
   Volume 3 | Issue 4 | 1J Math Techniques Comput Math, 2024

Citation: Aparicio, C. A. P. (2024). A Short Note on the Infinity Product Tan (z) Function. J Math Techniques Comput Math, 3(4), 
01-03.

A Short Note on the Infinity Product Tan (z) Function

*Corresponding Author
Carlos A Pérez Aparicio, Department of Mathematics, Spain 

Submitted:  2024,  Mar  08; Accepted: 2024,  Mar   29;  Published:  2024,  Apr  06

Carlos A Pérez Aparicio*

Department of Mathematics, Spain

Short Communication Article 

Abstract
We present a novel derivation of the infinite product of the tangent function, Tan(z), expressed in terms of trigonometric expressions 
including Euler’s Sinc function and Viète’s formula, along with their generalizations.

Key Words and Phrases: Viète’s Formula, Tan Function.

Journal of Mathematical Techniques and Computational Mathematics 
ISSN: 2834-7706

1. Introduction
Infinite product (1) was previously published by Viète in 1593, based on geometric considerations. A detailed compendium, 
including analysis and evaluations of infinite products of elementary functions in terms of trigonometric functions, can be found in 
the classical literature
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Viète’s formula may be obtained as a special case of a formula for the sinc
function that has often been attributed to Leonhard Euler[1], more than a cen-
tury later:
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Proof : starting with
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For brevity, we employ mathematical induction to prove the case of Formula
(10) when q = 2 and m = 0
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(10) when q = 2 and m = 0
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Step 1: Base Case n = 1 We need to show that the formula holds for n = 1 :
the left-hand side LHS becomes:
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The LHS and RHS are equal for the base case.
Step 2: Iinductive hypothesis assume that the formula is true for some ar-

bitrary positive integer n:

n−1∏
k=0

1

2
tan

(
2−k−1z

)
cot

(
2−k−2z

)
= 2−k tan

(z
2

)
(14)
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3

Multiply both sides by

Using the inductive hypothesis, the RHS simplifies to:

Simplify the RHS:Simplify the RHS:
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The RHS matches the LHS for n+ 1.
Therefore, by mathematical induction, the given formula holds for all posi-

tive integers (n)
Example 1. Infinitely nested radicals.

Using several values for n Integers
2n tan( π

2n )
π in formula (10) get the following

table:

Product ∞ Result
1
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√
2
· · · 4

π

(2−
√
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Simplify the RHS:
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The RHS matches the LHS for n+ 1.
Therefore, by mathematical induction, the given formula holds for all posi-
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The RHS matches the LHS for n + 1.
Therefore, by mathematical induction, the given formula holds for all positive integers (n)
Example 1. Infinitely nested radicals.
Using several values for n Integers                     in formula (10) get the following table:
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