inner-banner-bg

Advances in Bioengineering and Biomedical Science Research(ABBSR)

ISSN: 2640-4133 | DOI: 10.33140/ABBSR

Impact Factor: 1.7

Viscoelastic Glucose Theory (VGT 1): Applying the Concept of Viscoelasticity Theory to Conduct a Glucose Analogy Study and Illustrate Certain Viscoelastic Characteristics of Time-Dependent Glucose Using Continuous Glucose Monitoring (CGM) Sensor Device Collected Postprandial Plasma Glucose (PPG) Data of 4,056 Elastic Glucoses (<180 mg/dL) within 3.7 Years from 5/8/2018 to 1/10/2022 Based on GH-Method: Math-Physical Medicine (No. 578)

Abstract

Gerald C Hsu

The author has studied the strength of materials and theory of elasticity from undergraduate courses at the University of Iowa. He also conducted research work to earn a master’s degree in Biomechanics under Professor James Andrews. He remembers that he used both spring and dashpot models to simulate the behaviors of human bone, muscle, and tendon to investigate the human-weapon interactions. Later on, he went to MIT to pursue his Ph.D. study under Professor Norman Jones who taught him the theory of plasticity and dynamic plastic behaviors of various structural elements. Furthermore, he took some graduate courses at MIT in the field of fluid dynamics and thermodynamics. Since then, biomechanics has made advancements in a few application areas, especially tissues of the human body which possess viscoelastic characteristics, such as bone, muscle, cartilage, tendon (connect bone to muscle), ligament (connect bone to bone), fascia and skin. For example, the night splint dorsiflexes forefoot on rear foot increasing plantar fascia tension to offer stress-relaxation of plantar fascia pain. This model of muscles and tendons connecting lower-leg and foot is a kind of viscoelastic problem. However, when we deal with human internal organs, it is not easy to conduct live experiments to obtain some accurate measurements of material properties. Although blood itself is a viscous material which viscosity factor may sit between water and honey, syrup, or gel. But, the author’s research subject is “glucose”, the sugar amount inside of blood or carried by blood cells, not the blood itself. It is near impossible to measure the material geometry or engineering properties of glucose, for example, the viscosity of “glucose”. Therefore, the best he could do is to apply the concept of viscoelasticity and viscoplasticity to construct an analogy motor to study the glucose behaviors which are time-dependent.

PDF