ISSN: 2769-545X

Advances in Machine Learning \& Artificial Intelligence

About Structure of a connected Quaternion-JUllA-Set and Symmetries of u related JULIA-Network

Udo E. Steinemann*
Findeisen-Str, 5/7, 71665 Vaihingen an der Enz, Germany

*Corresponding Author
Udo E. Steinemann, Findeisen-Str, 5/7, 71665 Vaihingen an der Enz, Germany.

Submitted: 2024, Mar 12; Accepted: 2024, Apr 23; Published: 2024, Apr 29

Citation: Udo E. Steinemann. (2024). About Structure of a connected Quaternion-JUllA-Set and Symmetries of u related JULIA-Network. Adv Mach Lear Art Inte, 5(2), 01-18.

Abstract

If a variable is replace by its square and subsequently enlarged by a constant during a number of iteration-steps in quaternion-space, a network of (3) sets will be built gradually. As long as for the iteration-constant certain conditions are fulfilled, the network will consist of: an rrnbounded set (escape-set) with trajectories escaping to infinity during course of the iteration, a bounded set (prisoner-set) with trajectories tending to a sink-point and a further bounded one (JULIA-set) with a fixed-point as repeller having a repulsive effect on all points of both the other sets. The iteration will continue until the attracting sink-point of prisoner-set and the repeliing fixedpoint on JULIA-set have been found. This situation is reached if predecessor- and successor-state of the iteration became equal. The fixed-point-condition provisionally formulated in general terms of quaternions, can be separated into (3) sub-conditions. When heeding the HAMILTONian-rules for interactions of the imaginary sub-spaces of the quaternion-space, each sub-condition will be appropriate for one imaginary subspaces and independently debatable. Knowledge of fixed-points from this fundamental network will one enable to study the structure of a connected JULIA-set.

The Iteration will start from (1) on real-axis, this is not a restriction on generaiity because an appropriate scaling on realaxis can always be archived this way. It will become obvious, that the fixed-points in prisonerand JIILIA-set will depend on the iteration-constant only. Thus (16) different constants chosen appropriately will enable to arrange (16) fixed-points of JLTLIA-sets in the square-points of a hyper-cube and thereby together with the JULIA-sets to built a related JULIA-network. The symmetry-properties of this related .IULIA-network can be studied on base of a hyper-cube's symmetry-group extended by some additional considerations.

1. Introduction.

In the following attention is appiied to the results of an iteration, which takes place in quaternion-space (a space of hyper-cubes with its space-elements) a layout of this is given next:

Each hyper-cube:

- Is surrounded by (8) cubes each one with (6) surfaces. Thus all together, cubes will have (48) surfaces.
- Because the cubes wiil slmre surfaces, onlv (24) surfaces will have to be counted effectively.

The quaternion-space is spanned by a real unit-vector (e) vertical to a tripod of imaginary unit-vectors $\left\{\boldsymbol{i}^{\hat{i}} \boldsymbol{j}^{\boldsymbol{\lambda}} \boldsymbol{d},\right\}$. Among these referencevectors t \} re HAMILTONian rules must hold:

1^1. $\quad e^{2}=\left(-i^{2}\right)=\left(-\AA^{2}\right)=\left(-d^{2}\right)=1$

$$
\llbracket i j j=(-j i j)=d \rrbracket \wedge \llbracket j d=(-d j)=i \rrbracket \wedge \llbracket d i=(-i d)=j \rrbracket
$$

Any point in the space is given by:

- $\mathbb{Q}=\boldsymbol{e} \mathrm{Q}_{0}+i \mathrm{Q}_{1}+\boldsymbol{j} \mathrm{Q}_{2}+\boldsymbol{d} \mathrm{Q}_{3} \quad \Rightarrow \quad\langle\mathbb{Q}=$ quaternion-variable $\rangle \wedge\left\langle\left[\mathrm{Q}_{0}{ }^{\wedge} \mathrm{Q}_{1} \wedge \mathrm{Q}_{2}{ }^{\wedge} \mathrm{Q}_{3}\right]=\right.$ real components \rangle.

A sequence:
1^2. $\quad\left[\mathbb{Q} \rightarrow \mathbb{Q}^{2}+\left(\mathbb{N}=\mathrm{N}_{0}+i{ }^{i} \mathrm{~N}_{1}+j \mathrm{~N}_{2}+\boldsymbol{d} \mathrm{N}_{3}\right)\right]^{2}+\mathbb{N} \rightarrow \ldots \quad \Rightarrow \quad\langle\mathbb{N}=$ constant $\rangle \wedge\left\langle\left[\mathrm{N}_{0} \wedge \mathrm{~N}_{1} \wedge \mathrm{~N}_{2} \wedge \mathrm{~N}_{3}\right]=\right.$ real components)
iteratively executed is to considered next, where by observing the HAMILTONian rules (1^1.) the following relations between \mathbb{Q} and \mathbb{Q}^{2} must hold:

Derivation 1^1.				
$\mathbb{Q}=e \mathrm{Q}_{0}+i \mathrm{Q}_{1}+j \mathrm{Q}_{2}+d \mathrm{Q}_{3}$	-			
\|leads to		t		
$\mathbb{Q}^{2}=\left(e \mathrm{Q}_{0}+i \mathrm{Q}_{1}+j \mathrm{Q}_{2}+d \mathrm{Q}_{3}\right)^{2}$	\bigcirc			
$\begin{aligned} \mathbb{Q}^{2}= & e^{2} \mathrm{Q}_{0}{ }^{2}+i^{2} \mathrm{Q}_{1}{ }^{2}+j^{2} \mathrm{Q}_{2}{ }^{2}+d^{2} \mathrm{Q}_{3}{ }^{2}+ \\ & i 2 \mathrm{Q}_{0} \mathrm{Q}_{1}+j 2 \mathrm{Q}_{0} \mathrm{Q}_{2}+d 2 \mathrm{Q}_{0} \mathrm{Q}_{3}+ \\ & i\left(j \mathrm{Q}_{1} \mathrm{Q}_{2}+d \mathrm{Q}_{1} \mathrm{Q}_{3}\right)+ \\ & j\left(i i \mathrm{Q}_{2} \mathrm{Q}_{1}+d \mathrm{Q}_{2} \mathrm{Q}_{3}\right)+ \\ & d\left(i \mathrm{Q}_{3} \mathrm{Q}_{1}+j \mathrm{Q}_{3} \mathrm{Q}_{2}\right) \end{aligned}$	-	-		
\mid leads to\| \mid \| with		t	\downarrow	
$\begin{aligned} \boldsymbol{e}^{2}=\left(-i^{2}\right) & =\left(-j^{2}\right)=\left(-d^{2}\right)=1 \\ i \cdot j & =(-j \cdot i)=d \\ j \cdot d & =(-\boldsymbol{d} \cdot j)=i \\ d \cdot i & =(-i \cdot d)=j \end{aligned}$		-		
$\begin{aligned} \mathbb{Q}^{2}= & \mathrm{Q}_{0}{ }^{2}-\mathrm{Q}_{1}{ }^{2}-\mathrm{Q}_{2}{ }^{2}-\mathrm{Q}_{3}{ }^{2}+ \\ & i 2 \mathrm{Q}_{1} \mathrm{Q}_{0}+j 2 \mathrm{Q}_{2} \mathrm{Q}_{0}+d 2 \mathrm{Q}_{3} \mathrm{Q}_{0}+ \\ & d \mathrm{Q}_{1} \mathrm{Q}_{2}-j \mathrm{Q}_{1} \mathrm{Q}_{3}-d \mathrm{Q}_{2} \mathrm{Q}_{1}+i \mathrm{Q}_{2} \mathrm{Q}_{3}+j \mathrm{Q}_{3} \mathrm{Q}-i \mathrm{Q}_{3} \mathrm{Q}_{2} \end{aligned}$	-			
\|leads to \mid	t			
$\begin{aligned} \mathbb{Q}^{2}= & \mathrm{Q}_{0}{ }^{2}+i 2 \mathrm{Q}_{1} \mathrm{Q}_{0}-\mathrm{Q}_{1}{ }^{2}+ \\ & \mathrm{Q}_{0}{ }^{2}+j 2 \mathrm{Q}_{2} \mathrm{Q}_{0}-\mathrm{Q}_{2}{ }^{2}+ \\ & \mathrm{Q}_{0}{ }^{2}+\boldsymbol{d} 2 \mathrm{Q}_{3} \mathrm{Q}_{0}-\mathrm{Q}_{3}{ }^{2}-2 \mathrm{Q}_{0}{ }^{2} \end{aligned}$	-			
\|leads to		\dagger		
$\mathbb{Q}^{2}=\left(\mathrm{Q}_{0}+i \mathrm{Q}_{1}\right)^{2}+\left(\mathrm{Q}_{0}+j \mathrm{Q}_{2}\right)^{2}+\left(\mathrm{Q}_{0}+d \mathrm{Q}_{3}\right)^{2}-2 \mathrm{Q}_{0}{ }^{2}$	-		-	
\|leads to / \leqslant \| with		\downarrow		\downarrow
$\llbracket \mathrm{Q}_{i}=\mathrm{Q}_{0}+i \mathrm{Q}_{1} \rrbracket \wedge \llbracket \mathrm{Q}_{j}=\mathrm{Q}_{0}+j \mathrm{Q}_{2} \rrbracket \wedge \llbracket \mathrm{Q}_{\mathrm{d}}=\mathrm{Q}_{0}+d \mathrm{Q}_{3} \rrbracket$			-	
$\mathbb{Q}=\left(\mathrm{Q}_{0}+i \mathrm{Q}_{1}\right)+\left(\mathrm{Q}_{0}+j \mathrm{Q}_{2}\right)+\left(\mathrm{Q}_{0}+d \mathrm{Q}_{3}\right)-2 \mathrm{Q}_{0}$	-			

Without restriction on generality due to a free choice of an appropriate scaling on the $\mathbb{e}-\mathrm{axis},\left(\mathrm{Q}_{\mathbf{0}}=1\right)$ can be assumed in (1~2.) and thus one may further write:

1^3. $\left[\left(\mathbb{P}=\mathrm{Q}_{i}+\mathrm{Q}_{j}+\mathrm{Q}_{d}-2\right) \rightarrow\left(\mathbb{P}^{2}=\mathrm{Q}_{i}{ }^{2}+\mathrm{Q}_{j}{ }^{2}+\mathrm{Q}_{d}{ }^{2}-2\right)+\mathbb{N}\right]^{2}+\mathbb{N} \rightarrow \ldots \quad \Rightarrow \quad \mathrm{N}_{0}=\mathrm{N}_{i 0}+\mathrm{N}_{j 0}+\mathrm{N}_{d 0}$

This iteration will run until its predecessor- and successor-state become equal. When certain restrictions on (\mathbb{N}) are observed, a network of (3) connected sets will be generated:

- An unbounded escape-set with trajectories escaping to infinity in execution-time of the iteration,
- A bounded prisoner-set with trajectories tending to a sink-point while the iteration is going on and
- A bounded JULIA-set with a fractal structure formed by points acting as repellers against all points of both the other sets.

At the moment iteration stops, (2) fixed-points have been generated:

- A repeller-point $\left(\mathbb{H}_{[1]}\right)$ on JULIA-set and
- A attractive sink-point ($\mathbb{H}_{[2]}$) in prisoner-set.

From sequence ($\mathbf{1}^{\wedge} \mathbf{3}$.) the following condition for the fixed-points must hold:

- $\mathrm{Q}_{i}{ }^{2}+\mathrm{Q}_{j}{ }^{2}+\mathrm{Q}_{d}{ }^{2}-\mathrm{Q}_{i}-\mathrm{Q}_{j}-\mathrm{Q}_{d}+\mathrm{N}_{0}+i \mathrm{~N}_{1}+j \mathrm{~N}_{2}+\boldsymbol{d} \mathrm{N}_{3}=0$.

This will result in the (2) fixed-point-solutions $\left(\mathbb{H}_{[1<2]}\right)$ with their components:

- $\left[\mathbb{H}_{i} \leftarrow \mathrm{Q}_{i}\right] \wedge\left[\mathbb{H}_{j} \leftarrow \mathrm{Q}_{j}\right] \wedge\left[\mathbb{H}_{d} \leftarrow \mathrm{Q}_{d}\right]$.

Thus equation ($1^{\wedge} 3$.) can now be re-written as:

- $\mathbb{H}_{i}{ }^{2}+\mathbb{H}_{j}^{2}+\mathbb{H}_{d}{ }^{2}-\mathbb{H}_{i}-H_{j}-H_{d}+N_{0}+i N_{1}+j N_{2}+d N_{3}=0$,
under ($\mathrm{N}_{0}=\mathrm{N}_{i 0}+\mathrm{N}_{j 0}+\mathrm{N}_{d 0}$) can be separated into:
1^4. $\quad \mathbb{H}_{i}{ }^{2}-\mathbb{H}_{i}+N_{i 0}+i N_{1}=0$
1^5. $\quad \mathbb{H}_{j}{ }^{2}-\mathbb{H}_{j}+\mathrm{N}_{j 0}+j \mathrm{~N}_{2}=0$
1^6. $\quad \mathbb{H}_{d}{ }^{2}-\mathbb{H}_{d}+N_{d 0}+d N_{3}=0$.

2. About the Structure of a connected Ouaternion-JULIA-Set.

Searching for the fixed-points of an appropriate network (escape-, prisoner- and JULIA-set) seems to be a good way to enter the discussion on the structure of a connected JULIA-set. For further discussions an invariance of forward- and backward-iterations relative to the repelling fixed-point is of major interest.
Instead trying to find the fixed-points directly their projections in complex planes ($\left[\boldsymbol{e}^{\wedge} \boldsymbol{i}\right] \wedge\left[\boldsymbol{e}^{\wedge} \boldsymbol{i}\right] \wedge\left[e^{\wedge} \boldsymbol{d}\right]$) (obtained via solutions of equations (1^4.-1^6.)) are used preliminary in order to specify them indirectly.

2.1. Fixed-Points from Interation ($1^{\wedge} 3$) of Sequence ($1^{\wedge} 1$.).

From e.g. [$1 \wedge 2]$ it is known, that a network with complex escape- prisoner- and JULIA-set can be obtained, when a sequence like:
2.1^1. $\quad\left(\left[h=e h_{0}+i h_{1}\right] \rightarrow h^{2}+\left[\ell=e l_{0}+i 1_{1}\right]\right)^{2}+\ell \rightarrow\left(\left(h^{2}+\ell\right)^{2}+\ell\right)^{2}+\ell \rightarrow \ldots \quad([h=$ variable $] \wedge[\ell=$ constant $])$.
is executed recursively and the iteration finally stops due to equality of its predecessor-and successor-state. This complex network will have properties comparable with the network specified from ($1^{\wedge} 3$.) with the exception, it only exists in complex plane. For this complex network it ihas become obvious, there is a structural dichotomy. Depending on the constant (ℓ) both prisoner- and JULIA-set may behave differently:

- For a specific ℓ-set, the complex prisoner- and JULIA-set are connected (each on consists of one piece only) and the prisoner-set possesses a fixed-point as sink, while the JULIA-set has a fixed-point as a repeller for the prisoner- and escape-set as well.
- In case of an alternate $\boldsymbol{\ell}$-set, prisoner- and JULIA-set will become CANTOR-sets, which means, they appear completely disconnected.
B. B. MANDELBROT [3] had the idea of picturing this dichotomy in a set of parameters (ℓ) varying in the complex plane. This leads directly to the MANDELBROT-set:

He coloured each point in the plane of ℓ-values black or white depending on whether the associated JULIA-sets respectively turned out to be one piece or dust.

What now a question about the characters of the complex solutions from equations ($\mathbf{1}^{\wedge} 4 .-1 \wedge 6$.) is concerned, it must be identified, that they are subjected to the same dichotomy as those in case of (2.1^1.). Solutions of (1^4.$\mathbf{1}^{\wedge} \mathbf{6 .}$) only will become fixed-points, if the complex components $\left(\mathrm{N}_{i 0}+i{ }_{i} \mathrm{~N}_{1}\right) \wedge\left(\mathrm{N}_{j 0}+j \mathrm{~N}_{2}\right) \wedge\left(\mathrm{N}_{d 0}+d \mathrm{~N}_{3}\right)$ within (1^3.) are extracted from the black part of the MANDELBROT-set.

2.1.1. Conditions to find Components of Fixed-Points.

Under these conditions (1~4.) leads to the preliminary solutions:

- $\left.H_{i[1 \& 2]}=1 / 2 \pm 1 / 2 《 1-4 N_{i 0}-i 4 N_{1} \rrbracket\right\rangle^{1 / 2}$.

This can be further evaluated by settings:

- $1-4 N_{i 0}-i 4 N_{1}=(u-i x)^{2}=u^{2}-i 2 u x+x^{2}$
leads via a fourth-degree-equation for (u), to the following solutions of (u) and (x):
- $\mathrm{u}= \pm\left\langle 1 / 2-2 \mathrm{~N}_{i 0}+\left\langle\left(1 / 2-2 \mathrm{~N}_{i 0}\right)^{2}-4 \mathrm{~N}_{1}{ }^{2}\right\rangle^{1 / 2}\right\rangle^{1 / 2}$
- $\left.\mathrm{x}= \pm 2 \mathrm{~N}_{1} /\left\langle 1 / 2-2 \mathrm{~N}_{i 0}+\left\langle\left(1 / 2-2 \mathrm{~N}_{i 0}\right)^{2}-4 \mathrm{~N}_{1}{ }^{2}\right\rangle\right\rangle^{1 / 2}\right\rangle^{1 / 2}$
finally to:

2.1.1~1. $\quad H_{i[1 \& 2]}=1 / 2 \pm\left\langle 1 / 8-1 / 2 N_{i 0}+\left\langle\left\langle\left(1 / 8-1 / 2 N_{i 0}\right)^{2}-1 / 4 N_{1}{ }^{2}\right\rangle^{1 / 2}\right\rangle^{1 / 2} \mp i N_{1} /\left\langle 1 / 2-2 N_{i 0}+\left\langle\left\langle\left(1 / 2-2 N_{i 0}\right)^{2}-4 N_{1}{ }^{2}\right\rangle^{1 / 2}\right\rangle^{1 / 2}\right.\right.$.

The attracting or repelling property of the fixed-points is in essence the derivation of the sequence for (\mathbb{P}) at the locations of $\mathbb{H}_{i[1 \& 2]}$. This derivation can be calculated in the same way as for the real case. A fixed-point is attractive, if the absolute value of the derivation at fixed-point location is (<1), it is repelling if (>1). Therefore one obtains:

- $\left|2 \mathbb{H}_{i|1|}\right|>1 \rightarrow \mathbb{H}_{i[1 \mid}$ is repeller and thus a point on corresponding JULIA-set.
- $\left|2 \mathbb{H}_{i[2]}\right|<1 \rightarrow \mathbb{H}_{i[2]}$ is attractor and thus a sink in the corresponding prisoner-set.

More details about the derivations can be found in the scheme (2.1.1^1.):

Similarly ($1^{\wedge} 5$.) will lead to the preliminary solutions:

- $\mathbb{H}_{j[1 \& 2]}=1 / 2 \pm 1 / 2\left\langle 1-4 N_{j 0}-j 4 N_{2}\right\rangle^{1 / 2}$.

This can be further evaluated by settings:

- $1-4 \mathrm{~N}_{j 0}-j 4 \mathrm{~N}_{2}=(\mathrm{v}-j \mathrm{y})^{2}=\mathrm{v}^{2}-j 2 \mathrm{vy}+\mathrm{y}^{2}$
leads via a fourth-degree-equation for (\mathbf{v}), to the following solutions for (\mathbf{v}) and (\mathbf{y}):
- $v= \pm\left\langle\left\langle 1 / 2-2 N_{j 0}+\left\langle\left(1 / 2-2 N_{j 0}\right)^{2}-4 N_{2}{ }^{2}\right\rangle\right\rangle^{1 / 2}\right\rangle^{1 / 2}$
- $\mathrm{y}= \pm 2 \mathrm{~N}_{2} /\left\langle 1 / 2-2 \mathrm{~N}_{j 0}+\left\langle\left\langle\left(1 / 2-2 \mathrm{~N}_{j 0}\right)^{2}-4 \mathrm{~N}_{2}^{2}\right\rangle^{1 / 2}\right\rangle^{1 / 2}\right.$
finally to:

2.1.1~2. $\quad H_{j \mid 1 \& 2]}=1 / 2 \pm\left\langle 1 / 8-1 / 2 N_{j 0}+\left\langle\left\langle\left(1 / 8-1 / 2 N_{j 0}\right)^{2}-1 / 4 N_{2}{ }^{2}\right\rangle^{1 / 2}\right\rangle^{1 / 2} \mp j N_{2} /\left\langle 1 / 2-2 N_{j 0}+\left\langle\left(1 / 2-2 N_{j 0}\right)^{2}-4 N_{2}{ }^{2}\right\rangle^{1 / 2}\right\rangle^{1 / 2}\right.$.

The attracting or repelling property of the fixed-points is in essence the derivation of the sequence for (\mathbb{P}) at the locations of $\mathbb{H}_{j[1 \& 2]}$. This derivation can be calculated in the same way as for the real case. A fixed point is attractive, if the absolute value of the derivation at fixed-point location is (<1), it is repelling, if it is (>1). This leads in the actual cases to:

- $\left|2 \mathbb{H}_{j[1] \mid}\right|>1 \rightarrow \mathbb{H}_{j[1]}$ is repeller and thus a point on corresponding JULIA-set.
- $\left|2 \mathbb{H}_{j \mid 2]}\right|<1 \rightarrow \mathbb{H}_{j \mid 2]}$ is attractor and thus a sink in the corresponding prisoner-set.

More details about the derivations can be found in the following scheme (2.1.1^2.):

And last not least condition (1~6.) will lead to the preliminary solutions:

- $\left.\mathbb{H}_{d \mid 1 \& 2]}=1 / 2 \pm 1 / 2 《 1-4 \mathrm{~N}_{d 0}-d 4 \mathrm{~N}_{3}\right\rangle^{1 / 2}$.

This can be further ev aluated by settings:

- $1-4 \mathrm{~N}_{d 0}-d 4 \mathrm{~N}_{3}=(\mathrm{w}-d \mathrm{z})^{2}=\mathrm{w}^{2}-d 2 \mathrm{wz}+\mathrm{z}^{2}$
leads via a fourth-degree-equation for (w), to the following solutions for (w) and (z):
- $\mathrm{w}= \pm\left\langle 1 / 2-2 \mathrm{~N}_{d 0}+\left\langle\left(1 / 2-2 \mathrm{~N}_{d 0}\right)^{2}-4 \mathrm{~N}_{3}{ }^{2}\right\rangle^{1 / 2}\right\rangle^{1 / 2}$
- $\left.\mathrm{z}= \pm 2 \mathrm{~N}_{3} /\left\langle 1 / 2-2 \mathrm{~N}_{d 0}+\left\langle\left(1 / 2-2 \mathrm{~N}_{d 0}\right)^{2}-4 \mathrm{~N}_{3}{ }^{2}\right\rangle\right\rangle^{1 / 2}\right\rangle^{1 / 2}$
finally to:

2.1.1~3. $\quad H_{d|1 \& 2|}=1 / 2 \pm\left\langle\left\langle 1 / 8-1 / 2 N_{d 0}+\left\langle\left\langle\left(1 / 8-1 / 2 N_{d 0}\right)^{2}-1 / 4 N_{3}{ }^{2}\right\rangle^{1 / 2}\right\rangle^{1 / 2} \mp d N_{3} /\left\langle 1 / 2-2 N_{d 0}+\left\langle\left(1 / 2-2 N_{d 0}\right)^{2}-4 N_{3}{ }^{2}\right\rangle^{1 / 2}\right\rangle^{1 / 2}\right.\right.$.

The attracting or repelling property of the fixed-points is in essence the derivation of the sequence for (\mathbb{P}) at the locations of $\mathbb{H}_{\boldsymbol{d}[\mathbf{1 \& 2} \mathbf{2}}$. This derivation can be calculated in the same way as for the real case. A fixed- point is attractive, if the absolute value of the derivation at fixed-point location is (<1), it is repelling, if it is (>1). This leads in the actual cases to:

- $\left|2 \mathbb{H}_{d \mid 1]}\right|>1 \rightarrow \mathbb{H}_{d[1]}$ is repeller and thus a point on corresponding JULIA-set.
- $\left|2 \mathbb{H}_{d[2]}\right|<1 \rightarrow \mathbb{H}_{\boldsymbol{d}[2]}$ is attractor and thus a sink in the corresponding prisoner-set.

More details about the derivation can be found in the following scheme (2.1.1^3.):

2.1.2. Fixed-Points as Ouaternion-Points.

(HiH) as a quaternion can generally be written in a form like:

- $\left.\mathbb{H}=\left[\left(\mathrm{a}_{0}{ }^{2}+\mathrm{a}_{1}{ }^{2}+\mathrm{a}_{2}{ }^{2}+\mathrm{a}_{3}{ }^{2}\right)^{1 / 3}\right] \cdot \exp \left\{\Theta\left(i \mathrm{a}_{1}+j \mathrm{a}_{2}+\boldsymbol{d a _ { 3 }}\right) /\left(\mathrm{a}_{1}{ }^{2}+\mathrm{a}_{2}{ }^{2}+\mathrm{a}_{3}{ }^{2}\right)^{1 / 2}\right)\right\}$

$$
\begin{aligned}
& =\mathrm{T} \cdot \exp \{\underline{\mathrm{n}} \Theta\} \\
& =\mathrm{T} \cdot \exp \left\{i \Psi_{1}+j \Psi_{2}+\boldsymbol{d} \Psi_{3}\right\} \\
& =\left(\mathrm{t}_{1} \cdot \exp \left\{i \Psi_{1}\right\}\right) \cdot\left(\mathrm{t}_{2} \cdot \exp \left\{j \Psi_{2}\right\}\right) \cdot\left(\mathrm{t}_{3} \cdot \exp \left\{\boldsymbol{d} \Psi_{3}\right\}\right) \\
& =\mathrm{t}_{1}\left(\cos \left\{\Psi_{1}\right\}+i \operatorname{in}\left\{\Psi_{1}\right\}\right) \cdot \mathrm{t}_{2}\left(\cos \left\{\Psi_{2}\right\}+j \sin \left\{\Psi_{2}\right\}\right) \cdot \mathrm{t}_{3}\left(\cos \left\{\Psi_{3}\right\}+\boldsymbol{d} \sin \left\{\Psi_{3}\right\}\right) .
\end{aligned}
$$

Because $\left(\mathbb{H}_{i[1 \& 2]} \wedge \mathbb{H}_{j[1 \& 2]} \wedge \mathbb{H}_{d[1 \& 2]}\right)$ may be expressed as (2.1.1^1. - 2.1.1^3.), this will further lead to:

- $\mathrm{t}_{1}\left(\cos \left\{\Psi_{1}\right\}+i \sin \left\{\Psi_{1}\right\}\right) \Rightarrow$

$$
\mathbb{H}_{i|1 \& 2|}=\left\{1 / 2 \pm\left\lfloor\left\langle 1 / 8-1 / 2 N_{i 0}+\left\langle\left(1 / 8-1 / 2 N_{i 0}\right)^{2}-1 / 1 / N_{1}{ }^{2}\right\rangle^{1 / 2}\right\rangle^{1 / 2}\right\} \mp i\left\{N_{1} /\left\langle 1 / 2-2 N_{i 0}+\|\left(1 / 2-2 N_{i 0}\right)^{2}-4 N_{1}{ }^{2}\right\rangle^{1 / 2}\right\rangle^{1 / 2}\right\}
$$

- $t_{2}\left(\cos \left\{\Psi_{2}\right\}+j \sin \left\{\Psi_{2}\right\}\right) \Rightarrow$

$$
\left.\mathbb{H}_{j[182]}=\left\{1 / 2 \pm\left\langle 1 / 8-1 / 2 N_{j 0}+\left\langle\left(1 / 8-1 / 2 N_{j 0}\right)^{2}-1 / 4 N_{2}^{2}\right\rangle\right\rangle^{1 / 2}\right\rangle^{1 / 2}\right\} \mp j\left\{N_{2} /\left\langle\left\langle 1 / 2-2 N_{j 0}+\left\langle\left(1 / 2-2 N_{j 0}\right)^{2}-4 N_{2}^{2}\right\rangle^{1 / 2}\right\rangle\right\rangle^{1 / 2}\right\}
$$

- $\mathrm{t}_{3}\left(\cos \left\{\Psi_{3}\right\}+d \sin \left\{\Psi_{3}\right\}\right) \Rightarrow$

$$
\left.\mathbb{H}_{d[1 \& 2]}=\left\{1 / 2 \pm\left\langle 1 / 8-1 / 2 N_{d 0}+\|\left(1 / 8-1 / 2 N_{d 0}\right)^{2}-1 / 4 N_{3}{ }^{2}\right\rangle^{1 / 2}\right\rangle^{1 / 2}\right\} \mp d\left\{N_{3} /\left\langle 1 / 2-2 N_{d 0}+\left\langle\left(1 / 2-2 N_{d 0}\right)^{2}-4 N_{3}{ }^{2}\right\rangle^{1 / 2}\right\rangle^{1 / 2}\right\}
$$

Thus the fixed-points for JULIA- and prisoner-set will become:

$$
\begin{aligned}
& \text { 2.1.2^1. } \quad \mathbb{H}_{[1]}=\mathbb{H}_{i[1]} \cdot \mathbb{H}_{j[1]} \cdot \mathbb{H}_{d \mid 1]}-2 \\
& \left.=\left\{1 / 2+\left\langle 1 / 8-1 / 2 N_{i 0}+\left\langle\left(1 / 8-1 / 2 N_{i 0}\right)^{2}-1 / 4 N_{1}^{2}\right\rangle^{1 / 2}\right\rangle^{1 / 2}\right\}-i=N_{1} /\left\langle 1 / 2-2 N_{i 0}+\left\langle\left(1 / 2-2 N_{i 0}\right)^{2}-4 N_{1}^{2}\right\rangle^{1 / 2}\right\rangle^{1 / 2}\right\} . \\
& \left.\left.\left\{1 / 2+\left\langle 1 / 8-1 / 2 N_{j 0}+\left\langle\left(1 / 8-1 / 2 N_{j 0}\right)^{2}-1 / 4 N_{2}{ }^{2}\right\rangle\right\rangle^{1 / 2}\right\rangle\right\rangle^{1 / 2}\right\}-j\left\{N_{2} /\left\langle 1 / 2-2 N_{j 0}+\left\langle\left(1 / 2-2 N_{j 0}\right)^{2}-4 N_{2}^{2}\right\rangle^{1 / 2}\right\rangle^{1 / 2}\right\} . \\
& \left\{1 / 2+\left\langle\left\langle 1 / 8-1 / 2 N_{d 0}+\left\langle\left(1 / 8-1 / 2 N_{d 0}\right)^{2}-1 / 4 N_{3}{ }^{2}\right\rangle^{1 / 3}\right\rangle^{1 / 2}\right\}-d\left\{N_{3} /\left\langle 1 / 2-2 N_{d 0}+\left\langle\left(1 / 2-2 N_{d 0}\right)^{2}-4 N_{3}^{2}\right\rangle^{1 / 2}\right\rangle^{1 / 2}\right\}-2\right. \\
& \text { 2.1.2 } 2 \text {. } \quad H_{[2]}=\mathbb{H}_{i[2]} \cdot \mathbb{H}_{j[2]} \cdot \mathbb{H}_{d[2]}-2 \\
& \left.=\left\{1 / 2-\left\langle 1 / 8-1 / 2 N_{i 0}+\left\langle\left(1 / 8-1 / 2 N_{i 0}\right)^{2}-1 / 4 N_{1}{ }^{2}\right\rangle^{1 / 2}\right\rangle^{1 / 2}\right\}+i=N_{1} /\left\langle 1 / 2-2 N_{i 0}+\left\langle\left(1 / 2-2 N_{i 0}\right)^{2}-4 N_{1}^{2}\right\rangle^{1 / 2}\right\rangle^{1 / 2}\right\} . \\
& \left\{1 / 2-\left\langle 1 / 8-1 / 2 N_{j 0}+\left\langle\left(1 / 8-1 / 2 N_{j 0}\right)^{2}-1 / 4 N_{2}{ }^{2}\right\rangle^{1 / 2}\right\rangle^{1 / 2}\right\}+j\left\{N_{2} /\left\langle 1 / 2-2 N_{j 0}+\left\langle\left(1 / 2-2 N_{j 0}\right)^{2}-4 N_{2}{ }^{2}\right\rangle^{1 / 2}\right\rangle^{1 / 2}\right\} . \\
& \left\{1 / 2-\left\langle 1 / 8-1 / 2 N_{d 0}+\left\langle\left(1 / 8-1 / 2 N_{d 0}\right)^{2}-1 / 4 N_{3}^{2}\right\rangle^{1 / 2}\right\rangle^{1 / 2}\right\}+d\left\{N_{3} /\left\langle 1 / 2-2 N_{d 0}+\left\langle\left(1 / 2-2 N_{d 0}\right)^{2}-4 N_{3}^{2}\right\rangle^{1 / 2}\right\rangle^{1 / 2}\right\}-2 .
\end{aligned}
$$

2.3. The fractal Structure of the JULIA-Set.

A JULIA-set is a complete invariant fractal with respect to forward-and backward-iteration. A \mathbf{j}-th preimage (in a backward-iteration) and a k-th image (in a forward-iteration) starting from the repeller ($\mathbb{H}_{[1]}$ given by equation 2.1.2^1.) are to be obtained by:
2.3^1. Images: $\mathbb{R}^{(+1)}=\mathbb{H}_{[1]}^{2}+\mathbb{N}, \mathbb{R}^{(+2)}=\left[\mathbb{R}^{(+1)}\right]^{2}+\mathbb{N}, \ldots ., \mathbb{R}^{(+\mathrm{K})}=\left[\mathbb{R}^{(+\mathrm{K}-1)}\right]^{2}+\mathbb{N}, \ldots \ldots$
2.3^2. Pre-images: $\mathbb{R}_{1 \wedge 2}^{(-1)}= \pm\left(\mathbb{H}_{[1]}-\mathbb{N}\right)^{1 / 2}, \mathbb{R}_{1 \wedge 2}{ }^{(-2)}= \pm\left(\mathbb{R}_{1 \wedge 2}{ }^{(-1)}-\mathbb{N}\right)^{1 / 2}, \ldots ., \mathbb{R}_{1 \wedge 2}^{(-J)}= \pm\left(\mathbb{R}_{1 \wedge 2}^{(-\mathrm{J}+1)}-\mathbb{N}\right)^{1 / 2}, \ldots .$.

Because $\left(\mathbb{H}_{[1]}\right)$ is a point of the JULIA-set, $\mathbb{R}^{(+K)}$ and $\mathbb{R}^{(-J)}$ cannot in the basin of attraction of infinity otherwise the initial point $\left(\mathbb{H}_{[1]}\right)$ would have to be part of the escape-set too. On the other hand, both kinds of images cannot be in the interior (the prisoner-set), because then $\left(\mathbb{H}_{[1]}\right)$ would then have to be from prisoner-set too, what again is not the case. Thus $\mathbb{R}^{(+K)}$ and $\mathbb{R}^{(-J)}$ must be from the boundary (the JULIA-set). The reason for all this can also be found in the continuity of the quadratic transformation. Arbitrarily close to the images and pre-images there are escaping- and prisoner-points and the continuity of iteration implies, neighbourhood relation must hold for the whole set of transformation points. This finally leads to a JULIA-set being invariant with respect to forward- and backward-transformation as well.

The total, unlimited set of images and pre-images from the repellers on JULIA-set determines the fractal structure of the JULIA-set.

3. Svmmetries of a related JULIA-Network.

It is obvious from equations (2.1.2^1.) and (2.1.2^2.), the fixed-points $\left(\mathbb{H}_{[1 \& 2]}\right)$ of the network (escape-prisoner- and JULIA-set) obtained from iteration (1^3.) depend on selection of (\mathbb{N}) only. Thus (16) different choices of (\mathbb{N}^{\prime} s) chosen appropriately from the black part of the MANDELBROT-set will define (16) different fixed-points $\left(\mathbb{H}_{[1]}\right)$ for JULIA-sets as square-points of a hyper-cube. This hyper-cube together with the JULIA-sets belonging to each of the square-points will represent a related JULIA-network. The symmetryproperties of this JULIA-network is to be obtained on base of a hyper-cube's symmetry-group extended by some additional considerations.

The symmetry-group of a cube can be derived from the symmetry-group of a square. With this knowledge in mind all hints are provided to further obtain the symmetry-group of a hyper-cube. The symmetry-group of a hyper-cube with additional considerations will then finally lead to the symmetry- properties of the related JULIA-network.

3.1.The Symmetries of a Square.

The symmetry-group of a square can best be described by the group-table below, consisting of (64) permutations of the square-points (contained in the entries of the table) obtained when (8) operations act on the square. The (8) operations consist of:

- The identity-operation (id) to reinstall the starting configuration,
- (3) right-turning rotations $\left(\left[r_{1}=\pi / 2\right] \wedge\left[r_{2}=\pi\right] \wedge\left[r_{3}=3 \pi / 2\right]\right)$ around the centre of the square,
- (4) flip-operations $\left(\mathbf{f}_{\mathbf{1}}{ }^{\wedge} \mathbf{f}_{\mathbf{2}}{ }^{\wedge} \mathbf{f}_{\mathbf{3}}{ }^{\wedge} \mathbf{f}_{\mathbf{4}}\right)$ with respect to indicated directions.

The permutations within entries $(1 \rightarrow 64)$ of the group-table have the meaning:

- Positions of edge-points after an operation of column(0) having acted on the square
- Positions of edge-points after operation of row(0) being performed on top of operation in column(0).

*	id	r_{1}	r_{2}	r_{3}	f_{1}	f_{2}	f_{3}	f_{4}
id	$\begin{gathered} 0123 \\ 01_{1} 2^{3} \\ =10 \end{gathered}$	$\begin{gathered} 03_{1}^{1} \mathbf{2 1}^{3}{ }_{2}^{2} \\ =\mathrm{r}_{1} \end{gathered}$	$\begin{gathered} \mathbf{2}_{2} 1_{3} 2_{0}{ }^{3}{ }_{1}^{1} \\ =\mathrm{r}_{2} \end{gathered}$	$\begin{gathered} 0_{12}^{1} 1_{2} 3^{3}{ }_{0} \\ =r_{3} \end{gathered}$	$\begin{gathered} 0_{3} 1_{2} 2_{1}^{3} \\ =f_{1} \\ = \end{gathered}$	$\begin{gathered} 0_{0}^{1} \mathbf{1 2}^{2} \mathbf{3}^{3} \\ =\mathbf{n}_{2} \\ \hline \end{gathered}$	$\begin{gathered} { }_{1} 1{ }^{1}{ }^{2}{ }^{3}{ }^{2}{ }_{2} \\ =f_{3} \end{gathered}$	$\begin{gathered} 0_{2} 1_{1} 2^{3}{ }^{3} 3 \\ =f_{4} \\ \hline \end{gathered}$
r_{1}	$\begin{gathered} 3012{ }_{3}^{3}{ }^{3} \\ =\mathrm{r}_{1} \end{gathered}$	$\begin{gathered} { }_{2}^{3}{ }_{2}^{0}{ }^{1}{ }_{0}{ }_{2}^{1} \\ = \\ =r_{2} \end{gathered}$	$\begin{gathered} { }_{3}^{3} 0_{2} 1_{3} 2_{0} \\ =r_{3} \\ \hline \end{gathered}$	$\begin{aligned} & \begin{array}{l} 30 \\ 3_{0} \\ 0 \end{array} 1_{2} 2_{3} \\ & =\mathrm{id} \end{aligned}$	$\begin{gathered} \mathbf{3}_{2} 0_{1}^{1} \mathbf{1}_{0}^{2} \\ =f_{4} \\ \hline \end{gathered}$	$\begin{gathered} 3_{3}^{3} 0_{2}^{1} 1_{1}{ }_{0} \\ =f_{1} \\ \hline \end{gathered}$	$\begin{gathered} 3_{3} 0_{0}{ }^{1} 2{ }^{2} \\ =f_{2} \\ = \\ \hline \end{gathered}$	$\begin{gathered} { }^{3} 0_{1} 1_{0}{ }^{2} 2_{2} \\ =f_{3} \end{gathered}$
r_{2}	$\begin{gathered} { }_{2}^{2}{ }^{3}{ }_{3}^{0} 0{ }_{0}^{1}{ }^{1} \\ =r_{2} \end{gathered}$	$\begin{gathered} 2_{1}^{3} \mathbf{3}_{0} \mathbf{o n}_{0} \\ =\mathrm{r}_{3} \end{gathered}$	$\begin{gathered} 2300^{1} \\ 011 \\ =\mathrm{id} \end{gathered}$	$\begin{gathered} 2_{3} 3_{0} 0_{1}^{1} \\ =r_{1} \\ = \end{gathered}$	$\begin{gathered} 2_{1}{ }^{104} 0^{4}{ }^{1} \\ =f_{3} \\ \hline \end{gathered}$	$\begin{gathered} 233^{3} 0_{0}^{1} \\ 21 \\ =f_{4} \\ \hline \end{gathered}$	$\begin{gathered} \mathbf{2}_{3} 3_{2}{ }_{2}{ }_{11}^{1}{ }^{1} \\ = \\ =\mathrm{f}_{1} \\ \hline \end{gathered}$	$\begin{gathered} 2_{0} 3_{3} 0_{2}{ }_{2}{ }_{1} \\ =f_{2} \\ \hline \end{gathered}$
r_{3}	$\begin{gathered} 1_{1} 2_{2}^{3} 3_{0}^{0} \\ =r_{3} \\ \hline \end{gathered}$	$\begin{gathered} { }^{1} 2^{2} 1^{3} 0^{0} \\ =12 \end{gathered}$	$\begin{gathered} 1_{3}{ }^{2} 0_{0}^{3} 1_{1}^{0} \\ = \\ =r_{1} \end{gathered}$	$\begin{gathered} \mathbf{1}_{2} \mathbf{2}_{3}^{3} 0_{0}^{0} \\ =r_{2} \\ \hline \end{gathered}$	$\begin{gathered} { }^{1} 23^{3}{ }_{2}{ }^{0}{ }_{1} \\ =f_{2} \\ \hline \end{gathered}$	$\begin{gathered} \mathbf{1}_{1} \mathbf{2 0}_{0}^{3} \mathbf{3}_{2} \\ =\mathrm{f}_{3} \end{gathered}$	$\begin{gathered} 1_{2} 2_{1}^{3} 0_{0}^{0} \\ =f_{4} \end{gathered}$	$\begin{gathered} { }^{1_{3} 2_{2}{ }^{3}{ }_{1}^{0}{ }_{0}} \\ =f_{1} \end{gathered}$
f_{1}	$\begin{gathered} 3_{3}^{3}{ }_{2}{ }^{1} 1_{0}^{0} \\ =\mathrm{f}_{1} \\ \hline \end{gathered}$	$\begin{gathered} 3_{0}^{3} 2_{3}^{1}{ }_{2} 0_{1} \\ =f_{2} \\ \hline \end{gathered}$	$\begin{gathered} { }^{3}{ }_{1} 0_{1}^{1}{ }^{10}{ }_{2} \\ =f_{3} \\ \hline \end{gathered}$	$\begin{gathered} { }_{3}^{3} 21_{1}^{1} 0_{0}^{0} \\ =\mathrm{f}_{4} \\ \hline \end{gathered}$	$\begin{gathered} 3{ }_{3}{ }_{01} 1_{2} 0_{3} \\ =\mathrm{id} \end{gathered}$	$\begin{gathered} 32_{2} 1_{1} \mathbf{0}_{2} \\ =\mathrm{r}_{1} \\ \hline \end{gathered}$	$\begin{gathered} 3_{2}^{2}{ }_{2}{ }^{1} 0_{0}^{0} \\ = \\ =r_{2} \\ \hline \end{gathered}$	$\begin{gathered} { }_{3}^{3} 1_{2} 1_{3} 0_{0} \\ =\mathrm{r}_{3} \\ \hline \end{gathered}$
f_{2}	$\begin{gathered} 00_{0} 3^{2}{ }^{21} 1 \\ = \\ =f_{2} \end{gathered}$	$\begin{gathered} 03{ }^{03}{ }^{2}{ }_{3}^{1} \\ = \\ =f_{3} \end{gathered}$	$\begin{gathered} \mathbf{0}_{2} 3_{1}{ }^{2} 0^{1}{ }_{3} \\ =f_{4} \\ \hline \end{gathered}$	$\begin{gathered} 0{ }_{3} 3_{2}{ }_{2}{ }^{1} 1_{10} \\ =f_{1} \\ \hline \end{gathered}$	$\begin{gathered} 0_{1}{ }^{3}{ }_{2}{ }_{3}{ }^{1} 0 \\ = \\ =\mathrm{r}_{3} \\ \hline \end{gathered}$	$\begin{gathered} 0_{0} 3_{1}{ }^{2} 1_{3} \\ =\mathrm{id} \end{gathered}$	$\begin{gathered} 0_{3}{ }_{3}{ }_{0}{ }^{2}{ }_{11}^{1} \\ =r_{1} \\ =r_{1} \\ \hline \end{gathered}$	$\begin{gathered} 0{ }_{2}{ }^{3} 3^{2}{ }^{21}{ }^{1}{ }_{1} \\ =r_{2} \\ \hline \end{gathered}$
f_{3}	$\begin{gathered} 11_{1} 0_{0} 3^{2}{ }^{2}{ }_{2} \\ =f_{3} \\ \hline \end{gathered}$	$\begin{gathered} \mathbf{1}_{2} 0_{1}^{3}{ }^{3}{ }^{2}{ }_{3}^{3} \\ =f_{4} \\ \hline \end{gathered}$	$\begin{gathered} 1_{3}^{1031{ }^{0}{ }^{2}{ }_{0}} \\ =f_{1} \\ \hline \end{gathered}$		$\begin{gathered} { }_{2}{ }_{2} 0_{3}{ }^{3}{ }_{0}{ }^{2} \\ = \\ =r_{2} \\ \hline \end{gathered}$	$\begin{gathered} 1_{1} 0_{2} 3_{3} 3^{2}{ }_{0} \\ =r_{3} \\ \hline \end{gathered}$	$\begin{gathered} 1_{0} 0_{1} 3_{2}{ }^{2} \\ =10 \end{gathered}$	$\begin{gathered} 1_{3} 0_{0} 3_{1}^{2}{ }_{2} \\ =r_{1} \\ \hline \end{gathered}$
f_{4}	$\begin{gathered} \hline{ }_{2} 11_{1}^{0} 0_{0}^{3} 3 \\ =f_{4} \\ \hline \end{gathered}$	$\begin{gathered} { }_{2}^{2} 1_{2} 0_{1}^{3}{ }^{3} \\ =f_{0} \\ =f_{1} \end{gathered}$	$\begin{gathered} \mathbf{2}_{0} \mathbf{1}_{3} 0_{2}{ }^{3}{ }_{1} \\ = \\ =f_{2} \\ \hline \end{gathered}$	$\begin{gathered} 2_{1} 100{ }^{1}{ }^{3}{ }_{2} \\ =f_{3} \\ \hline \end{gathered}$	$\begin{gathered} { }_{3}{ }_{3}{ }^{1} 00_{1}{ }^{3}{ }_{2} \\ = \\ =r_{1} \\ \hline \end{gathered}$	$\begin{gathered} { }_{2}^{2}{ }_{2}^{1}{ }_{3} 0_{0}{ }^{3}{ }_{1} \\ =r_{2} \\ \hline \end{gathered}$	$\begin{gathered} \mathbf{2}_{1}{ }_{12} 0_{3} 3_{0}^{3} \\ = \\ =r_{3} \end{gathered}$	$\begin{gathered} 2_{0} 1_{1} 0_{2}{ }^{3}{ }_{3} \\ =\mathrm{id} \end{gathered}$
id			r_{1}		r_{2}		r_{3}	
			f_{2}		f_{3}		f_{4}	

The yellow-marked sub-group is the cyclic group of the square.

3.2. Symmetries of a Cube.

From symmetry-group of a square, (3) symmetry-sub-groups of a cube can be derived by replacing:

- Rotations around centre of square by right-turning rotations ($\mathbf{R}_{\mathbf{1}}{ }^{\wedge} \mathbf{R}_{\mathbf{2}}{ }^{\wedge} \mathbf{R}_{\mathbf{3}}$) around each of the axes ($\mathrm{AB}^{\wedge} \mathrm{CD}^{\wedge} \mathrm{EF}$):
$-\left(\left[\mathrm{AB} \perp\left\langle 0_{0}{ }^{4}{ }_{1}{ }^{5}{ }_{2}{ }^{6}{ }_{3}{ }^{7}\right\rangle\right] \wedge\left[\mathrm{CD} \perp\left\langle 0_{0}{ }_{3}{ }_{3}{ }_{7}{ }^{6}{ }_{4}{ }^{5}\right\rangle\right] \wedge\left[\mathrm{EF} \perp\left\langle 0_{0}{ }^{3}{ }_{1}{ }^{2}{ }_{5}{ }^{6}{ }_{4}{ }^{7}\right\rangle\right)\right.$
- Flip-operations ($\mathbf{f}_{1} \wedge^{\wedge} \mathbf{f}_{2}{ }^{\wedge} \mathbf{f}_{\mathbf{3}}{ }^{\wedge} \mathbf{f}_{4}$) with respect to directions (black ${ }^{\wedge}$ red $^{\wedge}$ blue ${ }^{\wedge}$ green) respectively replaced by mirror-operations ($\mathrm{m}_{1} \wedge \mathbf{m}_{2} \wedge \mathrm{~m}_{3} \wedge \mathrm{~m}_{4}$) with respect to appropriate mirror-planes:
$-\langle\mathrm{NKLM}\rangle-\mathrm{m}_{1}-,\langle 0264\rangle-\mathrm{m}_{2}-,\langle\mathrm{GHIJ}\rangle-\mathrm{m}_{3}-$ and $\langle 1573\rangle-\mathrm{m}_{4}$-plane for rotation in AB -direction
$-\langle\mathrm{OPQR}\rangle-\mathrm{m}_{1}-,\langle 0167\rangle-\mathrm{m}_{2}-,\langle\mathrm{NKLM}\rangle-\mathrm{m}_{3}-$ and $\langle 2543\rangle-\mathrm{m}_{4}$-plane for rotation in CD-direction
- $\langle\mathrm{OPQR}\rangle-\mathrm{m}_{1}-,\langle 0563\rangle-\mathrm{m}_{2}-,\langle\mathrm{GHIJ}\rangle-\mathrm{m}_{3}-$ and $\langle 1274\rangle-\mathrm{m}_{4}-$ plane for rotation in EF-direction.

Under these conditions one will obtain (3) symmetry-sub-groups of a cube with respect to the directions ($\mathrm{AB}{ }^{\wedge} \mathrm{CD}{ }^{\wedge} \mathrm{EF}$), each one is isomorphic with the symmetry-group of a square.

The first sub-group based on direction (AB) follows immediately with (64) elements, which belonging to multiplications of operations(column(0)) and operations(row(0)):

A second sub-group based on direction (CD) follows next with (64) elements belonging to multiplications of operations(column(0)) and operations(row(0)):

Finally one obtains a sub-group based on direction (EF) which follows next with (64) elements belonging to all multiplications of operations($\operatorname{column}(0))$ and operations(row(0)):

	*	id	R_{1}	R_{2}	R_{3}	m_{1}	m_{2}	m_{3}	m_{4}
EF	id	$\begin{gathered} 0^{2} 1_{5}^{6}{ }^{7}{ }^{3} \\ =1 d \end{gathered}$	$\begin{gathered} 4^{326}{ }^{6}{ }^{7} \\ =R_{1} \end{gathered}$	$\begin{gathered} 5^{7}{ }_{4}^{3} 0^{2}{ }^{6} \\ =R_{2} \end{gathered}$	$\begin{gathered} 1^{6} 5^{7}{ }^{3} 0^{2} \\ =R_{3} \end{gathered}$	$\begin{gathered} 4^{3} 5_{1}{ }^{6}{ }_{0}^{2} \\ =m_{1} \end{gathered}$	$\begin{gathered} 0^{2}{ }^{3} 5^{7}{ }^{7}{ }^{6} \\ =\mathrm{m}_{2} \end{gathered}$	$\begin{gathered} 1_{0}^{2}{ }^{2}{ }^{3}{ }^{7} \\ =m_{3} \end{gathered}$	$\begin{gathered} 5^{7} 1_{1}^{6} 0_{4}^{2}{ }_{4}^{3} \\ =m_{4} \end{gathered}$
	\mathbf{R}_{1}	$\begin{gathered} 4^{3} \mathbf{2 1}_{1}{ }^{5}{ }^{7} \\ =R_{1} \end{gathered}$	$\begin{gathered} 5^{7} 4_{0}^{3}{ }^{2}{ }^{6} \\ =R_{2} \end{gathered}$	$\begin{gathered} 65^{7} 4^{3}{ }^{2} \\ =R_{3} \\ \hline \end{gathered}$	$\begin{gathered} 0^{2} 1_{5}{ }^{7}{ }^{3} \\ =1 d \end{gathered}$	$\begin{gathered} 5^{7} 1^{6} 0^{2}{ }^{3} \\ =\mathrm{m}_{4} \\ \hline \end{gathered}$	$\begin{gathered} 3{ }^{3}{ }^{7} 1^{6}{ }^{2} \\ =\mathrm{m}_{1} \\ \hline \end{gathered}$	$\begin{gathered} 0_{4}^{2} 5^{7}{ }^{6} \\ =m_{2} \\ \hline \end{gathered}$	$\begin{gathered} 1^{6} 0^{2} 4^{3}{ }^{7} \\ =\mathrm{m}_{3} \\ \hline \end{gathered}$
	\mathbf{R}_{2}	$\begin{gathered} 5^{7}{ }_{4}^{3} 0_{1}{ }^{6} \\ =R_{2} \\ \hline \end{gathered}$	$\begin{gathered} 1_{5}{ }^{7}{ }^{2}{ }^{3}{ }^{2} \\ =R_{3} \\ \hline \end{gathered}$	$\begin{gathered} 0^{2} 1_{5} 7^{3} \\ =\mathrm{id} \end{gathered}$	$\begin{gathered} 4^{3}{ }^{2} 1_{5}{ }^{7} \\ =R_{1} \\ \hline \end{gathered}$	$\begin{gathered} 1_{0}^{6}{ }^{2}{ }^{3}{ }^{7} \\ =m_{3} \\ \hline \end{gathered}$	$\begin{gathered} 5^{7} 1_{0}^{2}{ }^{2} \\ =m_{4} \\ \hline \end{gathered}$	$\begin{gathered} 4^{3} 5^{6} 1_{0}^{2} \\ =m_{1} \\ \hline \end{gathered}$	$\begin{gathered} 0^{2}{ }^{3} 5^{7} 1^{6} \\ =\mathrm{m}_{2} \\ \hline \end{gathered}$
	\mathbf{R}_{3}	$\begin{gathered} 1_{5}^{6}{ }^{7} 4^{3} 0^{2} \\ =R_{3} \end{gathered}$	$\begin{gathered} 26{ }^{2} 7^{3} \\ 0154^{2} \\ =\mathrm{id} \end{gathered}$	$\begin{gathered} 4^{3} 0_{1}^{2}{ }^{6}{ }_{5}^{7} \\ =R_{1} \end{gathered}$	$\begin{gathered} 5^{7}{ }_{4}^{3} 0^{2}{ }^{6} \\ =R_{2} \\ \hline \end{gathered}$	$\begin{gathered} 0^{2}{ }_{4}^{3} 5^{7}{ }^{6} \\ =\mathrm{m}_{2} \end{gathered}$	$\begin{gathered} 1_{0}^{6}{ }^{2}{ }_{4}{ }^{4}{ }^{4}{ }^{7} \\ =\mathrm{m}_{3} \end{gathered}$	$\begin{gathered} 5^{7}{ }_{1}^{6} 0^{2}{ }_{4}{ }^{3} \\ =\mathrm{m}_{4} \end{gathered}$	$\begin{gathered} 4^{3} 5^{7} 1^{6} 0^{2} \\ =\mathrm{m}_{1} \end{gathered}$
OPQR	m1	$\begin{gathered} 35^{76}{ }^{2} \\ =m_{1} \end{gathered}$	$\begin{gathered} 0^{2} 4^{3} 5^{7}{ }^{6} \\ =m_{2} \\ \hline \end{gathered}$	$\begin{gathered} 1_{0}^{6}{ }^{2} 4_{5}{ }^{7} \\ =m_{3} \end{gathered}$	$\begin{gathered} 5^{7} 1^{6} 0^{2}{ }_{4}{ }^{3} \\ =m_{4} \\ \hline \end{gathered}$	$\begin{gathered} 0_{1}{ }^{6} 5^{7} 4^{3} \\ =1 d \end{gathered}$	$\begin{gathered} { }^{3}{ }^{3}{ }^{2} 1^{6}{ }_{5}{ }^{7} \\ = \\ =R_{1} \\ \hline \end{gathered}$	$\begin{gathered} 5^{7}{ }_{4}^{3} 0_{1}^{2}{ }^{6} \\ =R_{2} \\ \hline \end{gathered}$	$\begin{gathered} 6{ }_{5}^{7} 4^{3} 0^{2} \\ =R_{3} \\ \hline \end{gathered}$
0563	\mathbf{m}_{2}	$\begin{gathered} 0_{4}^{3} 5^{7}{ }^{6} \\ =m_{2} \end{gathered}$	$\begin{gathered} 1_{0}^{6}{ }^{2}{ }^{3}{ }^{7} \\ =m_{3} \end{gathered}$	$\begin{gathered} 5^{7} 1^{6} 0^{2}{ }^{3} \\ =m_{4} \\ \hline \end{gathered}$	$\begin{gathered} 4_{3} 5^{76} 0^{2} \\ =m_{1} \end{gathered}$	$\begin{gathered} 1_{5}{ }^{7} 4^{3} 0^{2} \\ =R_{3} \end{gathered}$	$\begin{gathered} 0^{2} 1_{5} 7^{7} 4^{3} \\ =1 d \end{gathered}$	$\begin{gathered} { }^{3}{ }_{0}{ }^{2} 1^{6}{ }_{5}^{7} \\ =R_{1} \\ \hline \end{gathered}$	$\begin{gathered} 5^{7}{ }_{4}{ }^{3}{ }^{3}{ }^{2}{ }_{1}{ }^{6} \\ =R_{2} \\ \hline \end{gathered}$

In addition (4) flip-operations ($\mathbf{F}_{5} \wedge \mathbf{F}_{6} \wedge \mathbf{F}_{7}{ }^{\wedge} \mathbf{F}_{8}$) with respect to the space-diagonals of the cube will have be taken into consideration. The properties of these operations are summarized in the next table:

*	id	f_{5}	f_{6}	f_{7}	f_{8}
id	$\begin{gathered} 0^{4} 1^{5} 2^{6} 3^{7} \\ =\mathrm{id} \end{gathered}$	$\begin{gathered} 0^{2} 7^{3}{ }^{4}{ }^{6}{ }^{1}{ }^{1} \\ =f_{5} \end{gathered}$	$\begin{gathered} 6^{23} 1^{0} 0_{5}{ }^{7} \\ =\mathrm{f}_{6} \end{gathered}$	$\begin{gathered} 6^{4} 7^{3}{ }_{2}^{0}{ }^{1}{ }^{1} \\ =f_{7} \\ \hline \end{gathered}$	$\begin{gathered} { }^{2} 7_{7}{ }^{5}{ }_{4}{ }^{0}{ }^{1} \\ =f_{8} \\ \hline \end{gathered}$
f_{5}	$\begin{gathered} 0^{2}{ }^{2}{ }^{3} 4^{6}{ }_{5}^{1} \\ =f_{5} \end{gathered}$	$\begin{gathered} 0^{4}{ }^{5} 2_{2}{ }^{6}{ }^{7}{ }^{7} \\ =\mathrm{id} \end{gathered}$	$\begin{gathered} 6^{4} 7^{5} 2^{0} 3^{1} \\ A \end{gathered}$	$\begin{gathered} { }^{251}{ }^{5} 0_{4}{ }^{7} \\ =\mathrm{id} \end{gathered}$	$6^{4} 1_{2}^{3} 0_{5}^{0}$ B
f_{6}	$\begin{gathered} c^{2} 1^{3}{ }^{0}{ }_{4}^{0}{ }^{7}{ }^{7} \\ =f_{6} \end{gathered}$	$\begin{gathered} 6^{4} 7^{5} 2^{0} 3^{1} \\ \mathrm{~A} \end{gathered}$	$\begin{gathered} 0^{4} 1^{5} 2_{2}{ }^{6}{ }_{3}{ }^{3} \\ =\mathrm{id} \end{gathered}$	$\begin{gathered} 0^{2} 7^{5} 4_{4}{ }^{6}{ }^{1} \\ \mathrm{C} \end{gathered}$	$0^{4} 7_{7}^{3}{ }_{2}^{6}{ }_{5}^{1}$ D
f_{7}	$\begin{gathered} { }^{4}{ }^{4} 7_{2} \mathbf{2}_{5}{ }^{1} \\ =f_{7} \end{gathered}$	$\begin{gathered} { }^{2}{ }^{5}{ }_{4} 0_{3}{ }^{7} \\ =\mathrm{id} \end{gathered}$	$\begin{gathered} 0^{2} 7^{5}{ }_{4}{ }^{6}{ }_{3}^{1} \\ C \end{gathered}$	$\begin{gathered} 0_{1}^{4}{ }_{52} 6_{3}^{7} \\ =\mathrm{id} \end{gathered}$	$0_{1}^{2} 1_{4}^{6}{ }_{5}^{7}$ E
f_{8}	$\begin{gathered} { }^{2}{ }^{2}{ }^{5}{ }_{4} 0^{1}{ }^{1} \\ =f_{8} \end{gathered}$	$61_{1}^{4} 2_{2}^{0} 5^{7}$ B	$\begin{gathered} 0^{4} 7^{3} 2^{6}{ }_{5}^{1} \\ D \end{gathered}$	$0_{1}^{2}{ }_{1}^{3} 4_{5}^{6} 7$ E	$\begin{gathered} 0^{4}{ }_{1}^{5} 2_{2}^{6}{ }^{7}{ }^{7} \\ =\mathrm{id} \end{gathered}$

Thus finally (25) symmetry-operations in total will make up the symmetry-group of a cube.

3.3. Symmetries of a Hyper-Cube.

If one replaces in a cube:

- Each pair of parallel planes involved in one of the rotations $\left(R_{1} \vee \mathbf{R}_{\mathbf{2}} \vee \mathbf{R}_{\mathbf{3}}\right)$ by a quadruple of cubes (from
hyper-cube's structure) with surfaces parallel to a perpendicular common axis of rotation out of $(\alpha \beta \vee \gamma \delta \vee \varepsilon \zeta)$,
- Each mirror-plane of a cube by a 3-dimensional object with a pair of parallel planes suitable for a further more mirror-operation,
(3) symmetry-sub-groups of a hyper-cube are obtained, each isomorphic with the symmetry-group of a square and a symmetry-sub-groups of a cube. Each symmetry-sub-group of the hyper-cube consists of:
- Right-turning rotations ($\mathrm{R}_{1} \wedge \mathrm{R}_{\mathbf{2}} \wedge \mathrm{R}_{3}$), around a ($\alpha \boldsymbol{\beta} \vee \gamma \delta \vee \varepsilon \zeta$)-axis,
- Mirror-operation ($M_{1} \wedge M_{2} \wedge M_{3} \wedge M_{4}$) with respect to the appropriate mirror-objects.

The first sub-group based on direction ($\boldsymbol{\alpha} \boldsymbol{\beta}$) follows immediately with (64) permutations according to all multiplications of operations(column(0)) and of operations(row(0)):

A second sub-group based on direction ($\gamma \delta$) follows next with (64) permutations according to all multiplications of operations(olumn(0)) and of operations(row(0)):

And finally a sub-group based on direction ($\varepsilon \zeta$) with (64) permutations will follow according all multiplications of operations(column(0)) and operations(row(0)):

In addition to these (21) symmetry-operations (8) flip-operations will have be considered, due to the (8) quaternion-diagonals of the hypercube:

	id	H_{5}	${ }^{6} 6$	17	${ }_{8}$		10	11	-
id			$\begin{gathered} \text { CDDAP } \\ G_{G} H_{I J} \\ 0 B M N \\ =F_{6} \\ \hline \end{gathered}$						$\begin{aligned} & \text { GWDOBB } \\ & \text { ELLKJ } \\ & \text { EPMN } \\ & =F_{12} \end{aligned}$
F									
F			$\begin{aligned} & \text { EFGGH } \\ & \text { MJKOLP } \\ & \text { IBCDD } \\ & =\mathbf{i d} \end{aligned}$			$\begin{gathered} \text { MDDOB } \\ \mathrm{I}_{\mathrm{H}} \mathrm{H}_{\mathrm{K}} \mathrm{~F} \\ \mathrm{~A}_{\mathrm{P}} \mathrm{C}_{\mathrm{N}} \\ \mathrm{~B} \end{gathered}$			
		$\begin{gathered} \text { CNOB } \\ \text { GJKHF } \\ \text { EPMIH } \\ \text { A } \end{gathered}$		$\begin{aligned} & \text { EFGGH } \\ & M N_{O} P \\ & \text { I J K L } \\ & \text { B C D } \\ & =i d \end{aligned}$	$\begin{aligned} & \text { EFGGH } \\ & \text { M NKOP } \\ & \text { IBCD } \\ & =\text { id } \end{aligned}$		$\begin{gathered} \mathrm{CHD}_{2} \mathrm{O}_{\mathrm{P}} \\ \text { GFHIJL} \\ \text { ABM B } \\ \text { D } \end{gathered}$		
18			$\begin{gathered} \text { CNOOB } \\ \text { GJKHF } \\ \text { ELIMH } \\ \text { PMD } \\ \text { A } \end{gathered}$						
\mathbf{F}_{9}									
F_{10}			$\begin{gathered} M D_{K O}^{O} \\ E H_{G} F \\ A P C N J \\ B \end{gathered}$						
F_{11}									
F_{12}		$\begin{aligned} & \text { MNABB } \\ & O_{P}^{K_{P} L_{G} G_{D} H} \\ & C \end{aligned}$							$\begin{aligned} & \text { EFGGH } \\ & M N_{P} O P \\ & \text { I JK K } \\ & \text { BCD } \\ & =i d \end{aligned}$

Together with (200) symmetry-operations for the (8) inner cubes of a hyper-cube, (232) symmetryoperations in total have to be counted for a hyper-cube and are responsible for its symmetry-group.

3.4. Symmetry-Group of the related JULIA-Network.

The (16) different fixed-points $\left(\mathbb{H}_{\left[1^{\wedge} J \in\{0,15]\right.}\right)$ by definition from above will form a hyper-cube in quaternionspace. Thus a probe-point moving from $\left(\mathbb{H}_{\left[1^{\wedge} \mathrm{M}\right]}\right)$ to $\left(\mathbb{H}_{\left[1^{\wedge} \sim \mathrm{N}\right)}\right)$ by execution of a hyper-cube's symmetryoperations will change its (\mathbb{N}) fluently from $\left(\mathbb{N}_{[M \mid]}\right)$ to $\left(\mathbb{N}_{[\mathbb{N}]}\right)$. Due to the fact, that each of the images or preimages must follow equations ($2.3^{\wedge} 1 . \wedge 2.3^{\wedge} 2$) in any position of the probe, they will always be adapted in relation to the probe's location. Therefore the probe in essence mediates between the JULIA-sets with fixedpoints $\left(\mathbb{H}_{[1 \wedge \mathrm{M}]}\right)$ and $\left(\mathbb{H}_{[1 \wedge \mathrm{~N}}\right)$.

In summery one may say, that the related JULIA-network under the action of any symmetry-operation of a hyper-cube will remain completely in itself. Thus, related JULIA-network and the symmetry-operations of a hyper-cube will built a symmetry-group.

4. Summarv.

The iteration of sequence (1^3.) in quaternion-space - with restrictions from MANDELBROT-set on the complex components of its iteration-constant - resulted in a network of (3) sets. An unbounded escape-set (with trajectories escaping to infinity) accompanied by a set caught in a limited area (prisoner-set, whose trajectories tended to a sink-point) and the boundary-set of the prisoner-set built by points acting repulsively on points from escape- and prisoner-set as well.

The iteration stopped if the sink-point of the prisoner-set and a fixed repeller-point on JULIA-set had been obtained, that is, when equality between the iteration's predecessor-and successor-state had been reached. A Quaternion-condition for this stop-event (the fixed-point-condition) could be formulized and - by taking into account the HAMILTONian rules - could be separated into three sub-conditions (according to the quaternionspace's complex subspaces). Every one of these sub-conditions could subsequently be solved independently. On base of these results it became possible to express the quaternion fixed-points of prisoner- and JULIA-set as well.

With knowledge of the fixed-repeller-point of a JULIA-set it became possible to describe the structure of the JULIA-set by the set of images and pre-images, which are obtained from forward- or backward-iteration relative to the repeller.

Fixed-points and JULIA-set of the network, obtained by iterative execution of sequence (1^3.) will only depended on the choice of the actual iteration-constant. Therefore, (16) constants appropriately chosen from black part of the MANDELBROT-set will make it possible to arrange the repeller-fixed-points of the iteratively obtained JULIA-sets in the square-points of a hyper-cube. Fixed-points and their JULIA-sets positioned this way will then represent a related JULIA-network. The set of quaternion-points of the related JULIA-network together with the symmetry-operations of a hyper-cube will form the symmetry-group of the related JULIA-network.

References

1. Peitgen, H. O., Jurgens, H., \& Saupe, D. (1992). Chaos and Fracal: New Frontiers of Science Springer. New York, p. 9e84.
2. Douady, A., Hubbard, J. H., \& Lavaurs, P. (1984). Etude dynamique des polynômes complexes.
3. Mandelbrot, B. B. (1980). Fractal aspects of the iteration of $\mathrm{z} * \mathrm{Xz}(1-\mathrm{z})$ for complex \backslash and z . Annals of the New York Academy of Sciences, 357.

Copyright: ©2024 Udo E. Steinemann. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

