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Abstract
In this work, an analogue of Köebe and Bieberbach’s theorems has been proposed for a class of locally quasi-conformal 
maps defined on the open unit disc ∆= {z ∈ C : |z| < 1}.
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1. Introduction
In this paper, an analogue of Köebe’s and Bieberbach’s theorems 
has been proposed in a class of locally quasi-conformal maps, 
defined on the open unit disc, by applying the notions of 
extremal length of a family of curves and of the modulus of a 
double-connected domain which made their appearance in the 
first part of the 20th century, in the work of G. GRECH. and 
L. AHLFORS. The methods used by the latter proved effective 

in solving many problems in the geometric theory of functions 
with complex variables and the theory of Riemann surfaces.
The different aspects of using these methods are significantly 
mentioned in a large number of works (for example [2-3]).
It’s worth noting that the interest in this theme continues to this 
day. Recall that, the modulus of a double-connected D,
domain in the complex plane C is called the number
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and L. AHLFORS. The methods used by the latter proved effective in solving many problems in the geometric theory of

functions with complex variables and the theory of Riemann surfaces.

The different aspects of using these methods are significantly mentioned in a large number of works (for example [2-3]).

It’s worth noting that the interest in this theme continues to this day. Recall that, the modulus of a double-connected D,

domain in the complex plane C is called the number

M (D) =
1
λ(G)

,

where λ(G) is the extremal length in of the family G of curves connecting the boundaries of D. In particular, for the crown

K(r,R) = {z ∈ C : r <| z |< R, 0 < r < R < ∞}, we have:

M (r,R) =
1

2π
ln
(R

r

)
.

The monotonicity property of the modulus plays a key role in this work.

Recall that if D1 ⊂ C and D2 ⊂ C, double-connectors such that, D1 ⊂ D2, alors M(D1) ≤ M(D2).

Let us also note that by writing a ring K as a union of a finite number of concentric crowns Dk, k = 1, ..., n, two by two

disjoint, bounded by curves γk, k = 1, ..., n − 1 we will have the following relation

M(K) ≥
n∑

k=1

M(Dk), (1)

and the equality is reached that, when the curves γk are circles {z : |z| = rk}, rk ∈ (r,R),
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Thus, we can state the theorem of L. Ahlfors:

2. Theorem 1
Let D be a double-connected domain in the complex plane ℂ. Let f be a Kf -quasi-conformal map. Then we have the Inequality

k = 1, ..., n − 1.

It is important to note that the modulus admits the property of invariance by conformal maps and quasi-invariance by

quasi-conformal maps.

Thus, we can state the theorem of L. Ahlfors:

2. Theorem 1

Let D be a double-connected domain in the complex plane C. Let f be a K f -quasi-conformal map. Then we have the

inequality

1
K f

M (D) ≤ M ( f (D)) ≤ K f M(D) (2)

From the inequalities (2), we obtain equalities if, and only if, f is an affine map. This does not justify the correctness of

these inequalities in many current problems. It appears obvious that the inequalities (2) are not applicable for moderately

quasi-conformal or locally quasi-conformal maps. The following theorem allows us to overcome some difficulties.

3. Theorem 2 ([2])

Let f be a crown map K(r,R) = {z : r <| z |< R, 0 < r < R < ∞} on the locally quasi-conformal double-connected domain
D ⊂ C. Let

p f (z) =
| fz(z)|+ | fz̄(z)|
| fz(z)|− | fz̄(z)|

the first Lavrentiev characteristic of the map f .

Let’s put P f (r) = essup|z|=r p f (z).

If the integrals
∫ R

r
P−1

f (t)
dt
t

and
∫ R

r
P f (t)

dt
t

are finite, then the modulus of the domain verifies the relation

1
2π

∫ R

r
P−1

f (t)
dt
t
� M(D) �

1
2π

∫ R

r
P f (t)

dt
t

(3)

For Pf (r) =K f , we find the increase (2).

An example of the use of the theorem 2 is expressed in the solution of certain majorization problems in a class of

locally quasi-conformal maps in the open unit disc :

4. Theorem 3 (analog of Köebe’s theorem in a class of locally quasi-conformal maps).

Let f be an automorphism of ∆, locally quasi-conformal such that, f (0) = 0, fz(0) = 1 and if |µ f (z0)| ≤ |z0|, then for all

z0 = reiθ ∈ ∆, we have :
1
4

1
1 − r2 ≤

∣∣∣ fz(z0)
∣∣∣ ≤ 1

1 − r2

Démonstration.

Let’s consider the map h(z) =
f (z)

(1 − |z0|2) fz(z0)
.

h is an automorphism of ∆, locally quasi-conformal such that h(0) = 0 and satisfying the inequality
∣∣∣µh(z0)

∣∣∣ ≤ |z0|
We know that

Ph(z0) =
|hz(z0)| + |hz̄(z0)|
|hz(z0)| − |hz̄(z0)| .

Ph(z0) =
1 + |µh(z0)|
1 − |µh(z0)|

.

2
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An example of the use of the theorem 2 is expressed in the solution of certain majorization problems in a class of locally 
quasi-conformal maps in the open unit disc:

4. Theorem 3 (Analog of Köebe Theorem in a Class of Locally Quasi-Conformal Maps).
Let f be an automorphism of ∆, locally quasi-conformal such that, f(0) = 0, fz(0) = 1 and if |µf(z0)| ≤ |z0|, then for all z0 = reiθ ∈ ∆, 
we have :

Démonstration.

With Ph(z0) the first characteristic of Lavrentiev

Let’s put
Ph(r) = essup|z0 |=rPh(z0).

Therefore
Ph(r) ≤

1 + r
1 − r

et P−1
h(r) ≥

1 − r
1 + r

If ε > 0, then the image of the ring ∆ε =
{
z : ε < |z| < 1

}
by h is a doubly connected domain to within o(ε) merging with

the ring ∆′ε =
{
z : ε
∣∣∣hz(0)

∣∣∣ < |z| < 1
}
.

Thus
1

2π

∫ 1

ε

P−1
h(r)

dr
r
≤ M(∆′ε) (4)

Or
M(∆′ε) =

1
2π

ln
( 1
ε|hz(0)|

)
et P−1

h(r) ≥
1 − r
1 + r

The relation (4) becomes :
1

2π

∫ 1

ε

1 − r
1 + r

dr
r
≤ 1

2π
ln
( 1
ε|hz(0)|

)

∫ 1

ε

(1
r
− 2

1 + r

)
dr ≤ − ln(ε) − ln(|hz(0)|)

−2 ln 2 − ln(ε) + 2 ln(1 + ε) ≤ − ln(ε) − ln(|hz(0)|)
− ln 4 + 2 ln(1 + ε) ≤ − ln(|hz(0)|)

By stretching ε to 0, we find :
ln(|hz(0)|) ≤ ln 4

Taking exponential on both sides, we find : ∣∣∣hz(0)
∣∣∣ ≤ 4 (5)

Let’s consider the crown ∆0 =

{
z : ε < |z| < |hz(0)|

}
. Constructively ∆′ε ⊂ ∆0

Due to the monotonicity of the module, we have : M(∆′ε) ≤ M(∆0)

1
2π

ln
( 1
ε|hz(0)|

)
≤ 1

2π
ln
( |hz(0)|
ε

)

− ln(ε) − ln(|hz(0)|) ≤ ln(|hz(0)|) − ln(ε)

ln(|hz(0)|) ≥ 0

Taking exponential on both sides, we find :
1 ≤ |hz(0)| (6)

The relations (5) et (6) give :
1 ≤ |hz(0)| ≤ 4 (7)

hz(z) =
fz(z)

(1 − |z0|2) fz(z0)
Therefore

hz(0) =
1

(1 − |z0|2) fz(z0)
(8)

By replacing relation (8) in relation (7), we get the results of our theorem, i.e. :

1
4

1
1 − r2 ≤

∣∣∣ fz(z0)
∣∣∣ ≤ 1

1 − r2 (9)
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The relations (5) et (6) give :
1 ≤ |hz(0)| ≤ 4 (7)

hz(z) =
fz(z)
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Therefore
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1
4

1
1 − r2 ≤

∣∣∣ fz(z0)
∣∣∣ ≤ 1

1 − r2 (9)

35. Theorem 4 (analog of Bieberbach’s theorem in a class of locally quasi-conformal maps)

Let f be an automorphism of ∆, locally quasi-conformal such that, f (0) = 0, fz(0) = 1 and if |µ f (z0)| ≤ |z0|, then for all

z0 = reiθ ∈ ∆, we have :

1
8

ln
(1 + r
1 − r

)
≤
∣∣∣ f (z0)

∣∣∣ ≤ 1
2

ln
(1 + r
1 − r

)

Démonstration.

We know that :

f (z0) =
∫ z0

0
fz(ρ)dρ, avec ρ = reiθ

Therefore

f (z0) =
∫ r

0
fz(teiθ)eiθdt

Taking the modulus on both sides, we have :

| f (z0)| ≤
∫ r

0
| fz(teiθ)|dt (10)

According to relation (9),
∣∣∣ fz(z0)

∣∣∣ ≤ 1
1 − r2

Then

| f (z0)| ≤
∫ r

0

1
1 − t2 dt

| f (z0)| ≤ 1
2

∫ r

0

( 1
1 − t

+
1

1 + t

)
dt

| f (z0)| ≤ 1
2

[
ln(1 + r) − ln(1 − r)

]

Therefore :
| f (z0)| ≤ 1

2
ln
(1 + r
1 − r

)
(11)

Let γ be a map of class C 1 per piece of [0, 1] in C such that γ(0) = 0 and γ(1) = z0. Consider the path ([0, 1]; γ).

| f (z0)| =
∫ 1

0
| f ′(γ(t))||γ′(t)|dt (12)

Let’s put : γ(t) = x(t) + iy(t), alors |γ(t)| =
√

x2(t) + y2(t)

d|γ(t)|
dt

=
x′(t).x(t) + y′(t).y(t)√

x2(t) + y2(t)
(13)

According to the Cauchy-Schwarz inequality we have :

x′(t).x(t) + y′(t).y(t) ≤
√

x′2(t) + y′2(t).
√

x2(t) + y2(t)

Then the relation (13) becomes :
d|γ(t)|

dt
≤
√

x′2(t) + y′2(t)

d|γ(t)|
dt

≤ |γ′(t)|

4
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Let γ be a map of class C 1 per piece of [0, 1] in C such that γ(0) = 0 and γ(1) = z0. Consider the path ([0, 1]; γ).

| f (z0)| =
∫ 1

0
| f ′(γ(t))||γ′(t)|dt (12)

Let’s put : γ(t) = x(t) + iy(t), alors |γ(t)| =
√

x2(t) + y2(t)

d|γ(t)|
dt

=
x′(t).x(t) + y′(t).y(t)√

x2(t) + y2(t)
(13)

According to the Cauchy-Schwarz inequality we have :

x′(t).x(t) + y′(t).y(t) ≤
√

x′2(t) + y′2(t).
√

x2(t) + y2(t)

Then the relation (13) becomes :
d|γ(t)|

dt
≤
√

x′2(t) + y′2(t)

d|γ(t)|
dt

≤ |γ′(t)|

4| f ′(γ(t))|.d|γ(t)|
dt

≤ | f ′(γ(t))|.|γ′(t)|

Therefore ∫ 1

0
| f ′(γ(t))|d|γ(t)| ≤

∫ 1

0
| f ′(γ(t)|.|γ′(t)|dt (14)

Replacing the relation (12) in the relation (14), we have :

∫ 1

0
| f ′(γ(t))|d|γ(t)| ≤ | f (z0)| (15)

According to the relation (9), we have :
1
4

1
1 − |γ(t)|2 ≤ | f

′(γ(t)|

Then
1
4

∫ 1

0

1
1 − |γ(t)|2 d|γ(t)| ≤ | f (z0)|

1
8

[
ln
(1 + |γ(t)|
1 − |γ(t)|

)]1
0
≤ | f (z0)|

1
8

[
ln
(1 + |γ(1)|
1 − |γ(1)|

)
− ln
(1 + |γ(0)|
1 − |γ(0)|

)]
≤ | f (z0)|

Thus :
1
8

ln
(1 + |z0|
1 − |z0|

)
≤ | f (z0)|

Since |z0| = r , then :
1
8

ln
(1 + r
1 − r

)
≤ | f (z0)| (16)

Consequently, relations (11) and (16) give:

1
8

ln
(1 + r
1 − r

)
≤
∣∣∣ f (z0)

∣∣∣ ≤ 1
2

ln
(1 + r
1 − r

)
(17)

6. Conclusion

In this paper, we have found an analogue of Koebe’s theorem and an analogue of Bieberbach’s theorem in a particular class

of quasi-conformal maps, based on the properties of the modulus of a double-connected domain, the first quaracteristic of

Lavrentev.
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