

Mini Review Article Journal of Mathematical Techniques and Computational Mathematics

A property of $C^{k,\alpha}$ functions

Robert Dalmasso

LE GALION - BÂTIMENT B. 33 BOULEVARD STAL-INGRAD, 06300 NICE, FRANCE.

*Corresponding Author

Robert Dalmasso, Le Galion - Bâtiment B, 33 Boulevard Stalingrad, 06300 Nice, France.

Submitted: 16 Feb 2023; Accepted: 27 Feb 2023; Published: 15 Mar 2023

Citation: Dalmasso, R. (2023). A property of C^{k,a} functions. J Math Techniques Comput Math, 2(3), 136-138.

Let f be a nonnegative function of class C^k $(k \ge 2)$ such that $f^{(k)}$ is Hölder continuous with exponent α in (0,1]. If f'(x) = 1••• = $f^{(k)}(x) = 0$ when f(x) = 0, we show that f^{μ} is differentiable for $\mu \in (1/(k + \alpha), 1)$ and under an additional condition we show that $(f^{\mu})'$ is Hölder continuous with exponent $\beta = \mu(1+\alpha) - 1$ (if $\beta \le 1$) at $x \in [0,T]$ when f(x) = 0. $(f^{\mu})'$ is Lipschitz continuous at x if f(x) > 0.

Keywords and Phrases: $C^{k,a}$ functions; differentiability, 2020 Mathematics Subject Classification: 26A06, 26A24.

 $C^{k}[a, b]$ denotes the space of functions differentiable up to order k such that the derivatives of order k are continuous on [a, b]and $C^{k,\alpha}[a,b]$ denotes the space of functions in $C^k[a,b]$ such that the derivatives of order k are Hölder continuous with exponent α in (0,1]. Recall that $g:[a,b]\to\mathbb{R}$ is Hölder continuous with exponent $\alpha \in (0,1]$ at $x \in [a, b]$ if

$$\sup\{|g(y) - g(x)||y - x|^{-a} ; y \neq x, y \in [a, b]\} < \infty,$$

and that g is Hölder continuous with exponent $\alpha \in (0,1]$ in [a, *b*] if

$$\sup\{|g(x) - g(y)||x - y|^{-a}; x \neq y, x, y \in [a, b]\} < \infty.$$

It is well-known ([4]) that if a nonnegative function f is in $C^2[a,b]$ and if the second derivative of f vanishes at the zeros of f, then $f^{1/2}$ is in $C^1[a,b]$. Now if $f \in C^m[a,b]$ is nonnegative and if all its derivatives vanish at the zeros of f, then $f^{1/m}$ is not necessarily in $C^1[a,b]$ (See [3]). Finally let $f \in C^{k,\alpha}[a,b]$, $k \ge 1$ and $f \ge 0$. Then $f^{1/2}$ k+α is absolutely continuous (See [1] Lemma 1 and also Remark 2 in [2] when k = 1).

Now let $f \in C^{k, \alpha}[0, T]$, T > 0, $k \ge 2$, be such that $f^{(j)}(x) = 0$ for some $x \in [0,T], j = 0, \dots, k$. Then we define

$$N(x,y) = (y-x)^{k-1} \int_0^1 (1-s)^{k-2} f^{(k)}(sy + (1-s)x) \, ds \; ,$$

and, if $f \ge 0$,

$$D(x,y) = ((y-x)^k \int_0^1 (1-s)^{k-1} f^{(k)}(sy + (1-s)x) \, ds)^{(k+\alpha-1)/(k+\alpha)}$$

for $x, y \in [0, T]$. We have the following theorem.

Theorem. Let $f \in C^{k,\alpha}[0,T]$, T > 0, $k \ge 2$, be such that $f \ge 0$. Assume that f has at least one zero in [0, T]. If $f'(x) = \cdots = f^{(k)}(x)$ = 0 when f(x) = 0, then f^{μ} is differentiable for $\mu \in (1/(k+\alpha), 1)$. If moreover N(x,y)/D(x,y) is bounded for $(x,y) \in \{t \in [0,T]; f(t)\}$

=0} $\times \{t \in [0,T]; f(t) > 0\}$, then $(f^{\mu})'$ is Hölder continuous with exponent $\beta = \mu(k + \alpha) - 1$ at x such that f(x) = 0 (if $\beta \le 1$). $(f^{\mu})'$ is Lipschitz continuous at x if f(x) > 0.

Proof. f^{μ} is clearly differentiable at $x \in [0, T]$ when f(x) > 0. Suppose that f(x) = 0. For $y \in [0, T]$ we can write

$$f(y) = \frac{(y-x)^k}{(k-1)!} \int_0^1 (1-s)^{k-1} f^{(k)}(sy + (1-s)x) \, ds$$

$$\leq \frac{|y-x|^k}{(k-1)!} \int_0^1 (1-s)^{k-1} |f^{(k)}(sy + (1-s)x)| \, ds$$

$$\leq C \frac{|y-x|^{k+\alpha}}{(k-1)!} \int_0^1 (1-s)^{k-1} s^{\alpha} \, ds$$

$$= \frac{C}{(1+\alpha)\cdots(\alpha+k)} |y-x|^{k+\alpha} ,$$
(1)

for some constant C, which implies that f^{μ} is differentiable at x.

Let $x \in [0, T]$. Suppose first that f(x) = 0. Then $f^{(j)}(x) = 0$ for $j = 1, \dots, k$. Let $y \in [0, T]$ be such that f(y) > 0. We can write

$$f'(y) = \frac{(y-x)^{k-1}}{(k-2)!} \int_0^1 (1-s)^{k-2} f^{(k)}(sy + (1-s)x) ds ,$$

and

$$f(y) = \frac{(y-x)^k}{(k-1)!} \int_0^1 (1-s)^{k-1} f^{(k)}(sy + (1-s)x) \, ds \ .$$

Using (1) we get

$$|(f^{\mu})'(y) - (f^{\mu})'(x)| = \mu |f(y)^{\mu - 1} f'(y)|$$

$$= \mu |f(y)^{\mu - \frac{1}{k + \alpha}} f(y)^{-\frac{k + \alpha - 1}{k + \alpha}} f'(y)|$$

$$= C_1 |f(y)^{\mu - \frac{1}{k + \alpha}} |N(x, y)| / D(x, y)$$

$$\leq C_2 f(y)^{\mu - \frac{1}{k + \alpha}} \leq C_3 |y - x|^{\beta},$$

for some constants C_j $(j=1,\cdots,3)$ where C_2 and C_3 may depend on x. Since f^a is C^1 near t when f(t) > 0, this implies that $f^a \in C^1[0, T]$. Suppose now that f(x) > 0. There exist c, $d \in [0,T]$ such that c < d, $x \in [c,d]$ when x = 0 or x = T and $x \in (c,d)$ when $x \in (0,T)$ and $f(y) \ge f(x)/2$ for $y \in [c,d]$. Let $y \in [c,d]$. We have

$$\begin{aligned} &|f^{(\mu)'}(y) - f^{(\mu)'}(x)| = \mu |f(y)^{\mu-1} f'(y) - f(x)^{\mu-1} f'(x)| \\ &\leq \mu (f(y)^{\mu-1} |f'(y) - f'(x)| \\ &+ |f'(x)| |f(y)^{\mu-1} - f(x)^{\mu-1}|) \\ &\leq C_{I} |y - x| , \end{aligned}$$

for some constant C_1 depending on x. Since $(f^\mu)'$ is continuous on [0,T] there exists a constant C_2 depending on x such that $|(f^\mu)'(y)-(f^\mu)'(x)| \leq C_2|y-x|$ for $y \in [0,T] \setminus [c,d]$. The proof of the theorem is complete.

Remark. The case k = 1 is treated in [2]. Notice that, when $k \ge 2$ and $\mu \in [1/2,1)$, f^{μ} is in $C^{1}[0, T]$: See [3, 4]. Moreover, assume that $k \ge 2$ and that f'(0) = 0 (resp. f'(T) = 0) when f(0) = 0 (resp. f(T) = 0). Then, if $\mu \in (1/2,1)$, $(f^{\mu})'$ is Hölder continuous with exponent $2\mu - 1$ at x if f(x) = 0 and Lipschitz continuous at x if f(x) > 0: See [2].

Corollary. Let $f \in C^{k,\alpha}[0,T]$, T > 0, $k \ge 2$. Assume that $f^{(i)}(0) = 0$ for $j = 0, \bullet \bullet \bullet$, k and that $f^{(k)} > 0$ on $(0,\eta]$ for some $\eta \in (0,T)$ and $f^{(k)} \ge 0$ on $[\eta, T]$. Then $(f^{(k)})'$ is Hölder continuous with exponent $\beta = \mu$ $(k + \alpha) - 1$ at 0 (if $\beta \le 1$). $(f^{(k)})'$ is Lipschitz continuous at $x \in (0, T]$.

Proof. In view of the Theorem it is enough to show that N(0, y)/D(0, y) is bounded on (0,T]. Let

$$0 < \varepsilon < \min(1, (\frac{k-1}{2||f^{(k)}||_{\infty}} \int_0^1 (1-s)^{k-2} f^{(k)}(sy) ds)^{\frac{1}{k-1}}).$$

We can write

$$\int_0^1 (1-s)^{k-1} f^{(k)}(sy) ds = \int_0^{1-\varepsilon} (1-s)^{k-1} f^{(k)}(sy) ds + \int_{1-\varepsilon}^1 (1-s)^{k-1} f^{(k)}(sy) ds \ .$$

Now we have

$$\int_{0}^{1-\varepsilon} (1-s)^{k-1} f^{(k)}(sy) ds \ge \varepsilon \int_{0}^{1-\varepsilon} (1-s)^{k-2} f^{(k)}(sy) ds \,,$$

and

$$\int_{1-\varepsilon}^{1} (1-s)^{k-2} f^{(k)}(sy) ds \le \frac{\varepsilon^{k-1} ||f^{(k)}||_{\infty}}{k-1} .$$

Then

$$\int_{0}^{1} (1-s)^{k-1} f^{(k)}(sy) ds \geq \varepsilon \int_{0}^{1} (1-s)^{k-2} f^{(k)}(sy) ds
-\varepsilon \int_{1-\varepsilon}^{1} (1-s)^{k-2} f^{(k)}(sy) ds
\geq \varepsilon \int_{0}^{1} (1-s)^{k-2} f^{(k)}(sy) ds - \frac{\varepsilon^{k}}{k-1} ||f^{(k)}||_{\infty}
\geq \frac{\varepsilon}{2} \int_{0}^{1} (1-s)^{k-2} f^{(k)}(sy) ds .$$

Now, when y > 0, we get

$$\frac{N(0,y)}{D(0,y)} \leq y^{-\frac{\alpha}{k+\alpha}} \left(\frac{2}{\varepsilon}\right)^{\frac{k+\alpha-1}{k+\alpha}} \left(\int_0^1 (1-s)^{k-2} f^{(k)}(sy) ds\right)^{\frac{1}{k+\alpha}} \\
\leq C_1(\varepsilon) y^{-\frac{\alpha}{k+\alpha}} \left(y^{\alpha} \int_0^1 (1-s)^{k-2} s^{\alpha}\right)^{\frac{1}{k+\alpha}} \leq C_2(\varepsilon) .$$

Then the result follows from the Theorem.

Example 1. Let

$$\beta_0 = 0$$
, $\beta_j = \frac{1}{j+1} (\beta_{j-1} + \frac{1}{(j+1)!})$, $j = 1, \dots, k$ and $T \in (0,1]$,

and let

$$f(x) = \begin{cases} -\frac{x^{k+1}}{(k+1)!} \ln x + \beta_k x^{k+1} & \text{if } x \in (0,T] \\ 0 & \text{if } x = 0. \end{cases}$$

Then $f \in C^{k, \alpha}[0,T]$ for all $\alpha \in (0,1)$, $f^{(j)}(0) = 0$ for $j = 0, \bullet \bullet \bullet$, k and $f^{(k)}(x) = -x \ln x$. Then we can apply the Corollary. Notice that here N(0, y)/D(0, y) is continuous on (0, T] and tends to 0 as $y \to 0$.

Example 2. For $a \in (0,1]$ let $f(x) = x^{k+a}g(x), x \in [0,T]$ where $g \in C^{k,a}[0,T]$ is such that g > 0 on (0,T]. Then $f \in C^{k,a}[0,T], f^{(j)}(0) = 0$ for $j = 0, \dots, k$ and N(0,y)/D(0,y) is continuous on (0,T]. Suppose that $g^{(j)}(0) \neq 0$ for some $j \in \{0, \dots, k\}$ and $g^{(j)}(0) = 0$ for $i = 0, \dots, j-1$ if $j \geq 1$. Then $N(0,y)/D(0,y) \to l$ as $y \to 0$ where l > 0 if j = 0 and l = 0 if $j \in \{1, \dots, k\}$.

References

1. Colombini, F., Jannelli, E., & Spagnolo, S. (1983).

Well-posedness in the Gevrey classes of the Cauchy problem for a non-strictly hyperbolic equation with coefficients depending on time. Annali della Scuola Normale Superiore di Pisa-Classe di Scienze, 10(2), 291-312.

- 2. Dalmasso, R. (2016). A property of $C^{1,\alpha}$ functions. Journal of Mathematical Analysis and Applications, 435(1), 1011-1013.
- 3. Dieudonné, J. (1970). Sur un théorème de Glaeser. Journal d'analyse mathématique, 23, 85-88.
- 4. Glaeser, G. (1963). Racine carrée d'une fonction différentiable. Annales de l'Institut Fourier (Vol. 13, No. 2, pp. 203-210).

Copyright: ©2023 Robert Dalmasso. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.