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Abstract

Translation of preclinical efficacy of an antibody drug conjugate (ADC) was done to determine dose and dosing regimen
for first in human (FIH) study by simulating clinical trial in virtual cancer patients. Clinical trial simulations were done
in 50 virtual subjects, systems parameters of PK/PD model were adapted to NSCLC patients for these simulations. It
was found that at doses above 1.6 mg/kg Q1W, steady state trough concentrations (Ctrough-ss) were above TSC. The
predicted progression free survival (PFS) was approximately 55, 72 and 85% at doses of 0.5, 1 and 2 mg/kg Q1W, while
at doses of 1.3, 2.6 and 3.9 mg/kg Q3W survival was predicted to be 50, 65, 80%. Clinical efficacy at high doses and less
frequent dosing, wherein average steady state concentrations of conjugated antibody are maintained above TSC was
similar to that obtained by maintaining Ctrough-ss at TSC at low dose and more frequent dosing regimen. Therefore,
maintaining Ctroughss above the TSC may not be required for improving PFS. A human dose which maintains average
steady state concentrations at predicted TSC is sufficient to obtain clinical efficacy and therefore maintaining steady

state trough concentrations above TSC may not be desired.
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1. Introduction

Antibody drug conjugate (ADCs) are one of the modalities that
hold significant promise in improving therapeutic outcome in
cancer patients. Their unique ability to deliver a molecule to
the target cell makes them standout as a modality compared
to small molecule or antibodies. However, complexities in
the optimization of their key attributes as well as challenges
in understanding efficacy-toxicity window has led several
pharmaceutical companies to abandon their development [1].
Nevertheless, recent approval of six more ADCs has revived
interest in the field and has spurred evaluation of innovative
approaches to develop next generation ADCs with improved
efficacy and tolerability [2,3,4].

Like any other therapeutic, developing understanding of target
modulation and downstream efficacy are important for ADCs
because of their narrow therapeutic window [4,5]. Designing
preclinical studies to establish robust exposure response is the
first step in this direction. Translation of preclinical efficacy to
human is a subsequent step, which needs to be supported by
sound pharmacology rationale, understanding of preclinical-
clinical differences and population heterogeneity [6,7,8]. These
two key steps form the basis of a successful clinical outcome.
PK/PD (Pharmacokinetic/Pharmacodynamic) modeling and

simulation can play a pivotal role in establishing concentration-
effect relationship and translation of preclinical efficacy to
clinical efficacy [9,10]. In particular, its value has been seen in
supporting justification for safe starting dose and relevant dose
escalations for oncology and immuno-oncology therapeutics
[9,11].

In addition to understanding concentration-effect relationship
or threshold concentration required to see target modulation
from preclinical studies, accurate translation of human
pharmacokinetics from preclinical data is also very important
for effective preclinical to clinical translation [8]. Variability in
pharmacokinetics of a therapeutic candidate in patient population
is an important factor which is often neglected in first-in-human
(FIH) dose selection. Evaluating inter-subject variability in drug
pharmacokinetics and pharmacodynamics helps to ensure that
all patients attain suitable drug exposure to achieve efficacy
or avoid toxicity. Population modelling is a useful tool to
identify important covariates that effect pharmacokinetics thus
aiding in the understanding factors contributing to inter-subject
variability (12). Based on prior information or experiences, this
evaluation can be employed early in drug discovery setting to
predict human pharmacokinetic prior to clinical trials [13,14].
Combining predicted human PK variability with apriori
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prediction of clinical efficacy can serve as a powerful tool for not
only selecting appropriate dosing regimen but also efficacious
dose for FIH studies.

We have translated preclinical efficacy of an ADC to human
using PK/PD modelling and simulation to define human dose and
regimen for FIH study. ADC evaluated is chimeric monoclonal
antibody conjugated to payload using a non-cleavable linker.
Preclinical efficacy of ADC was evaluated in H292 xenograft
SCID mice at various dose levels (1.5 to 15 mg/kg). Blood
samples were collected from mice by staggered sampling such
that samples were collected from all mice. Data of H292 efficacy
study was used to build the PK/PD relationship of ADC in
mice using tumor growth inhibition model to enable estimation
of tumoristatic concentration (TSC). The pharmacokinetics
of ADC was also characterized in cynomolgus monkey.
Cynomolgus monkey concentration-time data was scaled to
human using species time-invariant method to estimate human
pharmacokinetic parameters. Population PK/PD modelling
was done to capture inter-animal variability in the efficacy of
ADC. Inter-subject variability in pharmacokinetic of total and
conjugated antibody in human was also incorporated during
simulation of human pharmacokinetic profile using body weight
as a covariate as well as by using residual variability in scaled
pharmacokinetic parameters. Tumor regression was predicted in
50 patients using a population clinical PK/PD model, wherein
tumor growth inhibition parameters determined from PK/PD
modelling of xenograft mice were used, while systemic specific
parameters were modified to represent NSCLC (non-small
cell lung cancer) patient population. Progression free survival
(PFS) was determined at various clinical doses and regimens to
establish whether predicted efficacious dose and regimen could
produce desired clinical outcome.

2. Materials and Method

2.1. H292 Xenograft Study

The study was conducted at University of Western Ontario
(UWO) and was approved by local Institutional Animal Care and
Use Committee (IACUC). All the animal studies were conducted
after the approval of the study protocol by UWO animal ethics
and IACUC. Briefly, male SCID mice were randomized apriori
into groups of 4 mice per treatment group. H292 NSCLC cells
(ATCC, Manassas, VA) were injected into both the right and left
flanks of each mouse (6 X 109 cells per injection site) and allowed
to grow into tumors of 100 mm?®. When tumors in each mouse
reach the desired volume (100 mm?), each mouse was injected
with the planned treatment agent (Day 0). The test article was
administered i.p. at dose levels of 1.5, 3.0, 7.5 and 15 mg/kg
on days 0, 7, 11, 15 and 19 which correspond to cycles 1, 2, 3,
4 and 5. Blood samples were collected by staggered sampling
to alternate the blood collection at each time-point (n= 1/time
point/group). Samples were collected at 0.25, 2, 24, 48, 72, 120
and 168 h post-dose in cycle 1 and cycle 5; at 0, 2, 24 and 120
h post-dose in cycle 3 and at 0.25, 48, 72 and 168 h post-dose
in cycle 4.

Blood samples were processed to serum and analyzed for the
quantitation of total antibody, conjugated antibody and free

payload. Caliper measurements were done for estimating tumor
volumes. Tumor volumes were measured on days 0, 7, 11, 14,
18, 21, 25, 30, 37, 44, 51 and 57 and the percent of the volume
for each tumor was calculated with respect to Day 0.

2.2. Cynomolgus Monkey Study

The study was conducted at University of Western Ontario
(UWO) and was approved by local Institutional Animal Care
and Use Committee (IACUC). All the animal studies were
conducted after the approval of the study protocol by UWO
animal ethics and IACUC. ADC was administered via one-hour
intravenous infusion once weekly for 4 weeks to cynomolgus
monkeys at 10 or 20 mg/kg. Blood was collected pre-infusion,
1,3,6,9,24,72,120 and 168 h post-infusion and was processed
to serum. Processed samples were used for measuring serum
concentration of total and conjugated antibody, free payload and
anti-ADC antibodies.

3. Bioanalysis

3.1. Total Antibody and Conjugated Antibody

Mice and monkey serum samples were diluted appropriately
with PBS containing 1% BSA. Diluted samples were loaded
onto ELISA plates were coated with target antigen for total
antibody assay. ELISA plates coated with anti-payload mouse
antibody were used for detection of conjugated antibody. Goat
anti-human IgG AP (Jackson Immuno) was used as a secondary
antibody for both assays. The signals were developed with
para-nitrophenylphosphate and absorbance was measured at
405 nm (Envision plate Reader, Perkin Elmer Inc., Waltham,
Massachusetts). Standard curves with S5SPL fitting and
interpolation of unknown samples were analyzed using Envision
software (Perkin Elmer Inc., Waltham, Massachusetts).

3.2. Pharmacokinetic Data Analysis

Pharmacokinetic parameters were estimated using Phoenix
NLME 8.0 (Certara, St. Louis, Missouri, USA). The nominal
dose administered to each dose group was determined by
NanoDrop spectrophotometer (Thermo Fisher Scientific,
Waltham, Massachusetts) and was used for pharmacokinetic
analysis. A two-compartment model was used to fit total and
conjugated antibody serum concentration data. Population
estimates for absorption rate constant (Ka), clearance (CL, CL2),
and volume (V, V2) were used for subsequent PK/PD modeling
of tumor regression data.

3.3. Estimation of TSC in H292 Xenograft Mice

A tumor growth inhibition model was used to describe antitumor
activity of ADC in H292 xenograft mice using pharmacokinetic
and efficacy data [15]. In this model, the population
pharmacokinetic parameter estimates for K, CL, CL,, V and
V, generated from the pharmacokinetic analysis were used as
initial estimates for the population PK/PD model. Since efficacy
was considered to be driven by conjugated antibody, subsequent
PK/PD modelling was done using concentration-time data
of this analyte. A simultaneous PK and PD model-fitting was
done using First-Order Conditional Estimation Extended Least
Squares (FOCE ELS). Following parameters were estimated by
PK/PD modelling: pharmacokinetic parameters of conjugated
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antibody, pharmacodynamic parameters of net tumor growth rate
in the absence of drug (Kgm), tumor death rate constant (K_ ),
half maximal tumor growth inhibitory concentration (IC50), hill
coefficient (gamma), tumor net growth rate (Kng), E is the effect
and K is maximal tumor growth inhibition effect constant.

Inh = Kmax * (C/ ( tvICso + C))
deriV(El = (Kgro - |nh * Kout) * EllA(2/3))

deriv(E2 = (Inh * Kout * E117(2/3) - Kout * E217(2/3)))

deriv(E3 = (Kout * E214(2/3) - Kout * E314(2/3))
E=E1+E2+E3
TSC:(tVKgrO*tWCSO)/(tVKout*(tVKmax‘tVKgro)

3.4 Human PK Prediction

The serum concentration-time profiles of total and conjugated
antibody in cynomolgus monkeys following IV infusion at 10
and 20 mg/kg were transformed to human concentration-time
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o
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TSC (tumoristatic concentration), the predicted concentration
at which there is no net tumor growth was calculated using
the differential equation describing tumor growth as shown in
equation 6. The following equations were used for deriving the
pharmacodynamics parameters:

profiles using the species invariant time method described by
Dedrick [16]. Briefly, the equivalent times were transformed
from monkey data using the following equations:

— Exponent ,
clearance

The human-like concentrations were estimated using the following equation:
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Wherein, Timecyno, concentrationcym’ dosecym, body weightcym
are observed time, concentration, and administered dose in
cynomolgus monkeys and body weight of monkeys, respectively.
Time, . concentration . body weight . dose  — are
predicted human parameters. Allometric equations used scaling
exponents of 0.85 for CL and 1 for V, respectively [17,18]. Since
non-linearity was observed for clearance in monkeys, systemic
clearance was accounted by linear and nonlinear elimination. The
bi-exponential pharmacokinetic profiles estimated for human
using the above equations were fit to a two compartmental model
with linear and non-linear clearance from central compartment
using Berkley Madonna 8.3.18 (Macey and Oster, Berkeley,
CA) to estimate human pharmacokinetic parameters. Since
conjugated antibody was considered as pharmacological active
analyte all modelling and simulations were performed only for
conjugated antibody. The estimates of V|, V_, Cl,, Km and Vmax
were determined by fitting predicted human profiles at 10 and 20
mg/kg. Estimated parameters served as input for simulations of
serum conjugated antibody concentrations in human. Population
modelling was done using non-linear mixed effects modelling
in order to predict variability in human pharmacokinetics.
Simulations were done in different dosing regimen scenarios
in 50 healthy subjects using body weight as a covariate using
Berkley Madonna 8.3.18 (Macey and Oster, Berkeley, CA).

3.4. Clinical Trial Simulations

Tumor regression was simulated in 50 patients in different
dosing regimens and doses using pharmacodynamic
parameters estimated from preclinical efficacy models. Two
compartment model with linear and non-linear clearance
from central compartment was used for pharmacokinetics and
pharmacodynamic was described by Jumbe transduction model

Dose

cyno

~ Body weight,,
[15]. Pharmacokinetic and pharmacodynamic parameters
mentioned in Tables 1 and 2 were used as estimates in population
PK/PD model. Residual variability in PD model was assumed to
be 30% while pharmacokinetic variability was simulated by using
body weight as a covariate. Tumor growth rate represented by K,
in the PD model was changed according to tumor doubling time
values reported in literature for NSCLC [19,20]. Tumor volume
was simulated for 3 months in Q1W regimen and 6 months for
Q3W regimen to mimic typical protocol in clinical settings. All
simulations were done in Berkley Madonna 8.3.18, Macey and
Oster, Berkeley, CA) and data was transformed in GraphPad
Prism 7.05 (GraphPad Software Inc., San Diego, California).
For each simulated clinical trial, predicted tumor volumes were
determined over time and progression free survivals (PFS) were
calculated. Tumor regression data was subsequently translated
to obtain Kalpan-Meier curves to compare therapeutic benefit
of ADC in different dose and dosing regimen scenarios. For
estimating PFS, Response Evaluation Criteria in Solid Tumor
(RECIST 1.1) criteria was applied [21, 22]. According to
RECIST 1.1 criteria, definitions of minimum size of measurable
lesion is > 10 mm by CT and MRI. The criteria to categorize
response rates for progressive disease, stable disease, partial
regression, and complete regression for lung cancer were more
than 20% increase in tumor diameter, less than 30% reduction in
tumor diameter, more than 30% decrease in tumor diameter but
still detectable, and below the detection limit of 10 mm tumor
diameter, respectively.

4. Results

The serum-concentration profiles of conjugated antibody and
of the total antibody after single i.p. administration to tumor
bearing mice at different dose levels are shown in Figure 1.
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Figure 1: Serum-concentration time profiles of total antibody and conjugated antibody after i.p. administration to H292 tumor
bearing SCID mice. ADC was administered by intraperitoneal injection at doses of 1.5, 3.0, 7.5 or 15 mg/kg on Days 0, 7, 11, 15 and
19. Blood samples were collected after dosing on Day 1 to measure serum concentrations of total antibody and conjugated antibody.
Samples were collected by staggered sampling such that n= 3/time point/dose group.

Free payload concentrations were below LLOQ at all
timepoints. Exposure of both conjugated and total antibody
increased proportionally with dose. The serum-concentration
profiles at all dose levels were found to fit a two-compartment

model. Since blood samples were collected from different
mice at different time points, PK parameters were derived by
population modelling. The data from all dosing cycles was used
for estimating pharmacokinetics parameters (Table 1).

Parameter Unit Estimate SD

Ka (1/day) 2.39 1.41
A" (mL/kg) 49.8 23.1
Cl (mL/kg/day) 24.3 1.88
v, (mL/kg) 105 40.4
Cl, (mL/kg/day) 109 47.2

Table 1: Population Pharmacokinetic Parameters of ADC in H292 Xenograft Mice

Absorption rate constant (K,) was determined to be 2.39 day
'. Distribution volumes V, and V, were 49.8 and 105 mL/day,
respectively. Cl, was 24.3 mL/kg/day and Cl, was estimated to
be 110 mL/kg/day, respectively. Precision of was low for some
of the estimated population parameters because data of all 4
cycles was taken in account for estimating pharmacokinetic
parameters.

H292 cells were inoculated on both flanks of SCID mice and
allowed to grow until they reached 100 mm?. After the desired

tumor size was reached, mice were randomized into different
groups. Animals of control group were administered vehicle
control while remaining mice were treated with ADC. The tumor
volume measurements were done on days 0, 7, 11, 14, 18,21, 25,
30, 37,44, 51 and 57. As seen in Figure 2, tumors continued to
grow well in control group while those treated with ADC showed
inhibited growth. At 1.5 mg/kg tumor growth was markedly
reduced compared to control group, however, high inter-animal
variability was observed in tumor volumes. Complete tumor
regression was observed at doses of 3, 7.5 and 15 mg/kg.
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Figure 2: Repeat-Dose of ADC results in tumor reduction and elimination in a Non-Small Cancer Cell Xenograft mouse model

(H292 Cells).

A tumor growth inhibition model was used to describe antitumor
activity of ADC in H292 xenograft mice using pharmacokinetic
data. Non-linear mixed effects modeling was used to enable
population modeling of the data so that inter-animal variability
in observed data could be captured and translated to human.
Gamma was fixed to 1.0 based on analysis of diagnostics

and maximum log likelihood. Despite high inter-individual
variability in pharmacodynamic response and relatively small
size of this preclinical dataset, population PK/PD model was
able to capture dose-dependent efficacy of ADC reasonably
well. Population pharmacodynamic parameter estimates are
listed in Table 2.

Parameter Estimate Unit SD

tVKgLO 0.88 1/day 0.07
tvK 1.59 1/day 1.78
tvK 3.49 1/day 8.48
tvIC | 14.3 pug/mL 32.5
tvTSC 1.06 pg/mL 0.66

Table 2: Population Pharmacodynamic Parameters Obtained After Fitting Tumor Volume Data to Tumor Growth Inhibition

Model

Estimated values of Kgm, K, and K were 0.88, 1.59, 3.49
day™', respectively. In vivo IC,, of conjugated antibody was
determined to be 14.3 pg/mL. TSC was determined to be 1.06
pg/mL with 95% confidence interval ranging from 0.30 to
1.30 pg/mL. Estimated TSC of 1.06 ug/mL was considered a
conservative target for achieving efficacy in clinical setting.
For the purpose of predicting human concentrations of ADC,
data obtained from toxicology study conducted in cynomolgus
monkey was leveraged. Serum samples from this study were
analyzed for conjugated antibody, total antibody and free
payload. Free payload concentrations were measurable only
for first few timepoints postdosing and were not used for any
subsequent analysis. Terminal half-life of conjugated antibody
was shorter than that of total antibody with values of 30 h for
conjugated antibody and 34.7 h for total antibody at 10 mg/
kg. At 20 mg/kg, terminal half-lives were estimated to be 48.5
and 62.3 h for conjugated and total antibody, respectively
(Supplementary Information). Average total systemic clearance
as determined by non-compartmental analysis in cycle 1 at 10

mg/kg was approximately 1.44 and 1.16 mL/h/kg for conjugated
and total antibody. Clearance was found to decrease to 1.01 and
0.93 mL/h/kg (conjugated and total antibody) with increase in
dose to 20 mg/kg. Volume of distribution at steady state was
between 53.6 and 50.9 mL/kg (conjugated and total antibody)
at 10 mg/kg and 53.6 and 65.2 mL/kg (conjugated and total
antibody) at 20 mg/kg and suggesting ADC was primarily
distributed in the central compartment. Serum concentration
data of both conjugated and total antibody in cynomolgus
monkey were scaled to human using species time-invariant
method as mentioned in the method section. The transformed
concentration data is shown in Figure 6. Evidence of non-linear
pharmacokinetics of conjugated as well as total antibody was
evident from change in clearance of both analytes with change
in dose. With this prior information, 2-compartment model with
linear and non-linear clearance from the central compartment
was used to capture non-linearity in scaled human concentration
time data. The estimated human parameters are listed in Table 3.
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Parameter Estimate Unit SD

Cl1 48.4 mL/day 1.34
\%! 154 mL /kg 3.11
A\ 2347 mL/day 425
K, 1.23 [g/mL 0.71
Cl, 84.6 mL/day 17.0
v, 270 mL 10.5

Table 3: Estimated Values of Clearance Saturation Model Used for Simulation.

Linear clearance (Cl,) and distribution clearance (Cl,) values
were determined to be 48.3 and 84.6 mL/day. Population
estimates for volumes, V, and V, were 154 and 271 mL. K _
and V__, parameters describing non-linear clearance from the
central compartment obtained from model fit were 1.23 pg/mL
and 2347 mL/day. Human PK simulations were done using TSC
as a target concentration required to achieve clinical efficacy.
Two different scenarios were considered 1) average steady
concentrations (C,p) are maintained at population mean TSC
2) Cmgh_SS concentrations are above population TSC. As seen in
Figure 6 at dose of 0.5 mg/kg, steady state concentrations were
approximately at mean TSC. At the doses of 1.6 and 2.6 mg/kg
QIW, Ctrough concentrations stayed above mean TSC or above
confidence interval of TSC. In Q3W dosing regimen, Crough
concentrations could not be maintained above population mean
TSC at dose levels upto 3.9 mg/kg. At doses greater than 4 mg/

1E+04 —

1000

100

| IIIIIIL|.

Turmor volume (cubic mm)

—_

0.1

kg safety multiples could not be maintained (data not shown),
therefore simulations were not conducted at doses greater
than 3.9 mg/kg Q3W. Clinical trial simulations were done in
50 subjects using information translated from preclinical PK/
PD modelling and cynomolgus monkey pharmacokinetic data.
Most of pharmacodynamic parameters used in the clinical PK/
PD model were borrowed from preclinical model, however,
to provide clinical relevance and predict efficacy of ADC in
cancer patients, tumor growth rate and initial tumor volume
were changed to the values reported clinically [19, 20]. PES was
determined from simulated cancer growth curves using RECIST
1.1 criteria. Population mean PFS at doses of 0.5, 1 and 2 mg/kg
Q1W was approximately 55, 72 and 85 % (Figure 7). At doses
of 1.3, 2.6 and 3.9 mg/kg Q3W survival was 50, 65, 80% (Figure
7).
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Figure 3: (a) Tumor volume PK/PD model fit for H292 xenograft tumor response to following intraperitoneal dosing of vehicle
(black) or ADC dosed once on days 0, 7, 11, 15 and 19 at 1.5 mg/kg (orange), 3 mg/kg (magenta), 7.5 mg/kg (green) or 15 mg/
kg (blue). Solid lines represent predicted data while data points are observed data. (b) Goodness of fit diagnostic plots: individual
prediction (IPRED) versus DV and corrected weighted residual (CWRES) versus IVAR. Prediction were scattered on the line of
unity suggesting very good correlation between observed and predicted tumor volume regression. CWRES were scattered mostly
within 2-fold error, there was no change in weighted residuals as function of independent variable (time).
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5. Discussion

PK/PD study was conducted in H292 xenograft mice in order
to predict exposure response of our ADC in NSCLC cancer
patients. Mice were administered doses ranging from 1.5
to 15 mg/kg and blood samples were collected from all mice
in a staggered manner so that there is sufficient data to build
robust understanding of efficacy in mice. Selection of these
doses was based on prior studies conducted in the same model
(data not shown). As seen in Figure 1, systemic concentrations
of conjugated antibody as well as total antibody increased with
increase in dose. It is important to mention that concentrations
of free payload were below LLOQ at all doses. No evidence of
changes in clearance of either conjugated or total antibody was
observed with increase in dose, suggesting linear clearance. Our
antibody does not bind to mouse antigen, therefore, TMDD was
not anticipated to play role in clearance of this ADC in mice.

All implanted tumors were found to regress after first dose
(Figure 2). Tumor growth inhibition was even marked as the
study progressed, except at 1.5 mg/kg, wherein tumors were seen
to regrow after first 2 doses. At doses greater than 1.5 mg/kg, no
tumor regrowth was observed even 20 days after treatment was
completed. In some mice, tumor was not palpable towards the
end of the study, suggesting remarkable efficacy of this ADC.

100
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Conc. total antibody (pg/mL)
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PK/PD modelling was done with tumor volume and
pharmacokinetic data obtained from H292 xenograft study.
Several mechanistic models have been developed and reported
for PK/PD modelling of ADCs [15,23,24, 5]. Model developed
by Jumbe et al., 2010 remains one of the most applied models
for preclinical translation of efficacy of ADCs. This model
has been successfully shown to translate preclinical efficacy
of T-DM1 to clinic. Because of aforementioned reasons and
ease of identifiability of modelling parameters, we have used
Jumbe’s model for building concentration-effect relationship
and deriving TSC. Population modelling was done to capture
inter-animal variability in pharmacokinetics as well as tumor
growth inhibition. Reasonably good fit was observed for tumor
growth inhibition at all doses as seen in tumor volume data fit
and diagnostic plots (Figure 3).

All parameters were estimated with a good precision as seen in
Table 2. Estimated population TSC estimate was 1.06 ug/mL
(confidence interval, 0.31 to 1.30 [lg/mL). Non-linearity in
pharmacokinetics of ADC was evident from concentration-time
profiles of both total and conjugated antibody at 10 to 20 mg/
kg and corresponding change in estimated systemic clearance
(Figure 4, Supplementary information).
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Figure 4: Serum concentration profiles of total antibody and conjugated antibody following repeated intravenous infusions of ADC
to cynomolgus monkey at 10 mg/kg and 20 mg/kg. Solid lines represent data of 20 mg/kg while dash line represent data of 10 mg/
kg. Circles and squares are serum concentrations of total antibody and conjugated antibody, respectively.
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This non-linearity can be explained by TMDD due to binding of
total and conjugated antibody to target antigen in cynomolgus
monkey. Cynomolgus monkey serum concentration time data
was scaled to human using species time-invariant method [16].
Allometric exponents of 0.85 and 1 were used for clearance and
volume as reported previously [18]. It is important to mention
that ADC binds to cynomolgus monkey and human target
antigen with similar binding affinity, therefore, based on monkey
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pharmacokinetic data, non-linearity in pharmacokinetics ADC
was also assumed in human. Two compartment model with
linear and non-linear clearance from central compartment was
found to fit observed serum concentration time data at both doses
better than Michaelis-Menten model (data not shown). As seen
in diagnostic plots (Figure 5) linear correlation was observed
between observed and predicted data with most of the numbers
scattered around line of unity.
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Figure 5: Model fit and diagnostic plots to demonstrate the goodness of fit the model used to fit monkey pharmacokinetics data
using two compartment model with parallel and non-linear elimination from the central compartment following IV administration.

In addition, weighted residuals were within 2-fold, suggesting
model fit observed concentration data very well. A closer
examination of visual predicted check plots further revealed
that quantiles of observed data fell within predicted quantiles
corroborating goodness of the fit of the model. Human
pharmacokinetic parameters: Cl,, Cl, V, V, K and V__
derived from scaled pharmacokinetic data were used for

subsequent simulations. Population average TSC was used as a
target translation parameter driving clinical efficacy. Simulations
were performed in 50 virtual individuals at doses between 0.2 to
2 mg/kg Q1W and 1 to 4 mg/kg Q3W to keep C et population
TSC estimate or C_ . above the TSC. Simulated profiles are
shown in Figure 6.
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Figure 6: Simulated concentration-time profile of ADC in human at the doses of 0.5 mg/kg and 1.0 mg/kg once every week and
at 1.3 mg/kg and 3.9 mg/kg once every three week for six weeks. TSC was estimated to be 1.7 pg/mL from PK/PD modelling of
tumor regression data obtained form H292 xenograft mice. Concentration range in grey represents the 95% confidence interval of
TSC estimate.
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Figure 7: Kaplan Meier survival analysis of simulated therapeutic benefit of ADC in human at the doses of 0.5 -2 mg/kg and 1.3-3.9
mg/kg once every week or once every three weeks for a total of 14 or 7 doses, respectively. The tumor regression produced in clinic
was simulated in 50 patients using Jumbe transduction model. For estimating patient survival tumor diameter less than 1.5 cm was
assumed an arbitrary measure of survival.
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Minimum systemic concentrations were found to vary about
25-30% in the simulated population, however a reasonable
coverage of estimated TSC was observed (Figure 6). Population
average steady state concentrations remained within estimated
95% confidence interval of TSC for doses greater than 0.5 mg/
kg Q1W and 1.3 mg/kg Q3W for all simulated individuals. Our
simulations showed that at dose of 1.6 mg/kg, concentrations of
all simulated individuals were above 1.06 ug/mL. However, in
Q3W regimen, trough concentrations could not be maintained
above TSC in the simulated dose range.

In order to further understand whether maintaining systemic
exposure above TSC could translate into desired therapeutic
benefit in human, clinical trial simulations were conducted
using pharmacodynamic parameters estimated from preclinical
efficacy models. Premise of this modelling work was based
on promising results shown by clinical trial for brentuximab-
vedotin in Hodgkin’s lymphoma, where a mechanistic
mathematical model was successfully able to predict clinical
efficacy of this ADC [25]. Several other successful retrospective
predictions of PFS have been reported by Betts, Singh and Shah
[26,27]. We have kept overall model structure for clinical trial
simulation the same as preclinical model, with the exception that
mouse system parameters such as initial tumor size and tumor
growth rates were replaced with clinically relevant parameters,
to make the model representative of the human system. Initial
tumor size and tumor doubling time reported in literature for
NSCLC patients were used [19, 20]. Subjects were dosed for
3 months in QIW regimen and 6 months for Q3W regimen to
mimic typical protocol in clinical settings. As seen in Kalpan
Meier curves, at doses of 0.5, 1 and 2 mg/kg QIW mean PFS
was approximately 55, 72 and 85%. Similarly, at doses of 1.3,
2.6 and 3.9 mg/kg Q3W survival was 50, 65, 80% (Figure 7).
This suggests, markedly similar therapeutic outcome when ADC
was administered once weekly at doses between 0.5-2.0 mg/
kg or once every three weeks at doses between 1.3 to 3.9 mg/
kg for 3 or 6 months. Betts et al., [26]. Have used a multiscale
PK/PD model to translate preclinical efficacy of inotuzumab
ozogamicin and found fractionated dosing regimen was superior
to a conventional dosing regimen for acute lymphocytic
leukemia but not for non-Hodgkin’s lymphoma. In a similar
effort, Singh and Shah [27]. Compared PFS for HER2 1+ and
3+ populations in doses ranging from 0.1 to 20 mg/kg Q3W, 3.6
mg/kg Q4W, 1.2 mg/kg QIW and 3, 0.3, and 0.3 mg/kg given
on days 0, 7, and 14 of a 21-day cycle (frontloading regimen).
They reported similar PFS irrespective of dosing regimen in
HER2 1+, however, fractionated dosing regimen (i.e. front
loading) was found to provide an improvement in the efficacy.
Jumbe et al., 2010 [15]. Have also evaluated different dosing
regimens for T-DM1 (Q1W, Q2W, and Q3W) in preclinical
HER2-expressing animal models (BT474EEI and F05). They
found lack of improvement in the efficacy of ADC when a
fractionated dosing regimen was used. Similar findings were
observed in clinical outcome for T-DM1 as reported by Wang
et al., [28]. Wherein clinical efficacy was observed at doses
where C . was below preclinical estimated TSC of 30.2 pg/mL.
Our findings suggest, maintaining trough concentrations above
target TSC does not provide marked therapeutic benefit over

maintaining average steady state concentrations of ADC at TSC.
In our work, no marked improvement in PFS was noted with
more frequent dosing and clinical outcome was predicted to be
between Q1W and Q3W regimens. High dose of ADC wherein
steady state trough concentrations is above TSC did not translate
to marked clinical PFS. This finding is significant for researchers
developing ADCs and optimizing clinical dose as they will
not have to necessarily conduct clinical trial at high doses to
maintain concentrations above TSC. Considering the challenges
in understanding efficacy-toxicity window of ADCs in clinical
development, this insight is also valuable for dose selection to
maintain a balance of safety and efficacy of ADCs.

6. Conclusion

A population PK/PD model was built to establish concentration-
effect relationship of ADC in preclinical model and translate
its efficacy to human. Efficacy predicted using clinically
relevant population PK/PD model showed remarkable PFS in
both Q1W and Q3W dosing regimen in the dose range of 0.5
to 2 mg/kg or 1.3 to 3.9 mg/kg. Above studies and evaluations
helped us establish robust PK/PD relationship of our ADC and
understand impact of maintaining steady state concentration in
a certain range on the therapeutic outcome. It is evident from
our findings that human dose which maintains average steady
state concentrations at predicted TSC is sufficient to obtain
clinical efficacy and therefore maintaining steady state trough
concentrations above TSC may not be desired. Overall, 0.5 mg/
kg QIW or 1.3 mg/kg Q3W were considered to be efficacious
starting dose for FIH study of our ADC.
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