 
on promising results shown by clinical trial for brentuximab-
vedotin in Hodgkin’s lymphoma, where a mechanistic 
mathematical model was successfully able to predict clinical 
efficacy of this ADC [25]. Several other successful retrospective 
predictions of PFS have been reported by Betts, Singh and Shah 
[26,27]. We have kept overall model structure for clinical trial 
simulation the same as preclinical model, with the exception that 
mouse system parameters such as initial tumor size and tumor 
growth rates were replaced with clinically relevant parameters, 
to make the model representative of the human system. Initial 
tumor size and tumor doubling time reported in literature for 
NSCLC patients were used [19, 20]. Subjects were dosed for 
3 months in Q1W regimen and 6 months for Q3W regimen to 
mimic typical protocol in clinical settings. As seen in Kalpan 
Meier curves, at doses of 0.5, 1 and 2 mg/kg Q1W mean PFS 
was approximately 55, 72 and 85%. Similarly, at doses of 1.3, 
2.6 and 3.9 mg/kg Q3W survival was 50, 65, 80% (Figure 7). 
This suggests, markedly similar therapeutic outcome when ADC 
was administered once weekly at doses between 0.5-2.0 mg/
kg or once every three weeks at doses between 1.3 to 3.9 mg/
kg for 3 or 6 months. Betts et al., [26]. Have used a multiscale 
PK/PD model to translate preclinical efficacy of inotuzumab 
ozogamicin and found fractionated dosing regimen was superior 
to a conventional dosing regimen for acute lymphocytic 
leukemia but not for non-Hodgkin’s lymphoma. In a similar 
effort, Singh and Shah [27]. Compared PFS for HER2 1+ and 
3+ populations in doses ranging from 0.1 to 20 mg/kg Q3W, 3.6 
mg/kg Q4W, 1.2 mg/kg Q1W and 3, 0.3, and 0.3 mg/kg given 
on days 0, 7, and 14 of a 21-day cycle (frontloading regimen). 
They reported similar PFS irrespective of dosing regimen in 
HER2 1+, however, fractionated dosing regimen (i.e. front 
loading) was found to provide an improvement in the efficacy. 
Jumbe et al., 2010 [15]. Have also evaluated different dosing 
regimens for T-DM1 (Q1W, Q2W, and Q3W) in preclinical 
HER2-expressing animal models (BT474EEI and F05). They 
found lack of improvement in the efficacy of ADC when a 
fractionated dosing regimen was used. Similar findings were 
observed in clinical outcome for T-DM1 as reported by Wang 
et al., [28]. Wherein clinical efficacy was observed at doses 
where Cmin was below preclinical estimated TSC of 30.2 µg/mL. 
Our findings suggest, maintaining trough concentrations above 
target TSC does not provide marked therapeutic benefit over 

maintaining average steady state concentrations of ADC at TSC. 
In our work, no marked improvement in PFS was noted with 
more frequent dosing and clinical outcome was predicted to be 
between Q1W and Q3W regimens. High dose of ADC wherein 
steady state trough concentrations is above TSC did not translate 
to marked clinical PFS. This finding is significant for researchers 
developing ADCs and optimizing clinical dose as they will 
not have to necessarily conduct clinical trial at high doses to 
maintain concentrations above TSC. Considering the challenges 
in understanding efficacy-toxicity window of ADCs in clinical 
development, this insight is also valuable for dose selection to 
maintain a balance of safety and efficacy of ADCs.

6. Conclusion
A population PK/PD model was built to establish concentration-
effect relationship of ADC in preclinical model and translate 
its efficacy to human. Efficacy predicted using clinically 
relevant population PK/PD model showed remarkable PFS in 
both Q1W and Q3W dosing regimen in the dose range of 0.5 
to 2 mg/kg or 1.3 to 3.9 mg/kg. Above studies and evaluations 
helped us establish robust PK/PD relationship of our ADC and 
understand impact of maintaining steady state concentration in 
a certain range on the therapeutic outcome. It is evident from 
our findings that human dose which maintains average steady 
state concentrations at predicted TSC is sufficient to obtain 
clinical efficacy and therefore maintaining steady state trough 
concentrations above TSC may not be desired. Overall, 0.5 mg/
kg Q1W or 1.3 mg/kg Q3W were considered to be efficacious 
starting dose for FIH study of our ADC.  
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