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1. Introduction
Infinite product (1) was previously published by Viète in 1593, based on geometric considerations. A detailed compendium, 
including analysis and evaluations of infinite products of elementary functions in terms of trigonometric functions, can be found in 
the classical literature
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Viète’s formula may be obtained as a special case of a formula for the sinc
function that has often been attributed to Leonhard Euler[1], more than a cen-
tury later:
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Proof : starting with
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For brevity, we employ mathematical induction to prove the case of Formula
(10) when q = 2 and m = 0
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(10) when q = 2 and m = 0
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Step 1: Base Case n = 1 We need to show that the formula holds for n = 1 :
the left-hand side LHS becomes:
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The LHS and RHS are equal for the base case.
Step 2: Iinductive hypothesis assume that the formula is true for some ar-
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Step 3: Inductive step we need to prove that the formula holds for n+ 1 :
Consider the LHS for n + 1 :

n∏
k=0

1

2
tan

(
2−k−1z

)
cot

(
2−k−2z

)
(15)

Multiply both sides by
(
1
2 tan

(
2−n−1z

)
cot

(
2−n−2z

))
:

(
n−1∏
k=0

1

2
tan

(
2−k−1z

)
cot

(
2−k−2z

))
· 1
2
tan

(
2−n−1z

)
cot

(
2−n−2z

)
(16)

Using the inductive hypothesis, the RHS simplifies to:

2−k tan
(z
2

)
cot

(
2−n−1z

)
· 1
2
tan

(
2−n−1z

)
cot

(
2−n−2z

)
(17)

3

Multiply both sides by

Using the inductive hypothesis, the RHS simplifies to:

Simplify the RHS:Simplify the RHS:
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The RHS matches the LHS for n+ 1.
Therefore, by mathematical induction, the given formula holds for all posi-

tive integers (n)
Example 1. Infinitely nested radicals.

Using several values for n Integers
2n tan( π

2n )
π in formula (10) get the following

table:

Product ∞ Result
1
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√
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√
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Simplify the RHS:
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The RHS matches the LHS for n+ 1.
Therefore, by mathematical induction, the given formula holds for all posi-
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The RHS matches the LHS for n + 1.
Therefore, by mathematical induction, the given formula holds for all positive integers (n)
Example 1. Infinitely nested radicals.
Using several values for n Integers                     in formula (10) get the following table:
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