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Abstract
Let f be a nonnegative function of class Ck (k ≥ 2) such that f(k) is Holder continuous with exponent α in (0,1]. If f '(x) = 
••• = f(k)(x) = 0 when f(x) = 0, we show that fµ is differentiable for µ ∈ (1/(k + α),1) and under an additional condition we 
show that (fµ)' is Holder continuous with exponent β = µ(1 + α) − 1 (if β ≤ 1) at x ∈ [0,T] when f(x) = 0. (fµ)'  is Lipschitz 
continuous at x if f(x) > 0. 
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Ck [a, b] denotes the space of functions differentiable up to order 
k such that the derivatives of order k are continuous on [a, b] 
and Ck, α[a, b] denotes the space of functions in Ck[a, b] such that 
the derivatives of order k are Holder continuous with exponent 
α in (0,1]. Recall that g : [a, b] → ℝ is Holder continuous with 
exponent α ∈ (0,1] at x ∈ [a, b] if 

sup{|g(y) − g(x)||y − x|−α ; y ≠ x, y ∈ [a, b]} < ∞, 

and that g is Holder continuous with exponent α ∈ (0,1] in [a, 
b] if 

sup{|g(x) − g(y)||x − y|−α ; x ≠ y , x, y ∈ [a, b]} < ∞.

It is well-known ([4]) that if a nonnegative function f is in C2[a,b] 
and if the second derivative of  f vanishes at the zeros of  f, then 
f1/2 is in C1[a,b]. Now if f ∈ Cm[a,b] is nonnegative and if all its 
derivatives vanish at the zeros of f, then f1/m is not necessarily in 
C1[a,b] (See [3]). Finally let f ∈ Ck, α[a,b], k ≥ 1 and f ≥ 0. Then f1/

k+α is absolutely continuous (See [1] Lemma 1 and also Remark 
2 in [2] when k = 1).

Now let f ∈ Ck, α[0, T], T > 0, k ≥ 2, be such that f(j)(x) = 0 for some 
x ∈ [0,T], j = 0,••• ,k. Then we define

zeros of f , then f 1/m is not necessarily in C1[a, b] (See [3]). Finally let
f ∈ Ck,α[a, b], k ≥ 1 and f ≥ 0. Then f1/k+α is absolutely continuous (See
[1] Lemma 1 and also Remark 2 in [2] when k = 1).

Now let f ∈ Ck,α[0, T ], T > 0, k ≥ 2, be such that f (j)(x) = 0 for some
x ∈ [0, T ], j = 0, · · · , k. Then we define

N(x, y) = (y − x)k−1

∫ 1

0

(1− s)k−2f (k)(sy + (1− s)x) ds ,

and, if f ≥ 0,

D(x, y) = ((y − x)k
∫ 1

0

(1− s)k−1f (k)(sy + (1− s)x) ds)(k+α−1)/(k+α)

for x , y ∈ [0, T ]. We have the following theorem.

Theorem. Let f ∈ Ck,α[0, T ], T > 0, k ≥ 2, be such that f ≥ 0. Assume
that f has at least one zero in [0, T ]. If f ′(x) = · · · = f (k)(x) = 0 when f(x) =
0, then fµ is differentiable for µ ∈ (1/(k+α), 1). If moreover N(x, y)/D(x, y)
is bounded for (x, y) ∈ {t ∈ [0, T ]; f(t) = 0} × {t ∈ [0, T ]; f(t) > 0}, then
(fµ)′ is Hölder continuous with exponent β = µ(k + α) − 1 at x such that
f(x) = 0 (if β ≤ 1). (fµ)′ is Lipschitz continuous at x if f(x) > 0.

Proof. fµ is clearly differentiable at x ∈ [0, T ] when f(x) > 0. Suppose that
f(x) = 0. For y ∈ [0, T ] we can write

f(y) =
(y − x)k

(k − 1)!

∫ 1

0

(1− s)k−1f (k)(sy + (1− s)x) ds

≤ |y − x|k

(k − 1)!

∫ 1

0

(1− s)k−1|f (k)(sy + (1− s)x)| ds

≤ C
|y − x|k+α

(k − 1)!

∫ 1

0

(1− s)k−1sα ds

=
C

(1 + α) · · · (α + k)
|y − x|k+α ,

(1)

for some constant C, which implies that fµ is differentiable at x.
Let x ∈ [0, T ]. Suppose first that f(x) = 0. Then f (j)(x) = 0 for

j = 1, · · · , k. Let y ∈ [0, T ] be such that f(y) > 0. We can write

f ′(y) =
(y − x)k−1

(k − 2)!

∫ 1

0

(1− s)k−2f (k)(sy + (1− s)x) ds ,

2

and, if f ≥ 0,

zeros of f , then f 1/m is not necessarily in C1[a, b] (See [3]). Finally let
f ∈ Ck,α[a, b], k ≥ 1 and f ≥ 0. Then f1/k+α is absolutely continuous (See
[1] Lemma 1 and also Remark 2 in [2] when k = 1).

Now let f ∈ Ck,α[0, T ], T > 0, k ≥ 2, be such that f (j)(x) = 0 for some
x ∈ [0, T ], j = 0, · · · , k. Then we define

N(x, y) = (y − x)k−1

∫ 1

0

(1− s)k−2f (k)(sy + (1− s)x) ds ,

and, if f ≥ 0,

D(x, y) = ((y − x)k
∫ 1

0

(1− s)k−1f (k)(sy + (1− s)x) ds)(k+α−1)/(k+α)

for x , y ∈ [0, T ]. We have the following theorem.

Theorem. Let f ∈ Ck,α[0, T ], T > 0, k ≥ 2, be such that f ≥ 0. Assume
that f has at least one zero in [0, T ]. If f ′(x) = · · · = f (k)(x) = 0 when f(x) =
0, then fµ is differentiable for µ ∈ (1/(k+α), 1). If moreover N(x, y)/D(x, y)
is bounded for (x, y) ∈ {t ∈ [0, T ]; f(t) = 0} × {t ∈ [0, T ]; f(t) > 0}, then
(fµ)′ is Hölder continuous with exponent β = µ(k + α) − 1 at x such that
f(x) = 0 (if β ≤ 1). (fµ)′ is Lipschitz continuous at x if f(x) > 0.

Proof. fµ is clearly differentiable at x ∈ [0, T ] when f(x) > 0. Suppose that
f(x) = 0. For y ∈ [0, T ] we can write

f(y) =
(y − x)k

(k − 1)!

∫ 1

0

(1− s)k−1f (k)(sy + (1− s)x) ds

≤ |y − x|k

(k − 1)!

∫ 1

0

(1− s)k−1|f (k)(sy + (1− s)x)| ds

≤ C
|y − x|k+α

(k − 1)!

∫ 1

0

(1− s)k−1sα ds

=
C

(1 + α) · · · (α + k)
|y − x|k+α ,

(1)

for some constant C, which implies that fµ is differentiable at x.
Let x ∈ [0, T ]. Suppose first that f(x) = 0. Then f (j)(x) = 0 for

j = 1, · · · , k. Let y ∈ [0, T ] be such that f(y) > 0. We can write

f ′(y) =
(y − x)k−1

(k − 2)!

∫ 1

0

(1− s)k−2f (k)(sy + (1− s)x) ds ,

2

for x, y ∈ [0, T]. We have the following theorem.

Theorem. Let f ∈ Ck,α[0,T], T > 0, k ≥ 2, be such that f ≥ 0. As-
sume that f has at least one zero in [0, T]. If f '(x) = ••• = f(k)(x) 
= 0 when f(x) = 0, then fµ is differentiable for µ ∈ (1/(k+α),1). 
If moreover N(x,y)/D(x,y) is bounded for (x,y) ∈ {t ∈ [0,T]; f(t) 

= 0} × {t ∈ [0,T]; f(t) > 0}, then (fµ)' is Holder continuous with 
exponent β = µ(k + α) − 1 at x such that f(x) = 0 (if β ≤ 1). (fµ)' 
is Lipschitz continuous at x if f(x) > 0.

Proof. fµ is clearly differentiable at x ∈ [0, T] when f(x) > 0. Sup-
pose that f(x) = 0. For y ∈ [0, T] we can write

zeros of f , then f 1/m is not necessarily in C1[a, b] (See [3]). Finally let
f ∈ Ck,α[a, b], k ≥ 1 and f ≥ 0. Then f1/k+α is absolutely continuous (See
[1] Lemma 1 and also Remark 2 in [2] when k = 1).

Now let f ∈ Ck,α[0, T ], T > 0, k ≥ 2, be such that f (j)(x) = 0 for some
x ∈ [0, T ], j = 0, · · · , k. Then we define

N(x, y) = (y − x)k−1

∫ 1

0

(1− s)k−2f (k)(sy + (1− s)x) ds ,

and, if f ≥ 0,

D(x, y) = ((y − x)k
∫ 1

0

(1− s)k−1f (k)(sy + (1− s)x) ds)(k+α−1)/(k+α)

for x , y ∈ [0, T ]. We have the following theorem.

Theorem. Let f ∈ Ck,α[0, T ], T > 0, k ≥ 2, be such that f ≥ 0. Assume
that f has at least one zero in [0, T ]. If f ′(x) = · · · = f (k)(x) = 0 when f(x) =
0, then fµ is differentiable for µ ∈ (1/(k+α), 1). If moreover N(x, y)/D(x, y)
is bounded for (x, y) ∈ {t ∈ [0, T ]; f(t) = 0} × {t ∈ [0, T ]; f(t) > 0}, then
(fµ)′ is Hölder continuous with exponent β = µ(k + α) − 1 at x such that
f(x) = 0 (if β ≤ 1). (fµ)′ is Lipschitz continuous at x if f(x) > 0.

Proof. fµ is clearly differentiable at x ∈ [0, T ] when f(x) > 0. Suppose that
f(x) = 0. For y ∈ [0, T ] we can write

f(y) =
(y − x)k

(k − 1)!

∫ 1

0

(1− s)k−1f (k)(sy + (1− s)x) ds

≤ |y − x|k
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∫ 1

0

(1− s)k−1|f (k)(sy + (1− s)x)| ds

≤ C
|y − x|k+α

(k − 1)!

∫ 1

0

(1− s)k−1sα ds

=
C

(1 + α) · · · (α + k)
|y − x|k+α ,

(1)

for some constant C, which implies that fµ is differentiable at x.
Let x ∈ [0, T ]. Suppose first that f(x) = 0. Then f (j)(x) = 0 for

j = 1, · · · , k. Let y ∈ [0, T ] be such that f(y) > 0. We can write

f ′(y) =
(y − x)k−1

(k − 2)!

∫ 1

0

(1− s)k−2f (k)(sy + (1− s)x) ds ,

2
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for some constant C, which implies that fµ is differentiable at x. Let x ∈ [0, T]. Suppose first that f(x) = 0. Then f(j)(x) = 0 for j = 
1,••• ,k. Let y ∈ [0, T] be such that f(y) > 0. We can write

zeros of f , then f 1/m is not necessarily in C1[a, b] (See [3]). Finally let
f ∈ Ck,α[a, b], k ≥ 1 and f ≥ 0. Then f1/k+α is absolutely continuous (See
[1] Lemma 1 and also Remark 2 in [2] when k = 1).

Now let f ∈ Ck,α[0, T ], T > 0, k ≥ 2, be such that f (j)(x) = 0 for some
x ∈ [0, T ], j = 0, · · · , k. Then we define

N(x, y) = (y − x)k−1

∫ 1

0

(1− s)k−2f (k)(sy + (1− s)x) ds ,

and, if f ≥ 0,

D(x, y) = ((y − x)k
∫ 1

0

(1− s)k−1f (k)(sy + (1− s)x) ds)(k+α−1)/(k+α)

for x , y ∈ [0, T ]. We have the following theorem.

Theorem. Let f ∈ Ck,α[0, T ], T > 0, k ≥ 2, be such that f ≥ 0. Assume
that f has at least one zero in [0, T ]. If f ′(x) = · · · = f (k)(x) = 0 when f(x) =
0, then fµ is differentiable for µ ∈ (1/(k+α), 1). If moreover N(x, y)/D(x, y)
is bounded for (x, y) ∈ {t ∈ [0, T ]; f(t) = 0} × {t ∈ [0, T ]; f(t) > 0}, then
(fµ)′ is Hölder continuous with exponent β = µ(k + α) − 1 at x such that
f(x) = 0 (if β ≤ 1). (fµ)′ is Lipschitz continuous at x if f(x) > 0.

Proof. fµ is clearly differentiable at x ∈ [0, T ] when f(x) > 0. Suppose that
f(x) = 0. For y ∈ [0, T ] we can write

f(y) =
(y − x)k

(k − 1)!

∫ 1

0

(1− s)k−1f (k)(sy + (1− s)x) ds

≤ |y − x|k

(k − 1)!

∫ 1

0

(1− s)k−1|f (k)(sy + (1− s)x)| ds

≤ C
|y − x|k+α

(k − 1)!

∫ 1

0

(1− s)k−1sα ds

=
C

(1 + α) · · · (α + k)
|y − x|k+α ,

(1)

for some constant C, which implies that fµ is differentiable at x.
Let x ∈ [0, T ]. Suppose first that f(x) = 0. Then f (j)(x) = 0 for

j = 1, · · · , k. Let y ∈ [0, T ] be such that f(y) > 0. We can write

f ′(y) =
(y − x)k−1

(k − 2)!

∫ 1

0

(1− s)k−2f (k)(sy + (1− s)x) ds ,

2
and

and

f(y) =
(y − x)k

(k − 1)!

∫ 1

0

(1− s)k−1f (k)(sy + (1− s)x) ds .

Using (1) we get

|(fµ)′(y)− (fµ)′(x)| = µ|f(y)µ−1f ′(y)|

= µ|f(y)µ−
1

k+αf(y)−
k+α−1
k+α f ′(y)|

= C1|f(y)µ−
1

k+α |N(x, y)|/D(x, y)

≤ C2f(y)
µ− 1

k+α ≤ C3|y − x|β ,

for some constants Cj (j = 1, · · · , 3) where C2 and C3 may depend on x.
Since fµ is C1 near t when f(t) > 0, this implies that fµ ∈ C1[0, T ]. Suppose
now that f(x) > 0. There exist c, d ∈ [0, T ] such that c < d, x ∈ [c, d] when
x = 0 or x = T and x ∈ (c, d) when x ∈ (0, T ) and f(y) ≥ f(x)/2 for
y ∈ [c, d]. Let y ∈ [c, d]. We have

|(fµ)′(y)− (fµ)′(x)| = µ|f(y)µ−1f ′(y)− f(x)µ−1f ′(x)|

≤ µ(f(y)µ−1|f ′(y)− f ′(x)|

+|f ′(x)||f(y)µ−1 − f(x)µ−1|)

≤ C1|y − x| ,

for some constant C1 depending on x. Since (fµ)′ is continuous on [0, T ] there
exists a constant C2 depending on x such that |(fµ)′(y)−(fµ)′(x)| ≤ C2|y−x|
for y ∈ [0, T ]\[c, d].

The proof of the theorem is complete.

Remark. The case k = 1 is treated in [2]. Notice that, when k ≥ 2 and
µ ∈ [1/2, 1), fµ is in C1[0, T ]: See [3] or [4]. Moreover assume that k ≥ 2 and
that f ′(0) = 0 (resp. f ′(T ) = 0) when f(0) = 0 (resp. f(T ) = 0). Then, if
µ ∈ (1/2, 1), (fµ)′ is Hölder continuous with exponent 2µ−1 at x if f(x) = 0
and Lipschitz continuous at x if f(x) > 0: See [2].

Corollary. Let f ∈ Ck,α[0, T ], T > 0, k ≥ 2. Assume that f (j)(0) = 0 for
j = 0, · · · , k and that f (k) > 0 on (0, η] for some η ∈ (0, T ) and f (k) ≥ 0 on

3

and

f(y) =
(y − x)k

(k − 1)!

∫ 1

0

(1− s)k−1f (k)(sy + (1− s)x) ds .

Using (1) we get

|(fµ)′(y)− (fµ)′(x)| = µ|f(y)µ−1f ′(y)|

= µ|f(y)µ−
1

k+αf(y)−
k+α−1
k+α f ′(y)|

= C1|f(y)µ−
1

k+α |N(x, y)|/D(x, y)

≤ C2f(y)
µ− 1

k+α ≤ C3|y − x|β ,

for some constants Cj (j = 1, · · · , 3) where C2 and C3 may depend on x.
Since fµ is C1 near t when f(t) > 0, this implies that fµ ∈ C1[0, T ]. Suppose
now that f(x) > 0. There exist c, d ∈ [0, T ] such that c < d, x ∈ [c, d] when
x = 0 or x = T and x ∈ (c, d) when x ∈ (0, T ) and f(y) ≥ f(x)/2 for
y ∈ [c, d]. Let y ∈ [c, d]. We have

|(fµ)′(y)− (fµ)′(x)| = µ|f(y)µ−1f ′(y)− f(x)µ−1f ′(x)|

≤ µ(f(y)µ−1|f ′(y)− f ′(x)|

+|f ′(x)||f(y)µ−1 − f(x)µ−1|)

≤ C1|y − x| ,

for some constant C1 depending on x. Since (fµ)′ is continuous on [0, T ] there
exists a constant C2 depending on x such that |(fµ)′(y)−(fµ)′(x)| ≤ C2|y−x|
for y ∈ [0, T ]\[c, d].

The proof of the theorem is complete.

Remark. The case k = 1 is treated in [2]. Notice that, when k ≥ 2 and
µ ∈ [1/2, 1), fµ is in C1[0, T ]: See [3] or [4]. Moreover assume that k ≥ 2 and
that f ′(0) = 0 (resp. f ′(T ) = 0) when f(0) = 0 (resp. f(T ) = 0). Then, if
µ ∈ (1/2, 1), (fµ)′ is Hölder continuous with exponent 2µ−1 at x if f(x) = 0
and Lipschitz continuous at x if f(x) > 0: See [2].

Corollary. Let f ∈ Ck,α[0, T ], T > 0, k ≥ 2. Assume that f (j)(0) = 0 for
j = 0, · · · , k and that f (k) > 0 on (0, η] for some η ∈ (0, T ) and f (k) ≥ 0 on

3

Using (1) we get

for some constants Cj (j = 1,••• ,3) where C2 and C3 may depend 
on x. Since fµ is C1 near t when f(t) > 0, this implies that fµ ∈ C1[0, 
T]. Suppose now that f(x) > 0. There exist c, d ∈ [0,T] such that 
c < d, x ∈ [c,d] when x = 0 or x = T and x ∈ (c,d) when x ∈ (0,T) 
and f(y) ≥ f(x)/2 for y ∈ [c,d]. Let y ∈ [c,d]. We have

|(fµ)'(y) − (fµ)'(x)| = µ|f(y)µ−1f '(y) − f(x)µ−1f '(x)|
≤ µ(f(y)µ−1|f '(y) − f  '(x)|
+|f '(x)||f(y)µ−1 − f(x)µ−1|)
≤ C1|y − x| ,

for some constant C1 depending on x. Since (fµ)' is continuous 
on [0,T] there exists a constant C2 depending on x such that 
|(fµ)'(y)−(fµ)'(x)| ≤ C2|y−x| for y ∈ [0,T]\[c, d].
The proof of the theorem is complete.

Remark. The case k = 1 is treated in [2]. Notice that, when k ≥ 
2 and µ ∈ [1/2,1), fµ is in C1[0, T]: See [3, 4]. Moreover, assume 
that k ≥ 2 and that f '(0) = 0 (resp. f '(T) = 0) when f (0) = 0 (resp. 
f(T) = 0). Then, if µ ∈ (1/2,1), (fµ)' is Holder continuous with 
exponent 2µ−1 at x if f(x) = 0 and Lipschitz continuous at x if 
f(x) > 0: See [2].

Corollary. Let f ∈ Ck,α[0,T], T > 0, k ≥ 2. Assume that f(j)(0) = 0 
for j = 0,••• ,k and that f(k) > 0 on (0,η] for some η ∈ (0,T) and 
f(k) ≥ 0 on [η, T]. Then (fµ)' is Holder continuous with exponent 
β = µ (k + α) − 1 at 0 (if β ≤ 1). (fµ)' is Lipschitz continuous at 
x ∈ (0, T].

Proof. In view of the Theorem it is enough to show that N (0, 
y)/D(0, y) is bounded on (0,T]. Let

[η, T ]. Then (fµ)′ is Hölder continuous with exponent β = µ(k+ α)− 1 at 0
(if β ≤ 1). (fµ)′ is Lipschitz continuous at x ∈ (0, T ].

Proof. In view of the Theorem it is enough to show that N(0, y)/D(0, y) is
bounded on (0, T ]. Let

0 < ε < min(1, (
k − 1

2||f (k)||∞

∫ 1

0

(1− s)k−2f (k)(sy)ds)
1

k−1 ) .

We can write
∫ 1

0

(1−s)k−1f (k)(sy)ds =

∫ 1−ε

0

(1−s)k−1f (k)(sy)ds+

∫ 1

1−ε

(1−s)k−1f (k)(sy)ds .

Now we have
∫ 1−ε

0

(1− s)k−1f (k)(sy)ds ≥ ε

∫ 1−ε

0

(1− s)k−2f (k)(sy)ds ,

and ∫ 1

1−ε

(1− s)k−2f (k)(sy)ds ≤ εk−1||f (k)||∞
k − 1

.

Then
∫ 1

0

(1− s)k−1f (k)(sy)ds ≥ ε

∫ 1

0

(1− s)k−2f (k)(sy)ds

−ε

∫ 1

1−ε

(1− s)k−2f (k)(sy)ds

≥ ε

∫ 1

0

(1− s)k−2f (k)(sy)ds− εk

k − 1
||f (k)||∞

≥ ε

2

∫ 1

0

(1− s)k−2f (k)(sy)ds .

Now, when y > 0, we get

N(0, y)

D(0, y)
≤ y−

α
k+α (

2

ε
)
k+α−1
k+α (

∫ 1

0

(1− s)k−2f (k)(sy)ds)
1

k+α

≤ C1(ε)y
− α

k+α (yα
∫ 1

0

(1− s)k−2sα)
1

k+α ≤ C2(ε) .

4

We can write

[η, T ]. Then (fµ)′ is Hölder continuous with exponent β = µ(k+ α)− 1 at 0
(if β ≤ 1). (fµ)′ is Lipschitz continuous at x ∈ (0, T ].

Proof. In view of the Theorem it is enough to show that N(0, y)/D(0, y) is
bounded on (0, T ]. Let

0 < ε < min(1, (
k − 1

2||f (k)||∞

∫ 1

0

(1− s)k−2f (k)(sy)ds)
1

k−1 ) .

We can write
∫ 1

0

(1−s)k−1f (k)(sy)ds =

∫ 1−ε

0

(1−s)k−1f (k)(sy)ds+

∫ 1

1−ε

(1−s)k−1f (k)(sy)ds .

Now we have
∫ 1−ε

0

(1− s)k−1f (k)(sy)ds ≥ ε

∫ 1−ε

0

(1− s)k−2f (k)(sy)ds ,

and ∫ 1

1−ε

(1− s)k−2f (k)(sy)ds ≤ εk−1||f (k)||∞
k − 1

.

Then
∫ 1

0

(1− s)k−1f (k)(sy)ds ≥ ε

∫ 1

0

(1− s)k−2f (k)(sy)ds

−ε

∫ 1

1−ε

(1− s)k−2f (k)(sy)ds

≥ ε

∫ 1

0

(1− s)k−2f (k)(sy)ds− εk

k − 1
||f (k)||∞

≥ ε

2

∫ 1

0

(1− s)k−2f (k)(sy)ds .

Now, when y > 0, we get

N(0, y)

D(0, y)
≤ y−

α
k+α (

2

ε
)
k+α−1
k+α (

∫ 1

0

(1− s)k−2f (k)(sy)ds)
1

k+α

≤ C1(ε)y
− α

k+α (yα
∫ 1

0

(1− s)k−2sα)
1

k+α ≤ C2(ε) .

4

Now we have
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[η, T ]. Then (fµ)′ is Hölder continuous with exponent β = µ(k+ α)− 1 at 0
(if β ≤ 1). (fµ)′ is Lipschitz continuous at x ∈ (0, T ].

Proof. In view of the Theorem it is enough to show that N(0, y)/D(0, y) is
bounded on (0, T ]. Let

0 < ε < min(1, (
k − 1

2||f (k)||∞

∫ 1

0

(1− s)k−2f (k)(sy)ds)
1

k−1 ) .

We can write
∫ 1

0

(1−s)k−1f (k)(sy)ds =

∫ 1−ε

0

(1−s)k−1f (k)(sy)ds+

∫ 1

1−ε

(1−s)k−1f (k)(sy)ds .

Now we have
∫ 1−ε

0

(1− s)k−1f (k)(sy)ds ≥ ε

∫ 1−ε

0

(1− s)k−2f (k)(sy)ds ,

and ∫ 1

1−ε

(1− s)k−2f (k)(sy)ds ≤ εk−1||f (k)||∞
k − 1

.

Then
∫ 1

0

(1− s)k−1f (k)(sy)ds ≥ ε

∫ 1

0

(1− s)k−2f (k)(sy)ds

−ε

∫ 1

1−ε

(1− s)k−2f (k)(sy)ds

≥ ε

∫ 1

0

(1− s)k−2f (k)(sy)ds− εk

k − 1
||f (k)||∞

≥ ε

2

∫ 1

0

(1− s)k−2f (k)(sy)ds .

Now, when y > 0, we get

N(0, y)

D(0, y)
≤ y−

α
k+α (

2

ε
)
k+α−1
k+α (

∫ 1

0

(1− s)k−2f (k)(sy)ds)
1

k+α

≤ C1(ε)y
− α

k+α (yα
∫ 1

0

(1− s)k−2sα)
1

k+α ≤ C2(ε) .

4

Then the result follows from the Theorem. 

Example 1. Let

Then the result follows from the Theorem.

Example 1. Let

β0 = 0 , βj =
1

j + 1
(βj−1 +

1

(j + 1)!
) , j = 1, · · · , k and T ∈ (0, 1] ,

and let

f(x) =



− xk+1

(k + 1)!
ln x+ βkx

k+1 if x ∈ (0, T ]

0 if x = 0 .

Then f ∈ Ck,α[0, T ] for all α ∈ (0, 1), f (j)(0) = 0 for j = 0, · · · , k and
f (k)(x) = −x ln x. Then we can apply the Corollary. Notice that here
N(0, y)/D(0, y) is continuous on (0, T ] and tends to 0 as y → 0.

Example 2. For α ∈ (0, 1] let f(x) = xk+αg(x), x ∈ [0, T ] where g ∈
Ck,α[0, T ] is such that g > 0 on (0, T ]. Then f ∈ Ck,α[0, T ], f (j)(0) = 0
for j = 0, · · · , k and N(0, y)/D(0, y) is continuous on (0, T ]. Suppose that
g(j)(0) �= 0 for some j ∈ {0, · · · , k} and g(i)(0) = 0 for i = 0, · · · , j − 1 if
j ≥ 1. Then N(0, y)/D(0, y) → l as y → 0 where l > 0 if j = 0 and l = 0 if
j ∈ {1, · · · , k}.
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