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Abstract

If a variable is replace by its square and subsequently enlarged by a constant during a number of iteration-steps in
quaternion-space, a network of (3) sets will be built gradually. As long as for the iteration-constant certain conditions are
fulfilled, the network will consist of: an rrnbounded set (escape-set) with trajectories escaping to infinity during course of
the iteration, a bounded set (prisoner-set) with trajectories tending to a sink-point and a further bounded one (JULIA-set)
with a fixed-point as repeller having a repulsive effect on all points of both the other sets. The iteration will continue until the
attracting sink-point of prisoner-set and the repeliing fixedpoint on JULIA-set have been found. This situation is reached if
predecessor- and successor-state of the iteration became equal. The fixed-point-condition provisionally formulated in general
terms of quaternions, can be separated into (3) sub-conditions. When heeding the HAMILTONian-rules for interactions of
the imaginary sub-spaces of the quaternion-space, each sub-condition will be appropriate for one imaginary subspaces and

independently debatable. Knowledge of fixed-points from this fundamental network will one enable to study the structure of
a connected JULIA-set.

The Iteration will start from (1) on real-axis, this is not a restriction on generaiity because an appropriate scaling on real-
axis can always be archived this way. It will become obvious, that the fixed-points in prisonerand JIILIA-set will depend on
the iteration-constant only. Thus (16) different constants chosen appropriately will enable to arrange (16) fixed-points of
JLTLIA-sets in the square-points of a hyper-cube and thereby together with the JULIA-sets to built a related JULIA-network.

The symmetry-properties of this related .IULIA-network can be studied on base of a hyper-cube's symmetry-group extended
by some additional considerations.

1. Introduction.

In the following attention is appiied to the results of an iteration, which takes place in quaternion-space (a space of hyper-cubes with
its space-elements) a layout of this is given next:
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Each hyper-cube:

»  Is surrounded by (8) cubes each one with (6) surfaces. Thus all together, cubes will have (48) surfaces.
*  Because the cubes wiil slmre surfaces, onlv (24) surfaces will have to be counted effectively.

The quaternion-space is spanned by a real unit-vector (e) vertical to a tripod of imaginary unit-vectors {i'j"d,}. Among these reference-
vectors t}re HAMILTONIian rules must hold:
1’1, &€ =(-i?)=(-j>) =(-d?) =1

[ij = (—ji) =d] A [id = (—dj) = i] A [di = (-id) = j].

Any point in the space is given by:
e Q=eQu+iQ+jQ2+dQ3s = (Q = quaternion—variable} A ( [Q¢"Q;1" Q2" Q3] = real components).

A sequence:

1°2. [Q — Q*+(N = Ny+iN;+jN,+dN; )’+N - ... = (N =constant) A ([Ng"N;"N,"N;] =
real components)

iteratively executed is to considered next, where by observing the HAMILTONian rules (1~1.) the following
relations between Q and Q2 must hold:

Derivation 1~1.

Q = eQo+iQ; +jQ,+dQ;
[ leads to |

Q? = (eQy+iQ; +jQ,+dQ;)*
Q% = €’Q+i’Q % +°Q,7+d?* Qi+

12QoQ+j2QoQ+d2Q,Q;+
i(jQ1Qx+dQ;Q3)+ ® o
J(IQ:Q1+dQ,Q3)+

d(iQ3Q:1+jQsQ5)

[leads to| & | with| }
e=(-i")=(-j)=(-d?) =1
ij=(—j-i)=d @

o+ e

Q% = Q*—Q*—Q*—Q3*+
12Q;Qo+j2Q2Qo+d2Q;Qo+
dQ;Q:-jQ1Q5—dQ,Q:+i1Q,Q5+jQ3Q—-iQ;3Q,

[ teads to |
Q% = Q*+1i2Q;Qo—Q:*+
Qo2 +52QQo— Q%+
Qo*+d2Q3Qy—Q3°—2Q,”
[ leads to |
Q% = (Qo+iQ;)*+(Qu+iQ2)*+(Qo+dQ;)°—2Q,”
[leads ta] & | with|
[Qi = Qo+iQu] A [Q; = Qo+i Q2] A [Qu = Qo+dQs]
Q = (Qp+1Q)+(Qp+JQ2)+(Qo+dQ5)—2Q, ®

Without restriction on generality due to a free choice of an appropriate scaling on the e—axis, (Qg =1) can be
assumed in (1~2.) and thus one may further write:

«@Q = @ |= ]

@
d
®

1~3. [(P = Qi+Qj+Qd—‘2) b d (]PZ = Q;2+Qj2+de—2)+N]2+N =P cew = N() = N,f0+Nj0+Nd0
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This iteration will run until its predecessor— and successor—state become equal. When certain restrictions on
(N) are observed, a network of (3) connected sets will be generated:

e An unbounded escape—set with trajectories escaping to infinity in execution—time of the iteration,
e A bounded prisoner—set with trajectories tending to a sink—point while the iteration is going on and

e A bounded JULIA—set with a fractal structure formed by points acting as repellers against all points of both
the other sets.

At the moment iteration stops, (2) fixed—points have been generated:

e Arepeller—point (Hjy) on JULIA—set and
e A attractive sink—point (H,) in prisoner—set.

From sequence (1~3.) the following condition for the fixed—points must hold:

e Q:’+Q’+Q,/ —Q;—Q;—Qu+No+iN;+jN,+dN; = 0.

This will result in the (2) fixed—point—solutions (Hj;,) with their components:
o [H; — QJA[H; — Q]A[H; Q.

Thus equation (1~3.) can now be re—written as:

o H +H+H,*—H; —H; —H,+No+iN;+jN,+dN;3 = 0,

under (N = N;o+N;o+Nyo) can be separated into:

1“4. Hi Z—Hi+Ni0+iN1 = 0
1"5. sz—Hj+Nj0+jN2 = 0
1°6. Hdz——Hd+ng+dN3 =0.

2. About the Structure of a connected Quaternion-JULIA-Set.

Searching for the fixed—points of an appropriate network (escape—, prisoner— and JULIA—set) secms to be a
good way to enter the discussion on the structure of a connected JULIA—set. For further discussions an
invariance of forward— and backward—iterations relative to the repelling fixed—point is of major interest.
Instead trying to find the fixed—points directly their projections in complex planes ([e~i] A [e”~i] A [e~d])
(obtained via solutions of equations (1~4.—1-6.)) are used preliminary in order to specify them indirectly.

2.1. Fixed-Points from Interation (1 3,) of Sequence (I1"\1,) .

From e.g. [1 A 2] it is known, that a network with complex escape— prisoner— and JULIA—set can be obtained,
when a sequence like:

2.1°1. ([h = ehg+ih;| >h?+[€ = elg+il}])?+£—((h®+£)*+£)*>+€—... < ([h=variable] A [£ = constant]).

is executed recursively and the iteration finally stops due to equality of its predecessor— and successor—state.
This complex network will have properties comparable with the network specified from (1~3.) with the
exception, it only exists in complex plane. For this complex network it ihas become obvious, there is a structural
dichotomy. Depending on the constant (€) both prisoner— and JULIA—set may behave differently:

e For a specific £—set, the complex prisoner— and JULIA—set are connected (each on consists of one piece only)
and the prisoner—set possesses a fixed—point as sink, while the JULIA—set has a fixed—point as a
repeller for the prisoner— and escape—set as well.
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e Incase of an alternate £—set, prisoner— and JULIA—set will become CANTOR—sets, which means, they
appear completely disconnected.

B. B. MANDELBROT [3] had the idea of picturing this dichotomy in a set of parameters (£) varying in the
complex plane. This leads directly to the MANDELBROT—set:

maginary

He coloured each point in the plane of £—values black or white depending on whether the associated JULIA —sets
respectively turned out to be one piece or dust.

What now a question about the characters of the complex solutions from equations (1~4.—1~6.) is concerned, it
must be identified, that they are subjected to the same dichotomy as those in case of (2.1~1.). Solutions of (1~4.—
176.) only will become fixed—points, if the complex components (N;o+7N;) A (N;o+7N2) A (Ny+dN;3) within
(1~3.) are extracted from the black part of the MANDELBROT—set.

2.1.1. Conditions to find Components of Fixed-Points .

Under these conditions (1~4.) leads to the preliminary solutions:

o Hueq = Yet%(1—4N;—i4N,])*%.

This can be further evaluated by settings:

e 1—-4N;(—i4N, = (u—ix)? = u?—i2ux+x?

leads via a fourth—degree—equation for (u), to the following solutions of (u) and (x):

e u-= ﬂ:«%"’2Ni0+«(%—2Ni0)2—4N12»y2»%
o x=+2N;/(%—2N;+{(%—2N;)*—4N?)*)*

finally to:
2.1.1°1.  Hjgq = Yt {%—2N;o+{(5—%N;0) >~ YN 2) Y EFIN, /{¥2—2N;o+{(¥2—2N;( ) 2—4N, 2)*)* .

The attracting or repelling property of the fixed—points is in essence the derivation of the sequence for (P) at
the locations of H;j45;. This derivation can be calculated in the same way as for the real case. A fixed—point is
attractive, if the absolute value of the derivation at fixed—point location is (<1), it is repelling if (>1). Therefore
one obtains:

e |2H;y| > 1 — H;y, is repeller and thus a point on corresponding JULIA —set.
e |2H;;| <1 — H;p, is attractor and thus a sink in the corresponding prisoner—set.

More details about the derivations can be found in the scheme (2.1.1~1.):
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Derivation 2.1.1"1.

Hiz_Hi+Ni0+iN1 = 0

[leads ta |

H"[]_&zl = ]7/2:!:1/2«1'—‘4‘N,‘0‘—f4N1»%

[leadsto] & | with|

1—4N;,—i4N; = (u—ix)? = u?— i 2ux+x2

@+~ e

]H[ﬂ]_&z] = %:tl/Zu:Fi%X

[ where [

[ leads ta |

|2H ;| = [(14u)®+x*]*

|2H1‘I2]I: [( 1"'“)2+X2]%

®> 0 =0 +=o+«=e0

1—4N;, = u’+x?

(4N; = 2ux) — (2N;/u=x)

1-4N;q = u’+4N,*/u®

u?—(1—4N;)u’+4N,2 =0

[ leads to |

u? = %—2N,;o+{(2—2N,,)’—4N,%)*

[ leads to]

u = (% —2N,o+{(2—2N,o)°—4N, 2)*)*

®+=0+=0

[ leads to|

X = :|:2N1/«1/2—2N;0+(((]/2—2N;0)2—4N12»%))%

®+~0

[ leads ta |

-0 >0

Hipez =2
+
(%—"N;o+{(—%N ;o) 214N, 2)*)*
:F
Ny /(% —2N;0+{(%—2N;0)*—4N,%)*)*

[u>0] — [0 < [2H;;y)| = (1+|u]) [1+4N*/u?(1+[u])?]* > 1]

[u> 0] — [0 < |2H;;y| = (1—|u])[1+4N,*/u®(1—[u])*]* < 1]

> ®

[u < 0] — [0 > (—|2H;y| = —(Ju|-1)[1+4N,’/u®(1+|u])’]*) < ~1]

[u<0] - [0 > {—|2H;p5| = —(Ju]+1)[1+4N,*/u*(1—|u])*]") > —1]

[ leads ta |

0<|2H;y|>1

0 <|2H;p| <1

[leads ta |

H;;1; : Component associated with repeller-point on quaternion-JULIA-set

o+ o+« |o>

H iz Component associated with sink-point in quaternion-prisoner-set

o =0 =0

Similarly (1~5.) will lead to the preliminary solutions:
L] H jfl1&2] = ]/211/2«1_‘4Nj0""j4N2))%.

J

This can be further evaluated by settings:

e 1-4N;—j4N, = (v—jy)? = v’—j2vy+y>

leads via a fourth—degree—equation for (v), to the following solutions for (v) and (y):
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e V= :l:«l/2—2Nj()+«(]/2_2Nj0)2*4N22))%»%
o ¥y = +2N,/(%—2N;o+{(¥2—2N;o)2—4N,2)*)*

finally to:

2.1.1~2.

H.

J

ez = YaE{V—YeN;o+{(Y—%2N;) *— N, 2) “Y“FjN, / §2—2N;o+{(Y2—2N;o)*—4N,2)#)*.

The attracting or repelling property of the fixed—points is in essence the derivation of the sequence for (P) at
the locations of Hj(;44)- This derivation can be calculated in the same way as for the real case. A fixed point is
attractive, if the absolute value of the derivation at fixed—point location is (<1), it is repelling, if it is (>1). This
leads in the actual cases to:

e |2H;;| > 1 — Hjjy, is repeller and thus a point on corresponding JULIA —set.

e |2H;y| <1 — H; is attractor and thus a sink in the corresponding prisoner—set.

More details about the derivations can be found in the following scheme (2.1.1~2.):

Derivation 2.1.1"2.

H,”—H4+N;o+jN, =0

[teads to |

Hj[l&Zl = ]/2:‘:]/2«1—4Nj0—j4N2»%

[leadsta| & | with|

1—4N;—j4N, = (v—jy)? = v’—j2vy+y®

® e

H; 100 = V2L YvEj 2y

[ where |

[ leads to |

[2H;y| = [(1+v)*+y’]”

[2H;| = [(1—v)*+y?]*

®>e -6 «=o+«=0

1—4NJ-0 = V2+y2

(4N, =2vy) — (2N, /v=y)

1—'4Nj0 - v2+4N22/V2

vi—(1—4N;o)v’+4N,2 = 0

0 <@

[leads o]

vZ = %—2N o +{(%—2N, ) *—4N, )"

| leads ts|

v = 2(%—2N;+H{(2—2N,0)*—4N,%)*)*

®+=0+=0

[ teads ta |

¥ = £2N,/(%—2N,;0+{(%—2N,) —4N,%)*)*

®o+~0

[ leads ta|

Hjpe =%
+
(AN +{ (—YaN;) *—YAN, %) )
ZF
JNa/(%—2N;0+{(%—2N;)*—AN,?) )"

«0 >0

v > 0] = [0 < [2Hyy[ = (1HVD[1+4NZ /v 1V > 1

RE
‘i"

J

v > 0] — [0 < [2H ;| = (1—[VD)[1+4N* /v (1-|v]) ] < 1 | ®
A A
v < 0] = [0 > (—[2Hy[ = —([v]=1)[1-+4N,2/v2(1+[v])T%) < 1] e
v < 0] > [0> (—|2H;p| = —(|v[+1)[1+4N,2/v*(1—|v])?]%) > —1] 1D
[ leads to| + 9
O<|2Hy| > 1 L1
0<|2H;] <1 | e
o 7 [ leads to | Lok
H;(y, : Component associated with repeller-point on quaternion-JULIA-set K J
H;,, : Component associated with sink-point in quaternion-prisoner-set (]
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And last not least condition (1~6.) will lead to the preliminary solutions:

o Hyg0 = %+%{1—4N ;o—d4N3 )"~

This can be further ev aluated by settings:

o 1-4N,—d4N; = (w—dz)? = w’—d2wz+z>

leads via a fourth—degree—equation for (w), to the following solutions for (w) and (z):

L ] W = :':((]/2_sz0+(((]/2—2Nd0)2—4N32)>%))%

o z=+2N;/(Va—2N 4o+{(Y2—2N,0 ) —4N;7)*)*

finally to:

2.1.1°3.  Hypga = Yt (U—YaN o +{(%—YN 1) VAN, 2) ) Fd Ny /(Va—2N yo+{(2—2N 4o ) 2— AN 2) %) %,

The attracting or repelling property of the fixed—points is in essence the derivation of the sequence for (P) at
the locations of H 4j149)- This derivation can be calculated in the same way as for the real case. A fixed— point is
attractive, if the absolute value of the derivation at fixed—point location is (<1), it is repelling, if it is (>1). This
leads in the actual cases to:

e |2Hgy| > 1 — Hypy, is repeller and thus a point on corresponding JULIA—set.
e |2H 4| < 1 — Hyp is attractor and thus a sink in the corresponding prisoner—set.

More details about the derivation can be found in the following scheme (2.1.1°3.):

Adv Mach Lear Art Inte, 2024 Volume S | Issue 2 |7



Derivation 2.1.1"3.

|2H4| = [(1+w)*+27]*

H,”—H,+N,+dN; — 0 °
[ teads to| 3
00 = %ot Va{1—4N ;—dANL)" )
[teadsta| & | with| 4
1-4N,y—d4N, = (w—dz)? = w’—d2wz+2°
H y140) = Yo+ VowFd oz ®
[ where [ I
[ leads to |
@
A
@

[2Hgp | = [(1—w)?+27]*
1—4N,, = w?+42z2

(4N; = 2wz) — (2N3/w = z)
1—4N4 = w?+4N;3% /w?

>

wi—(1—4N,)W?4+4N,2 =0
[ leads to|
w2 = %—2N, o +{(%—2N,, ) —4N,%)*
[ leads to]
w {%a—2N 40 +{(2—2N 40)*—4N,7)*)*
[ leads to |
2 = £2N3/(%—2N40+{(¥2—2N,0) *—4N, ) *)*
[ leads to |
Hyp1e0 =2
+
(—VaN go-+{(—YaN 4o ) *— VAN 2) )"
:F
dN;/(%—2Nyo+{(¥2—2N9)°—4N;2)*)*
[w> 0] — [0 < |2H 5| = (1-+|w])[1+4N5>/w2(1+|w])*]* > 1
[w > 0] — [0 < |[2H 45| = (1—|w]|) [1+4N3*/w?(1-|w[)*]* < 1

®+=0+eo

®+0
-0 >0

> @

[w < 0] = [0> {—[2H )| = —(|w|—1)[1+4Nz*/w?(1+|w|)?]*) < -1
[w < 0] — [0 > {—|2H,p| = —(|w]+1)[1+4N5*/w?(1—|w])*]*) > —1
[ leads to |
0<|2H | >1
0<|2H, <1
[ teads to] ,
H 414, : Component associated with repeller-point on quaternion-JULIA-set
Hg@ : Component associated with sink-point in quaternion-prisoner-set

2.1.2. Fixed-Points as Quaternion-Points.

(H) as a quaternion can generally be written in a form like:

o H=[(ap’+a,’+ar’+a;%)"] -exp{O(ia; +jar+das)/(a,*+a,"+a3)*)}
= T-exp{n6}
= Teexp{i¥;+j¥,+d ¥}
= (ty-exp{i ¥ })-(tz-exp{j¥>})-(t5-exp{d¥;})
= ty(cos{ ¥ }+isin{ T })-to(cos{ T }+jsin{P,})-t3(cos{P}+dsin{T3}).

Because (H;jyg9) A Hjj40 A Hypq0)) may be expressed as (2.1.171. — 2.1.1°3.), this will further lead to:

L] tl(cos{\I’I}—Fisin{‘I’l}) =>
H 152 = {25~ YaN ;o +{(—YaN ;) > —VaN 2) Y} Fi{N, / (*2a—2N;o+{(2—2N;) *—4N,>)*)*}
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o ty(cos{T,}+jsin{¥,}) =
Hjj102 = {%2{5—YN;o+{(5—%N ;o) *— N 2) )i {No /(2 —2N;0+{(2—2N;0) 2 — 4N, %) )"}

o ty(cos{¥s}+dsin{¥;}) =
H 109 = {Va£{5—Y2N go+{(—aN40) AN 2) ") }Fd{N; / (V2—2N 4o+{(2—2N 40 ) *—4N3 %) #)*}.

Thus the fixed—points for JULIA— and prisoner—set will become:

2.1.2°1.  Hyy = H;pqH;pp-Hyp—2
= {Va+{h—YaN ;o +{(%—aN;0) *— 14N, %) *)*}— i{N; /(—2N;o+{ (¥2—2N;,) *— 4N 2)*)*} -
{Va+{(—YaN;o+{(—V2N;0 ) — 14N, 2)*)*}—j {N,/ ((1/2—2Nj0+«(1/2—'2Nj0)2_4}\1 22"y}
{%+(A—YaN 1o +{(%—YeN40) *—AN3?) ") *} —d{ N3 /{V2—2N yo+{ (Y2—2Ny0 ) *—4N,2) ) *} -2
2.1.2°2.  Hp = HppoHjpgpe H ypp—2
= {Va—(—1aN;o+{(—%N;0)*— 4N ) )} i {N, /(%—2N;o+{(Ya—2N;) *—4N, 2) )} -
{Va—(—%eN;o+{(5—"aN;0) > —YaN, ) ") }j (N /(Ve—2N;0+{(Y2—2N;0) >—4N, %) #)*} -
{Vo—(—YaN 4o +{(o—"2N40)*—YaN;3?)*)*}H+d{ N3 /{Vo—2N 4o+ {(Ya—2N 40 ) >—4N ;%) ) *} 2.

2.3.The fractal Structure of the JULIA-Set.

A JULIA—set is a complete invariant fractal with respect to forward— and backward—iteration. A j—th pre—
image (in a backward—iteration) and a k—th image (in a forward—iteration) starting from the repeller (Hy,,
given by equation 2.1.2~1.) are to be obtained by:

2.3~1. Images: R*Y = H;;>+N, R®*? = [ROV]24N,...., R = [REED]24N, ...
2.3°2. Pre-images: R,.,"" = +(H;;—N)*, R;.,"? = £(R,., “"-N)* ..., R,V = £(R,., “*V-N)*,......

Because (Hp;) is a point of the JULIA—set, R ) and RC? cannot in the basin of attraction of infinity
otherwise the initial point (Hj;;) would have to be part of the escape—set too. On the other hand, both kinds of
images cannot be in the interior (the prisoner—set), because then (H;) would then have to be from prisoner—set
too, what again is not the case. Thus R *® and R must be from the boundary (the JULIA—set). The reason for
all this can also be found in the continuity of the quadratic transformation. Arbitrarily close to the images and
pre—images there are escaping— and prisoner—points and the continuity of iteration implies, neighbourhood
relation must hold for the whole set of transformation points. This finally leads to a JULIA—set being invariant
with respect to forward— and backward—transformation as well.

The total, unlimited set of images and pre—images from the repellers on JULIA—set determines the fractal
structure of the JULIA—set.

3. Symmetries of a related JULIA-Network.

It is obvious from equations (2.1.2~1.) and (2.1.2"2.), the fixed—points (H;4) of the network (escape—
prisoner— and JULIA—set) obtained from iteration (1~3.) depend on selection of (N) only. Thus (16) different

choices of (N’s) chosen appropriately from the black part of the MANDELBROT—set will define (16) different
fixed—points (Hj;;) for JULIA—sets as square—points of a hyper—cube. This hyper—cube together with the
JULIA—sets belonging to each of the square—points will represent a related JULIA—network. The symmetry—
properties of this JULIA—network is to be obtained on base of a hyper—cube’s symmetry—group extended by
some additional considerations.

The symmetry—group of a cube can be derived from the symmetry—group of a square. With this knowledge in
mind all hints are provided to further obtain the symmetry—group of a hyper—cube. The symmetry—group of a
hyper—cube with additional considerations will then finally lead to the symmetry— properties of the related
JULIA—network.
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3.1.The Symmetries of a Square.

The symmetry—group of a square can best be described by the group—table below, consisting of (64)
permutations of the square—points (contained in the entries of the table) obtained when (8) operations act on
the square. The (8) operations consist of:

e The identity—operation (id) to reinstall the starting configuration,

e (3) right—turning rotations ([r; = /2] A [ry = 1] A [r3 = 31/2]) around the centre of the square,

e (4) flip—operations (f,~f,~f3~f,) with respect to indicated directions.

The permutations within entries (1 — 64) of the group—table have the meaning:

o Positions of edge—points after an operation of column(0) having acted on the square

o Positions of edge—points after operation of row(0) being performed on top of operation in column(0).

* id r; Iy Iy f, f, fy f,
id 0123 0123 0123 0123 0123 0123 0123 0123
0123 3012 2301 1230 3210 0321 1032 2103
=id =TI, =Ty ‘—"1'3 :fl :f2 =f3 :f4
3012 3012 3012 3012 3012 3012 3012 3012
I 3012 2301 1230 0123 2103 3210 0321 1032
=TI =T5 =T3 :id =f4 :fl :fz :f3
T 2301 2301 2301 2301 2301 2301 2301 2301
2 2301 1230 0123 3012 1032 2103 3210 0321
=TIy =T3 :id :r1 =f3 :f4 :fl :f2

T 1230 1230 1230 1230 1230 1230 12340 1230
3 1230 0123 3012 2301 0321 1032 2103 3210
=T3 =id =TIy Ty :fz =f3 :f4 '_‘fl

f 3210 3210 3210 10 3210 3210 3210 3210
1 3210 0321 1032 2103 0123 3012 2301 1230
:fl :fZ =f3 -—-f4 :id =1‘1 :r2 =r3
f 0321 0321 0321 0321 0321 0321 0321 0321
2 0321 1032 2103 3210 1230 0123 3012 2301
:fz :f3 :f4 =f1 =TI3 =id =TIy =Ty

f 1032 1032 1032 1032 1032 1032 1032 1032
3 1032 2103 3210 03 2 2301 1230 0123 3012
:f3 =f4 :fl :f2 =Ty =TI3 =id =TIy

f 2103 2103 2103 2103 2103 2103 2103 2103
4 2103 3210 0321 1032 3012 2301 1230 0123
=f4 -—_—fl :fz :f3 =TIy =Ty =T3 :id

id Ty Iy Ty

2 | 2 1 0 3

1 3 0 3 2

1 i % - 313 . 0

7" 'Y
|
2 |0 3 0 1
f, A £ f,

The yellow—marked sub—group is the cyclic group of the square.
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3.2. Symmetries of a Cube.

From symmetry—group of a square, (3) symmetry—sub—groups of a cube can be derived by replacing:

e Rotations around centre of square by right—turning rotations (R;"R,"R3) around each of the axes
(AB~CD"EF):
> ([AB L (*1%2%3")] A [CD L (o'5%:%4°)] A [EF L (o*%5%,7))

e Flip—operations (f;~fy~f3~f,) with respect to directions (black“red~blue~green) respectively replaced by
mirror—operations (m; ~m,~m3~m,) with respect to appropriate mirror—planes:
» (NKLM)—m;—, {0264)—m,—, (GH1J)—m3;— and (1573)—m —plane for rotation in AB—direction
» (OPQR)—m;—, (0167)—my—, (NKLM)—m3;— and (2543)—m,—plane for rotation in CD—direction
» (OPQR)—m;—, (0563)—m,—, (GHIJ)—m3— and (1274)—m —plane for rotation in EF—direction.

Under these conditions one will obtain (3) symmetry—sub—groups of a cube with respect to the directions
(AB~CD ~EF), each one is isomorphic with the symmetry—group of a square.

The first sub—group based on direction (AB) follows immediately with (64) elements, which belonging to
multiplications of operations(column(0)) and operations(row(0)):

* id R1 Rz R3 my ms mg my

id 4567 7456 6745 5674 765 4 4765 5476 65 47
0123 3012 2301 1230 3210 0321 1032 2103
=id =R; =R, =R3 =m, =1, =mg =1my

R 7456 67 45 5674 4567 6547 765 4 4765 5476
1 3012 2301 1230 0123 2103 3210 0321 1032
=R1 =R2 =R3 =id =y = My = My =13

AB R. 6745 567 4 4567 7456 5476 65 47 765 4 4765
2 2301 1230 0123 3012 1032 2103 3210 0321

R 56 7 4 4567 7456 6 7 45 4765 5476 6547 765 4
3 1230 0123 3012 2301 0321 1032 2103 3210
=R3 =id :Rl :R2 = My =g =my = my

765 4 47 65 54786 6547 4567 7456 6 745 56 7 4

nkm | M3 {32710 0321 1032 2103 0123 3012 2301 1230
= my = My =13 =my =id :Rl :RZ :R3

4765 5476 6547 7654 5674 4567 7456 6745
0264 | M2 | 0321 1032 2103 3210 1230 0123 3012 2301

=m, =1m; =my =m, =R, =id =R, =R,

5476 65 47 765 4 47 65 6 7 45 567 4 4567 7456
GHILJ m3 {1032 2103 3210 0321 2 1 1230 0123

30 0
:1[13 = My —_-I‘n1 _—_m2 :R,,z =R3 :id =
6547 765 4 4765 5476 70456 6 745 567 4 415

1573 | My | 2°1%0%" | 372%%0" [ 0%372%" | 170" 20 [ 5 0 12" | 250" [ 1723 0" | 01 28"
= My = my = 1Ny =gy Rl = :Rg id
A B 1 6 T B .7 6
= Y ST ” ......... ‘-“’”" 2
4 5; '\ = 5
3 2 i 3 e 2
: K : O o
......... [ | TR . Ty &
A AR
0 1 0 1
T
T/
7 B 6 : ~.‘,,B 6
o O
J .t g
4 1 . 55
FEREL 2 G P 2 2
') L /
xet A "t s
0 Y % 0 1
G
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A second sub—group based on direction (CD) follows next with (64) elements belonging to multiplications of
operations(column(0)) and operations(row(0)):

* id Rl R,z B,a my m, msg my
id 1265 51286 6 512 2651 56 21 1562 2156 6 215
1 0374 4037 7403 3740 4730 0473 3047 7304
=id :Rl =R, =R3 = my = My =g =My
R 5126 6 512 2651 1265 6 215 56 21 156 2 2156
1 4037 7403 3740 0374 7304 4730 0473 3047
=R, =R, =R, =id =my =m, =m, =mg3
cD 6 51 2 26 51 12635 5126 2156 6 215 5 6 21 1562
R’Z 7403 3740 0374 4037 3047 7304 4730 0473
:R2 =R3 =id =R1 == =1my =my =My
R 26 5 1 1265 51286 6512 1562 2156 6 215 56 21
3 3740 374 4037 7403 0473 3047 7304 4730
=Ry =id =R, =R, =1m, =mgy =my =m,
5 6 21 1562 2156 6 215 1265 5126 6 512 26 51
orQr | My 4730 0473 3047 7304 0374 4037 7403 3740
:ml =m2 :m3 =II14 =1d =R1 =R2 '—“Rg
1562 2156 6 215 56 21 2651 1265 5126 6 512
0167 my o473 3047 7304 4730 3740 0374 4037 7403
= My =g =1my =1my —R3 =id :Rl :Rz
2156 6 215 56 21 1562 6 512 26 51 12635 5126
Nnkim | M3 § 37074 7 7304 4730 0473 7403 3740 0374 4037
=g =My = 1My = o :Rz :R3 =id :Rl
6 215 56 21 1562 2156 512 6 6 51 2 2651 1265
2543 my {7304 4730 0473 3047 4037 7403 3740 0374
=my =my =m, =mg =R, =R, =R3 =id
7 8 prerrnrnensnssnnincns® @
.‘“...."...-.” pannnd Q .,,'
J *. LJ
& Ed ?| D
O ennrsbansnnesnancas@P
0 1 0 EsusAvEsaRINsERaREnS 1
7 6 6
M : edescssnsssasns "EJ'.
47 5:
. H
C ¢ $1|D D
33 : 2 3 Beveansoncenssedenaansgy 2
N
L] 1 ] 1

Finally one obtains a sub—group based on direction (EF) which follows next with (64) elements belonging to
all multiplications of operations(column(0)) and operations(row(0)):

* id R, R, R; m; m, mg my

id 2673 3267 7326 67 3 2 3762 2376 6 237 6 2
015 4 4015 5401 1540 4510 0451 1045 5104

=id =R, = =Rj3 =m, =m, =mg =my

R 3267 7326 67 3 2 2673 76 23 3762 2376 6 237

1 4015 5401 1540 015 5104 4510 0451 1045

=R, =R, =Ry =id =my, =1, =1m, =1my
EF R 7326 67 32 2673 3267 6 237 76 23 3762 2376
2 15401 1540 015 4 4015 1045 5104 4510 0451

=R2 =R3 =id =R1 =13 =My = my = My
R 67 32 2673 3267 7326 2376 6 237 76 23 3762

3 1540 015 4 4015 5401 0451 1045 5104 4510

:R3 =id "'Rl :R2 =1y =Ing =y =y
m 3762 2376 6 2 37 76 23 2673 32617 7326 67 32
OPQR 1 4510 0451 1045 510 4 015 4 4015 5401 15640
=1, =1y =g =1y =id :Rl =R2 —-_—R3
m 2376 6 237 76 23 3762 67 32 2673 3267 7326

0563 20451 1045 5104 4510 1540 015 4 4 15 01
= 1m, =mg =1my = my :R3 =id :Rl _Rz
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6 237 7623 3762 2376 7326 67 32 267 3 3267
GHILJ m3ziio045 5104 4510 0451 5401 1540 015 4 4015
=13 =1my =m, =1y =R2 =R3 =id —-Rl
76 23 3762 2376 6 237 32617 7326 67 32 2673
1274 my 5104 4510 0451 1045 15 5401 540 015 4
=m, =m, =m, =mg =R, = =R3 =id
7 7 '0 6
O..'
o b Pid
4 5 4
E'"-....u-,u. ......."Q 7
0.. b..
Ou‘...-u.. seasannnn@'P 4
3 5 3 48 2
“.
] 1 ] 1
1 6
T g
4 ""_"E"‘ 5
J 5 . J
/-H 2
3 s
: ".
R
0 ® 1
G

consideration. The properties of these operations are summarized in the next table:

»

In addition (4) flip—operations (F5~Fg"F,"Fg) with respect to the space—diagonals of the cube will have be taken into

* id fy e £, fg
d 4567 2361 2307 4301 2501
1 0123 0745 6145 6725 6743

= i(l - f5 = fﬁ = f7 = fg
f 2361 1567 4501 2507 4307
5 0745 0123 6723 6143 6125

= f}; == i(i = i(i
£ 2307 4501 2567 256 1 4361
6 6145 6723 0123 0743 0725

=fg A =id C D
f 2301 2507 256 4567 2367
T 6725 6143 0743 0123 0145

= I =id C =id E
f 2501 1307 436 2367 4567
8 6743 6125 0725 0145 0123

=fy B D E =id

v 6 4 6
4 5 4 5

£y
f,
5 At fg
2 9

0 1 0 1

Thus finally (25) symmetry—operations in total will make up the symmetry—group of a cube.

3.3. Symmetries of a Hyper-Cube.

If one replaces in a cube:

Each pair of parallel planes involved in one of the rotations (R; V R, V Rg) by a quadruple of cubes (from
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hyper—cube’s structure) with surfaces parallel to a perpendicular common axis of rotation out of
(aBV~dVeQ),

e FEach mirror—plane of a cube by a 3—dimensional object with a pair of parallel planes suitable for a further
more mirror—operation,

(3) symmetry—sub—groups of a hyper—cube are obtained, each isomorphic with the symmetry—group of a square
and a symmetry—sub—groups of a cube. Each symmetry—sub—group of the hyper—cube consists of:

¢ Right—turning rotations (R; A Ry A R3), around a (af3 V 4 V e()—axis,
e Mirror—operation (M; A M, A M3 A M) with respect to the appropriate mirror—objects.

The first sub—group based on direction (af) follows immediately with (64) permutations according to all
multiplications of operations(column(0)) and of operations(row(0)):

* id R, R, R, M, M, M, M,
EFGH HEF G GHEF ¥ H E HGFE EHGF F EHG GF EH
M NOP PMNO OPMN P M PONM M P O NMPO ONMP
'd IJKL LIJK KLIJ JKLI LKJI ILKUJ JILK KJIL
I ABC D D ABC C DAB BC DA DCBA ADC B BADC C BAD
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A second sub—group based on direction (y3) follows next with (64) permutations according to all multiplications
of operations(olumn(0)) and of operations(row(0)):

* id R, R, s M, M, M, M,
B C GF FB C G G FB C C G FB F G CB B F G C CB F G G CB F
JKON NJKO O NJK K ONIJ NOKIJ JNOK K JNO O KIJN
'(i i M MILP PMIL LPMI MPLI IMPL LIMP PLIM
1 ADHE E ADH HE AD DHE A E HDA AE HD DAE H HDAE
=id —Rl —R2 —R =M1 -—M —M3 —M4
FB C G G FB C C GFB B CGF G CB F F G CB B F G C CB F G
NJK O O NJK K ONJ JKON O KJN N O K J O K KJINO
I‘, MILP M P M P M PLIM MPLI IMPL LIMP
1 E ADII IE AD DIOE A ADHE HDHE E H AE L DAE N
8 =R, - R =id =M =M = =M,
G FB C C GFB B CGF FB C G CB F G G CBF FGCB BF G C
O NJK K N JKON NJKO KJINO O KJN NOKJ J NOK
I{’ PMIL L PMI ILPM MILP LIMP PLIM M P LI IMPL
2 HE AD DHE A ADHE E ADH DAE H HDAE E HD AE HD
=R2 = =id =R1 =M3 —-M4 —-M1 —Mg
C G FB B C G F FB C G G FB C B F G C CB F G G CB F F G CB
KONIJ J K NJK O O NJK JNOK K J
]F‘. LPMI ILPM M I PMIL M L M PLIM P Li
3 DHE A ADHE E ADII IE AD AE II D DAE I HDAE E HD A
=R3 =id _Rl —-Rz =M2 -——M3 —M4 =M1
FGCB B F G C CB F G G CB F B CGF FB C G G FB C C G FB
NOKUJ JNOK K JNO O KJN J KON NITKO O NJK K J
o TV M M P L1 IMPL LIMP PLIM ITLPM MILP PMIL LPMI
0P S 1 E HD A AE HD D AE H HDAE AD I E E ADII OE AD DHE A
=M, =M, =M, =M, =id =R, =R, =R,
B F G C CB F G G CB F F G CB C F B B CGF FB C G G FB C
JNOK KIJINO OKJN NOKIJ K ONJ JKON NJK O NJK
1Jop ]N'[ IMPL LIMP PLIM MPLI LPMI TLPWM MILP PMIL
ABG H 2 AE HD D AE H HDAE E HDA DHE A ADHE E ADII IE AD
——Mz —M —M4 —M1 :R3 =id _R’l —R2
CB F G G CB F F GCB BT GC G TFDB C CGFB B G F FB C G
K JNO OKJN NOKIJ JNOK O NJK KONJ JKON NIKO
Apv g M LIMP PLIM M P LI IMPL PMIL LPMI ILPM MILP
nO LK 3 DAE H HDAE T A DA AE HD HE AD DHE A ADHE E ADH
—M3 —M4 _Ml =M2 -:Rz =R3 —_-ld —R1
G CBF F GCB B F G C CB F G C G G FB C CGFB B C G F
OKJN NOKJ JNOK K JNO NJK O NJ K K ONIJ JKON
LKLM ]N’l: PLIM MPLI IMPL LIMP MILP PMIL LPMI ILPM
DCFE 4 HDAE E HDA AE HD DAE H E ADH HE AD DHE A ADH E
=M, =M, =M, =M, =Ry ~R, =l =id
& il G
tha s
o 8B
A A B
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And finally a sub—group based on direction () with (64) permutations will follow according all multiplications
of operations(column(0)) and operations(row(0)):

* id R, R, R,
ABF E EABF F EAB B F EA
IJNM MIJN NMIJ JNMI
. (]> LKOP P L O P LK K OPL
1 bDcCcGH HDC G G HDC C GHD
:id —R]_ —_—Rz =R3
E AB F EAB B F EA ABF E
MIJN NMIJ JNMI IJNM
];lu PLKO O P LK O P L LKOP
1 HDC G G HDC CGHD DCGH
¢ =R, =R, =R, =id
F EAB B F E A ABF E E ABF
NMI1IIJ JNMI IJNM MIJN
:I}, O P LK K OP L L KoOop?p PLKO
2 G HDC C GHD DCGH HDC G
ZRZ =R3 =id =R1
B F EA ABF © EABF F EAB
JNMI IJNM MIJN NMIJ
j[], K OPL K O PLKO O P LK
3 C GHD DcaGgH IDC G GHDC
=R, =id =R, =R,
E FBA A EFB BA EF FBA E
MNIJI IMNIZJ JIMN NJIM
oTUVY ]\f[ P OKL L POK KLPO OKLP
omp s 1|{HGCD DHG C CDHG GCDH
= ]Nl[fl = ]\([;2 = ]S’[:; - ]N/I 4
A EFB BA EF FBA E E FBA
1MNJ JIMN NJIM MNII
IN QE ]S/[ L POK KLPO K L P O K L
AF G D 2 DHGC C DH G G CcbDIn oIG cpo
= ]!V]:z = ]N/[:; = ]\/1_4 - ]N/[ 1
BA E F FBA E E FBA A EFB
IJTMN NIIM MNIJI1I IMNIJ
®xec3 M KLPO K L P OKL L P OK
X P wd 3lcpHG GCDH HGCD DHG C
=M3 :M4 =M1 =M2
FBA B E FBA A EFB BA EF
NJIM MNJI IMNIJ JIMN
JKPM ]S([ OKLP P OKL L P OK KLPO
BC HE 4 G CDH HG CD DHGC C DHG
=M, =M, =M, =M,
£ G
F
O
4P
C s
preerkeeeRr
A B

B
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In addition to these (21) symmetry—operations (8) flip—operations will have be considered, due to the (8)

quaternion— diagonals of the hypercube:

* id F5 Fg Fr Fg Fy Fio Fiy Fio
EFGH CDAP CDAP M D AB M D AB CNAB CNAB CDOB C D OB
MNO P GHEL GHEL IHEF ILHEF GIEF GIEF GHEKF GHEKF

id IJKUL KFI13J KF I3 KLG1J KLGIJ KLIH KLIH EL I1J EL IJ
ABC D OBMN OBMN OPCN OPCN OPMD OPMD APMN APMN
=id =F5 =Fg =Fy =Fg =Fy =Fyo =Fu =Fy
CDAP EFGH EFGH CNORB CNORBRB M D OB M D OB MNAB MNAB
GHEL MNO P MNO P GJ1KF GIKF IHKF I HKPF ITEF IJEF

F KF I1J IJKL IJKL ELI1IH ELIH EL GJ ELGJ KL GH KL GH

5 |0 BMN ABC D ABC D APMD AP MD APCN ADCN 0PCD OPCD
=T, —id —id A A B B c c
CDATP EF G H EF GH GN OB CN OB M D O M D 0B M N A B M N A B
CHEL MN O P MNO P G 3 KF G JKF 1 HKF I HKF 1JEF JEF

F KFI1I IJKL IJKL ELIH ELIH LGJ ELGJ KL H KLGH

6 |0BMN ABC D ABC D APMD AP MD APCN ADGCN oPCD oOPCD
—F, —id —id A A B B C C
M D A B CN OB CN OB EF GH EF G i CDoP CDoP CNAD CN AP
I HE F G J K PF GJKPF M NOP MNOP G HKL G HKL GJEL GJEL

F KLGJ ELLH EL IH ITKL IJKL EF 1] EF I3J KFIH KF IH

T OPCN APMD APMD ABC D ABC D A BMN ABMN O BMD O BMD
—F, A A =id —id D D E E
M D AB TN OB TN OB EF G EF G0 CDOP CDOP CN AP CN AP
I HEF G JKF G J K F M NOUP MNOUP G HKL G HKL GJEL GJEL

F KLGJ ELIH EL IH ITKL IJKL EF IJ EF I3 KF I1H KF IH

8 OPCN APMD A PMD ABC D ABCD A BMN A BMN O BMD O BMD
=Ty A A =id =id D D E E
CNAB M D O M D B CDOP C D OP EFGH EFGH MDAP MDAP
GJETF I HK F I HKF G HK L G HKL MNOP M N P I HEL I HEL

F KL IH ELGJ ELGJ EF IJ EF IJ ITKL IJKL KFGJ KFGJ

9 O PMD PCN APCN BMN ABMN ABC D ABC D OBCN O BCN
=Fy B B D D =id =id F F
CNAB | MD OB M D O CDoOP CDOoP EF G H EF GO DA M D AD
GJEF I HKPF I HK F G HK L G HK L MNOP MNOTDP I I EL I OEL

F KL IH ELGJ ELGJ EF I3 EF 1] ITKL IJKL FGJ KFGJ

10 O PMD APCN APCN A BMN A BMN ABC D ABC D O BCN O BCN
=Fq B B D D =id =id F F
GD OB MN A B M N A B CN AP GN AP M D AD M D AD EF GO EF GH
G HKPF I JEF 1 JE G JEL GJEL I HEL I HEL MNOP MNOUP

F ELIJ KL GH KLGH KF IH KF IH KFGJ KFG IJKL 1T KL

11 APMN OPCD oOPCD O BMD O BMD O BCN O BCN ABC D ABC D
=Fy, o C E E F F =id =id
CD OB MN A B M N A B CN AP CN AP M D AP MD AP EF G H EF G o
G HKPF IJEF I JETF GJIEL GIEL I HE L I HEL MNOP MNOP

F EL I KLGH KLGH FIH F I KFGJ KFGJ IJKL ITKL

12 APMN OPCD OPCD 0 BMD O B MD OBCN OBCN ABC D ARC D
=Fy ! C E E F F =id = id
p o P o

N M N

Fo S
P

& e
P B g G"-._f_“s
¥, -
G ) o
A B A B
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Together with (200) symmetry—operations for the (8) inner cubes of a hyper—cube, (232) symmetry—
operations in total have to be counted for a hyper—cube and are responsible for its symmetry—group.

3.4. Symmetry-Group of the related JULIA-Network.

The (16) different fixed—points (H;- ;¢ (o,15) by definition from above will form a hyper—cube in quaternion—
space. Thus a probe—point moving from (Hj;- ) to (Hj;- ) by execution of a hyper—cube’s symmetry—
operations will change its (N) fluently from (Np,) to (N;). Due to the fact, that each of the images or pre—
images must follow equations (2.3°1. A 2.3~2) in any position of the probe, they will always be adapted in
relation to the probe’s location. Therefore the probe in essence mediates between the JULIA—sets with fixed—
points (Hjz- ) and (Hp-yy)-

In summery one may say, that the related JULIA—network under the action of any symmetry—operation of a
hyper—cube will remain completely in itself. Thus, related JULIA—network and the symmetry—operations of a
hyper—cube will built a symmetry—group.

4. Summary.

The iteration of sequence (1~3.) in quaternion—space — with restrictions from MANDELBROT—set on the
complex components of its iteration—constant — resulted in a network of (3) sets. An unbounded escape—set
(with trajectories escaping to infinity) accompanied by a set caught in a limited area (prisoner—set, whose
trajectories tended to a sink—point) and the boundary—set of the prisoner—set built by points acting repulsively
on points from escape— and prisoner—set as well.

The iteration stopped if the sink—point of the prisoner—set and a fixed repeller—point on JULIA—set had been
obtained, that is, when equality between the iteration’s predecessor— and successor—state had been reached. A
Quaternion—condition for this stop—event (the fixed—point—condition) could be formulized and — by taking into
account the HAMILTONian rules — could be separated into three sub—conditions (according o the quaternion—
space’s complex subspaces). Every one of these sub—conditions could subsequently be solved independently. On
base of these results it became possible to express the quaternion fixed—points of prisoner— and JULIA—set as
well.

With knowledge of the fixed—repeller—point of a JULIA—set it became possible to describe the structure of the
JULIA—set by the set of images and pre—images, which are obtained from forward— or backward—iteration
relative to the repeller.

Fixed—points and JULIA—set of the network, obtained by iterative execution of sequence (1~3.) will only
depended on the choice of the actual iteration—constant. Therefore, (16) constants appropriately chosen from
black part of the MANDELBROT—set will make it possible to arrange the repeller—fixed—points of the
iteratively obtained JULIA—sets in the square—points of a hyper—cube. Fixed—points and their JULIA—sets
positioned this way will then represent a related JULIA—network. The set of quaternion—points of the related
JULIA—network together with the symmetry—operations of a hyper—cube will form the symmetry—group of the
related JULIA—network.
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