A property of $C^{k, \alpha}$ functions

Robert Dalmasso

LE GALION - BÂTIMENT B, 33 BOULEVARD STALINGRAD, 06300 NICE, FRANCE.

*Corresponding Author

Robert Dalmasso, Le Galion - Bâtiment B, 33 Boulevard Stalingrad, 06300 Nice, France.

Submitted: 16 Feb 2023; Accepted: 27 Feb 2023; Published: 15 Mar 2023

Citation: Dalmasso, R. (2023). A property of $C^{k, \alpha}$ functions. J Math Techniques Comput Math, 2(3), 136-138.

Abstract

Let f be a nonnegative function of class $C^{k}(k \geq 2)$ such that $f^{(k)}$ is Hölder continuous with exponent α in (0,1]. Iff' $(x)=$ $\cdots=f^{(k)}(x)=0$ when $f(x)=0$, we show that f^{μ} is differentiable for $\mu \in(1 /(k+\alpha), 1)$ and under an additional condition we show that $\left(f^{\mu}\right)^{\prime}$ ' is Hölder continuous with exponent $\beta=\mu(1+\alpha)-1$ (if $\beta \leq 1$) at $x \in[0, T]$ when $f(x)=0$. $\left(f^{\mu}\right)^{\prime}$ is Lipschitz continuous at x if $f(x)>0$.

Keywords and Phrases: $C^{k, \alpha}$ functions; differentiability, 2020 Mathematics Subject Classification: 26A06, 26A24.
$C^{k}[a, b]$ denotes the space of functions differentiable up to order k such that the derivatives of order k are continuous on $[a, b]$ and $C^{k, \alpha}[a, b]$ denotes the space of functions in $C^{k}[a, b]$ such that the derivatives of order k are Hölder continuous with exponent α in $(0,1]$. Recall that $g:[a, b] \rightarrow \mathbb{R}$ is Hölder continuous with exponent $\alpha \in(0,1]$ at $x \in[a, b]$ if
$\sup \left\{|g(y)-g(x)||y-x|^{-\alpha} ; y \neq x, y \in[a, b]\right\}<\infty$,
and that g is Hölder continuous with exponent $\alpha \in(0,1]$ in $[a$, b] if
$\sup \left\{|g(x)-g(y)||x-y|^{-\alpha} ; x \neq y, x, y \in[a, b]\right\}<\infty$.

It is well-known ([4]) that if a nonnegative function f is in $C^{2}[a, b]$ and if the second derivative of f vanishes at the zeros of f, then $f^{1 / 2}$ is in $C^{1}[a, b]$. Now if $f \in C^{m}[a, b]$ is nonnegative and if all its derivatives vanish at the zeros of f, then $f^{1 / m}$ is not necessarily in $C^{1}[a, b]$ (See [3]). Finally let $f \in C^{k, \alpha}[a, b], k \geq 1$ and $f \geq 0$. Then $\mathrm{f}^{1 /}$ ${ }^{k+\alpha}$ is absolutely continuous (See [1] Lemma 1 and also Remark 2 in [2] when $k=1$).

Now let $f \in C^{k, \alpha}[0, T], T>0, k \geq 2$, be such that $f^{f i}(x)=0$ for some $x \in[0, T], j=0, \cdots, k$. Then we define

$$
N(x, y)=(y-x)^{k-1} \int_{0}^{1}(1-s)^{k-2} f^{(k)}(s y+(1-s) x) d s
$$

and, if $f \geq 0$,

$$
D(x, y)=\left((y-x)^{k} \int_{0}^{1}(1-s)^{k-1} f^{(k)}(s y+(1-s) x) d s\right)^{(k+\alpha-1) /(k+\alpha)}
$$

for $x, y \in[0, T]$. We have the following theorem.
Theorem. Let $f \in C^{k, \alpha}[0, T], T>0, k \geq 2$, be such that $f \geq 0$. Assume that f has at least one zero in $[0, T]$. If $f^{\prime}(x)=\cdots=f^{(k)}(x)$ $=0$ when $f(x)=0$, then f^{μ} is differentiable for $\mu \in(1 /(k+\alpha), 1)$. If moreover $N(x, y) / D(x, y)$ is bounded for $(x, y) \in\{t \in[0, T] ; f(t)$
$=0\} \times\{t \in[0, T] ; f(t)>0\}$, then $\left(f^{u}\right)^{\prime}$ is Hölder continuous with exponent $\beta=\mu(k+\alpha)-1$ at x such that $f(x)=0$ (if $\beta \leq 1$). $\left(f^{\prime}\right)^{\prime}$ is Lipschitz continuous at x if $f(x)>0$.

Proof. f^{μ} is clearly differentiable at $x \in[0, T]$ when $f(x)>0$. Suppose that $f(x)=0$. For $y \in[0, T]$ we can write

$$
\begin{align*}
f(y) & =\frac{(y-x)^{k}}{(k-1)!} \int_{0}^{1}(1-s)^{k-1} f^{(k)}(s y+(1-s) x) d s \\
& \leq \frac{|y-x|^{k}}{(k-1)!} \int_{0}^{1}(1-s)^{k-1}\left|f^{(k)}(s y+(1-s) x)\right| d s \tag{1}\\
& \leq C \frac{|y-x|^{k+\alpha}}{(k-1)!} \int_{0}^{1}(1-s)^{k-1} s^{\alpha} d s \\
& =\frac{C}{(1+\alpha) \cdots(\alpha+k)}|y-x|^{k+\alpha}
\end{align*}
$$

for some constant C, which implies that f^{u} is differentiable at x. Let $x \in[0, T]$. Suppose first that $f(x)=0$. Then $f^{(i)}(x)=0$ for $j=$ $1, \cdots, k$. Let $y \in[0, T]$ be such that $f(y)>0$. We can write

$$
f^{\prime}(y)=\frac{(y-x)^{k-1}}{(k-2)!} \int_{0}^{1}(1-s)^{k-2} f^{(k)}(s y+(1-s) x) d s
$$

and

$$
f(y)=\frac{(y-x)^{k}}{(k-1)!} \int_{0}^{1}(1-s)^{k-1} f^{(k)}(s y+(1-s) x) d s
$$

Using (1) we get

$$
\begin{aligned}
\left|\left(f^{\mu}\right)^{\prime}(y)-\left(f^{\mu}\right)^{\prime}(x)\right| & =\mu\left|f(y)^{\mu-1} f^{\prime}(y)\right| \\
& =\mu\left|f(y)^{\mu-\frac{1}{k+\alpha}} f(y)^{-\frac{k+\alpha-1}{k+\alpha}} f^{\prime}(y)\right| \\
& \left.=C_{1}\left|f(y)^{\mu-\frac{1}{k+\alpha}}\right| N(x, y) \right\rvert\, / D(x, y) \\
& \leq C_{2} f(y)^{\mu-\frac{1}{k+\alpha}} \leq C_{3}|y-x|^{\beta}
\end{aligned}
$$

for some constants $C_{j}(j=1, \cdots, 3)$ where C_{2} and C_{3} may depend on x. Since f^{μ} is C^{1} near t when $f(t)>0$, this implies that $f^{\mu} \in C^{1}[0$, $T]$. Suppose now that $f(x)>0$. There exist $c, d \in[0, T]$ such that $c<d, x \in[c, d]$ when $x=0$ or $x=T$ and $x \in(c, d)$ when $x \in(0, T)$ and $f(y) \geq f(x) / 2$ for $y \in[c, d]$. Let $y \in[c, d]$. We have

```
|(fu}\mp@subsup{)}{}{\prime}(y)-(\mp@subsup{f}{}{\prime}\mp@subsup{)}{}{\prime}(x)|=\mu|f(y\mp@subsup{)}{}{\mu-l}\mp@subsup{f}{}{\prime}(y)-f(x\mp@subsup{)}{}{\mu-1}\mp@subsup{f}{}{\prime}(x)
\leq\mu(f(y)\mp@subsup{)}{}{\mu-1}|\mp@subsup{f}{}{\prime}(y)-\mp@subsup{f}{}{\prime}(x)|
+|\mp@subsup{f}{}{\prime}(x)||f(y)}\mp@subsup{}{}{\mu-1}-f(x\mp@subsup{)}{}{\mu-1}
\leqC l |y-x|,
```

for some constant C_{1} depending on x. Since $\left(f^{\mu}\right)^{\prime}$ is continuous on $[0, T]$ there exists a constant C_{2} depending on x such that $\left|\left(f^{4}\right)^{\prime}(y)-\left(f^{4}\right)^{\prime}(x)\right| \leq C_{2}|y-x|$ for $y \in[0, T] \backslash[c, d]$.
The proof of the theorem is complete.

Remark. The case $k=1$ is treated in [2]. Notice that, when $k \geq$ 2 and $\mu \in[1 / 2,1), f^{\mu}$ is in $C^{1}[0, T]$: See [3, 4]. Moreover, assume that $k \geq 2$ and that $f^{\prime}(0)=0\left(\right.$ resp. $\left.f^{\prime}(T)=0\right)$ when $f(0)=0$ (resp. $f(T)=0)$. Then, if $\mu \in(1 / 2,1),\left(f^{\mu}\right)^{\prime}$ is Hölder continuous with exponent $2 \mu-1$ at x if $f(x)=0$ and Lipschitz continuous at x if $f(x)>0$: See [2].

Corollary. Let $f \in C^{k, \alpha}[0, T], T>0, k \geq 2$. Assume that $f^{f(i)}(0)=0$ for $j=0, \cdots, k$ and that $f^{(k)}>0$ on $(0, \eta]$ for some $\eta \in(0, T)$ and $f^{k k} \geq 0$ on $[\eta, T]$. Then $\left(f^{\mu}\right)^{\prime}$ is Hölder continuous with exponent $\beta=\mu(k+\alpha)-1$ at 0 (if $\beta \leq 1)$. (fa $)^{\prime}$ is Lipschitz continuous at $x \in(0, T]$.

Proof. In view of the Theorem it is enough to show that $N(0$, $y) / D(0, y)$ is bounded on $(0, T]$. Let

$$
0<\varepsilon<\min \left(1,\left(\frac{k-1}{2\left\|f^{(k)}\right\|_{\infty}} \int_{0}^{1}(1-s)^{k-2} f^{(k)}(s y) d s\right)^{\frac{1}{k-1}}\right)
$$

We can write

$$
\int_{0}^{1}(1-s)^{k-1} f^{(k)}(s y) d s=\int_{0}^{1-\varepsilon}(1-s)^{k-1} f^{(k)}(s y) d s+\int_{1-\varepsilon}^{1}(1-s)^{k-1} f^{(k)}(s y) d s
$$

Now we have

$$
\int_{0}^{1-\varepsilon}(1-s)^{k-1} f^{(k)}(s y) d s \geq \varepsilon \int_{0}^{1-\varepsilon}(1-s)^{k-2} f^{(k)}(s y) d s
$$

and

$$
\int_{1-\varepsilon}^{1}(1-s)^{k-2} f^{(k)}(s y) d s \leq \frac{\varepsilon^{k-1}\left\|f^{(k)}\right\|_{\infty}}{k-1}
$$

Then

$$
\begin{aligned}
\int_{0}^{1}(1-s)^{k-1} f^{(k)}(s y) d s \geq & \varepsilon \int_{0}^{1}(1-s)^{k-2} f^{(k)}(s y) d s \\
& -\varepsilon \int_{1-\varepsilon}^{1}(1-s)^{k-2} f^{(k)}(s y) d s \\
\geq & \varepsilon \int_{0}^{1}(1-s)^{k-2} f^{(k)}(s y) d s-\frac{\varepsilon^{k}}{k-1}\left\|f^{(k)}\right\|_{\infty} \\
\geq & \frac{\varepsilon}{2} \int_{0}^{1}(1-s)^{k-2} f^{(k)}(s y) d s
\end{aligned}
$$

Now, when $y>0$, we get

$$
\begin{aligned}
\frac{N(0, y)}{D(0, y)} & \leq y^{-\frac{\alpha}{k+\alpha}}\left(\frac{2}{\varepsilon}\right)^{\frac{k+\alpha-1}{k+\alpha}}\left(\int_{0}^{1}(1-s)^{k-2} f^{(k)}(s y) d s\right)^{\frac{1}{k+\alpha}} \\
& \leq C_{1}(\varepsilon) y^{-\frac{\alpha}{k+\alpha}}\left(y^{\alpha} \int_{0}^{1}(1-s)^{k-2} s^{\alpha}\right)^{\frac{1}{k+\alpha}} \leq C_{2}(\varepsilon)
\end{aligned}
$$

Then the result follows from the Theorem.

Example 1. Let

$$
\beta_{0}=0, \quad \beta_{j}=\frac{1}{j+1}\left(\beta_{j-1}+\frac{1}{(j+1)!}\right), j=1, \cdots, k \quad \text { and } \quad T \in(0,1]
$$

and let

$$
f(x)= \begin{cases}-\frac{x^{k+1}}{(k+1)!} \ln x+\beta_{k} x^{k+1} & \text { if } \quad x \in(0, T] \\ 0 & \text { if } \quad x=0\end{cases}
$$

Then $f \in C^{k, \alpha}[0, T]$ for all $\alpha \in(0,1), f^{j j}(0)=0$ for $j=0, \cdots, k$ and $f^{(k)}(x)=-x \ln x$. Then we can apply the Corollary. Notice that here $N(0, y) / D(0, y)$ is continuous on $(0, T]$ and tends to 0 as $y \rightarrow 0$.

Example 2. For $\alpha \in(0,1]$ let $f(x)=x^{k+\alpha} g(x), x \in[0, T]$ where $g \in$ $C^{k, \alpha}[0, T]$ is such that $g>0$ on $(0, T]$. Then $f \in C^{k, \alpha}[0, T], f^{(i)}(0)=0$ for $j=0, \cdots, k$ and $N(0, y) / D(0, y)$ is continuous on $(0, T]$. Suppose that $g^{(i)}(0) \neq 0$ for some $j \in\{0, \cdots, k\}$ and $g^{(i)}(0)=0$ for $i=0, \cdots$, $j-1$ if $j \geq 1$. Then $N(0, y) / D(0, y) \rightarrow l$ as $y \rightarrow 0$ where $l>0$ if j $=0$ and $l=0$ if $j \in\{1, \cdots, k\}$.

References

1. Colombini, F., Jannelli, E., \& Spagnolo, S. (1983).

Well-posedness in the Gevrey classes of the Cauchy problem for a non-strictly hyperbolic equation with coefficients depending on time. Annali della Scuola Normale Superiore di Pisa-Classe di Scienze, 10(2), 291-312.
2. Dalmasso, R. (2016). A property of $\mathrm{C}^{1, \alpha}$ functions. Journal of Mathematical Analysis and Applications, 435(1), 10111013.
3. Dieudonné, J. (1970). Sur un théoréme de Glaeser. Journal d'analyse mathématique, 23, 85-88.
4. Glaeser, G. (1963). Racine carrée d'une fonction différentiable. Annales de l'Institut Fourier (Vol. 13, No. 2, pp. 203210).

Copyright: ©2023 Robert Dalmasso. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

