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Abstract
In a series of papers [1, 2, 3], the author exactly diagonalized the truncated Hamiltonian Hc, proposed by Bogoliubov 
[4, 5], as a low energy approximation for the weakly interacting boson gas. In addition to the well know collective 
excitations (CEs) resulting from the Bogoliubov Canonic Approximation (BCA) [6, 7], and denoted as quasi-phonons 
(QPs), the exact eigenstates of Hc exhibit a new kind of CEs (the `hidden side' which the title alludes to), that we denote 
as vacuons. Those CEs are created/annihilated by adsorp-tion/emission of a quantum of energy twice as large as the 
activation energy of a QP. Being momentless, they are reminiscent of Cooper pairs of bosons, with opposite moments. 
The e_ects of the vacuons on the dynamics of the gas are discussed, with their possible exper-imental evidence.

Keywords: Boson systems; Interacting Boson models; Bose-
Einstein condensates; Superuidity.

Introduction
The truncated canonic Hamiltonian

                                                                                                (1)

was assumed by Bogoliubov [4, 5] as a low energy approximation 
for the dynamics of the weakly interacting bosons gas, in the 
thermodynamic limit (TL) . The operators by b†k and bk create/
destroy a spinless boson in the freeparticle state                      and

 

is the Fourier transform of the repulsive interaction energy u(r) 
(> 0). The number operator   in = b    bo refers to the bosons in the 
free particle ground state. Accordingly,   out = N–Nin is the number 
operator for bosons in the excited states, N being the conserved total 
number of bosons. Overtilded symbols indicate operators, to avoid 
confusion with their (non overtilded) eigenvalues.

Bogoliubov's next step is reducing Hc to a bi-linear form, which 
is realized in the TL, by assuming | Nin ± 2;  Nout         Nin, Nout for 
the bosonic Fock states [1]. Adams and Bru [6, 7] complete the so 

called Bogoliubov Canonical Approximation (BCA) by transforming 
eq.n (1) into a new a canonic (i.e. N-conserving) Hamiltonian HBCA, 
which is bi-linear in suitably dened creation/annihilation operators. 
Thanks to bi-linearity, an appropriate Bogoliubov transformation 
can be applied, which gives HBCA the well known form:

                                                                                             
(2a)

where B   and Bk create/annihilate new  ̒ particlesʼ which is costumary 
to call ̒quasiphononsʼ(QPs). Actually, the QPs behave like massless 
bosons, carrying a nite moment  ћk and a quantum of energy ϵ (k): 

                                                                                              (2b)

with

                                                                                             (2c)

The eigenvalues of HBCA are, obviously:

                                                                                             (3)

resulting from the creation of η QPs.
In a series of papers [1, 3, 2, 8], I performed the exact diagonalization 
of Hc, which showed some non trivial dierences from the currently 
accepted theory described above. The rst one is the existence of a new 
kind of collective excitations (CEs), which I called ̀ pseudobosons' 
in ref. [3], but could be better denoted as ̒vacuonsʼ, as we shall see 
in what follows. They have been found in ref. [1], since now on 
referred to as (I), by diagonalizing the Hamiltonian (1) exactly, in 
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the special subspace spanned by the states j; k i0      with the same 
number j of bosons in j k i and              and N ‒ 2j bosons in 0 i::

                                                                                                  (4)

(|Ø � being the real bosonsʼ vacuum). The resulting eigenvalues 
ES(k; 0) (see, in particular, [2]) turn out to be twice as large as the 
BCA energies eq.n (3), reported in the current literature [10]:

                                                                                                  (5)
                                                                                               

The exact eigenstates of Hc calculated in (I) are, in turn, quite dierent
from the BCA eigenstates: the latter have total moment ηћk, 
corresponding to a number η of QPs, while the formers are 
superpositions of free bosons states, with opposite moments, carrying 
a momentless energy ES(k; 0). The physical meaning of those new 
CEs, and their relationship with the exact QPs, follow from the 
complete diagonalization of Hc, including the subspaces containing 
a dierent number of bosons with opposite moment:

It is worthwhile recalling that exact eigenstates, reminiscent of the 
pseudobosons, had been found in a dierent context and for dierent 
aims in ref. [9].

                                                 
                                                                                                   (6)

with j + η bosons in | k �, j bosons in | – k� and N – 2j – η bosons in 
| 0 �, so that the total moment is, manifestly, ηћk. I performed such
diagonalization in refs [3, 8], by using the method outlined below.

Complete diagonalization of Hc
Hamiltonian Hc can be written as a sum of independent one-moment
Hamiltonians

                                                                                                (7a) 
                                                                                  

where:

                                                                                                 (7b)

Hence the whole problem can be reduced to the study of the exact 
eigenstates of hc(k), by solving the eigenvalue equation

                                                                                                 (8)

with exact QPs expressed as linear combinations of the states eq.n 
(6). Thanks to a suitable transformation [8], eq.n (8) can be reduced 
to the same problem already solved analytically in (I). This makes 
it possible to write the eigentates of hc (eq.n (7b)) as :

                                                                                                (9)

with boundary conditions lim j→∞�S,η(j, k) = 0 (necessary 
for normalizability) and �S,η(‒1; k) = 0 (exclusion of negative 
populations). It should be noticed that |�S,η(j,k)|2 ∝  j2S+η  x2j (k) for j 
>> 1, i.e. the preexponential factor in the probability amplitude on 
the Fock states | j, k �η (eq.n (6)) tends to a polinomial of degree 
2S + η in j >> 1. The quantity x(k), the coecients CS,η(m, k) and the 
eigenvalue ɛS(k, η) are determined by the following system of S + 
2 equations (see ref. [8]):

                                                                                              

                                                                                                 (10)

where C(S + 1) = C(‒1) = 0 by denition and the dependence on k, S, η
has been provisionally dropped. The energies are expressed in units 
of N  (k):

The algebraic structure of the eigenvalue problem (10) is fairly 
peculiar: the two highest order equations (n = S+1 and n = S) 
determine x(k) (i.e. the exponential decay in j) and the eigenvalue 
ɛ, independently from C(S) and C(S ‒ 1):
                                                                                               

                                                                                               (11a)

                                                                                                (11b)

with all entries restored. Notice that x(k) is negative and smaller than 
1 in modulus, which ensure normalizability. The next S equations 
determine the S unknowns C(1); C(2), . . , C(S) in terms of, say, 
C(0), that will be determined by normalization. Figure 1 shows the 
resulting probability amplitudes �S,η(j, k) | 2 for S = 0, 1, 2 and η = 
0 (1(a)), or  = 1 (1(b)). 

Since hc(k) = hc(‒k) (eq.n (7b)), ɛS(k, η) must be counted twice in 
the sum eq.n (7a). Hence the energy eigenvalues of Hc ‒ Ein are:
                                                                                            
                                                                                                 (12a)

                                                                                                 (12b)
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Vacuons as bosonic Cooper pairs
The limit of large k >> ξ‒1 ≡                         that marks the passage
from collective to single-particle dynamics, yields ϵ1(k) → T (k) and 
ϵ(k) ‒ ϵ1(k)→ 0. Hence, from eq.n (12), one has:

                                                                                              (13)
                                                                                                  
Since the CEs become non interacting real bosons when their kinetic 
energy T (k) = ћ2k2 / (2M) largely exceeds the interaction energy, 
the number 2S + η corresponds to the total number of real bosons 
excited in the limit k >> ξ‒1. However, while the kinetic energy 
refers to 2S + η  real bosons, the total moment ћηk corresponds 
just to η particles. This suggests the physical interpretation of the 
exact results obtained so far: S numerates a sort of bosonic Cooper 
pairs, formed by two bosons in | ± k �, with opposite moments and 
identical kinetic energy. In contrast, η numerates the additional 
bosons in  | k �, carrying the non vanishing moment ћk. Hence the 
states |S, k, 0 � do not carry any QP: each of them is nothing but a 
possible ̒vacuum ̒ of QPs. This explains why the transition S → S ± 
1 is conveniently defined as the creation/annihilation of a quantum 
of vacuum (vacuon), on which the QPs can be created in turn.

                                        Figure 1 (a)

                                      Figure 1(b)
Figure 1: Probability amplitude of exact collective excitations 
(x(k) = ‒0.9).
(a): CEs corresponding to QP-vacua (η= 0), originated by creation of 
S = 0; 1; 2 vacuons (bosonic Cooper pairs). (b): CEs corresponding 
to 1 QP ( = 1), created from S = 0; 1; 2-level vacuum. 
j is the number of opposite moment pairs in the subspace spanned by 
the states |j,k�0 (a) (eq.n (4)) or  |j, k�1 (b) (eq.n (6)). The collective 
excitation regime k << ξ‒1 implies 1 ‒|x(k) << 1.

Comparison with the BCA theory
What precedes marks a relevant dierence with respect to Bogoliubov's
theory, where the QPs are obtained by repeated application of the 
creation operator B to a single vacuum state. Therefore, the BCA 
eigenvalues of the number operator B Bkare assumed to be non 
degenerate, in as much as they represent the number of a single 
species of quasiparticles. As a consequence, the BCA spectrum 
corresponds to a single, non degenerate oscillator, with frequency 
ωQ(k) = ϵ(k)/ћ (recall ɛS(k, 0), in eq.n (5)). In contrast, a lengthy 
but straightforward calculation leads to the following exact result:

showing that:
(A) The M-th eigenvalue of B  Bk is M + 1-times degenerate, since 
M = S +η includes both the QPs and the vacuons number. The exact 
energy spectrum is degenerate too, resulting from the sum of two 
oscillators (eq.n (12b)), one labeled by the non negative integer η, 
with the same frequency ωQ(k) as BCA, the other, labeled by the 
non negative integer S, with doubled frequency ωP (k) = 2ϵ(k)/ћ 
(see Figure 2).

It is worthwhile noticing that B  Bk still preserves its meaning of 
number operator, counting the total number of CEs (QPs + vacuons). 
However, despite S and η can be varied independently, B   Bk cannot 
be split into two distinct operators, counting QPs and vacuons 
separately. This is because, in general, B and Bk are no longer 
creation/annihilation operators, though their product behaves like 
a number operator. The only exception is the case of zero vacuons S 
= 0: by solving the system of equations for the CSη (m, k) explicitly 
[8], in fact, it is possible to show that

                                                                                                  (14) 
Since in (I) it was shown that the lowest-order vacuum |0, k, 0 � 
coincides with the vacuum of Bogoliubov QPs, equation (14) shows 
that Bogoliubov QPs coincide with the exact QPs, in the absence 
of vacuons. In this special case BCA leads to the exact CEs | 0,k, 
η� (eq.n (9)), corresponding to η QPs, each carrying a moment ћk, 
with energy 2ɛ0(k, 1) = (k) and velocity vQ(k) = ▽kωQ(k) (the ̒ sound 
velocityʼ). In the limit of small k << ξ‒1, the sound velocity attains, 
in modulus, the constant value:

Figure 2: Exact spectrum of Hc.
The lowest energy `staircase'(S = 0), with steps of heigth (k), 
coincides with the BCA energy eigenvalues. The higher energy 
staircases, separated by 2(k) (S = 1; 2; ), are the additional eigenvalues 
ignored by the BCA theory. Two rst-order allowed transitions (full 
wavy lines) and two rst-order forbidden transitions (dotted wavy 
lines) are also indicated (see the text).
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However:
(B) The possible QP-vacua resulting from the exact diagonalization 
are all the eigenstates |S, k, 0 � (S = 0, 1, . . . ). They originate from 
the activation of S momentless energy quanta ћωP (k), that we call 
vacuons, and form an immobile ̒seaʼ of opposite moment pairs (Fig. 
1(a)). The exact eigenstates |S, k,η 〉 correspond to η QPs, each with 
nite moment ћk, created from the S-th vacuum, as unpaired bosons 
producing an asymmetry in the opposite moment populations.

Hence:
(C) There are innite dierent QPs, originated by the simoultaneous 
creation of S ≠ 0 vacuons (Fig. 1(b)), whose velocity vQ(k) = ▽kωQ(k) 
is the same as Bogoliubov's velocity, but whose energy is ϵ(k)(1+2S). 
Those quasiparticles are totally ignored by Bogoliubov's theory. In 
practice, SBA exactly reproduces just the part of the whole spectrum 
corresponding to S = 0.

Allowed and forbidden transitions involving vacuons
Though the vacuons alone cannot be responsible for the dissipation 
processes á la Landau [11], since they have zero moment, they can in
uence the dynamics of the dissipation processes, by opening new 
emission/adsorption channels for the QPs themselves. This can be 
easily seen by refreshing Landau's semiclassical picture of a particle 
(of mass Mp), moving with initial velocity vi in the superfuid at 
zero temperature, and causing the emission of a single QP, via a 
scattering process. The well known conclusion, based on BCA, is 
that the particle cannot dissipate its kinetic energy (relative to the 
super uid), unless ᶹi > ᶹQ (eq.n (15)). Taking the super uid in the 
ground state (S = 0,  η= 0) initially, the exact expressions (12) yield:

                                                                                            (16a)

                                                                                            (16b)

from energy/moment conservation, with S vacuons and 1 QP in 
the nal state of the super uid. At small k, equations (16) yield a 
succession of critical velocities

                                                                                            (17)

such that passing from ʋ i < ʋ c(S) to ʋ i > ʋ c(S) (or vice versa) causes the 
switching on (off) of a new channel of QP emission, corresponding 
to the simultaneous creation (annihilation) of a vacuon. Note that 
this is not a standard multiparticle process, usually forbidden at rst 
order. Actually, a straightforward calculation yields a non vanishing 
matrix element, in the TL, connecting the initial and nal states of 
the process (16):

                                                                                               
                                                                                             

                                                                                             
(18a)

where Δk = ki – kf and

                                                                                             (18b)  

represents a repulsive -shaped interaction (W0 > 0), between 
bosons in the superfuid and the scattering particle, with initial 
and nal velocity vi,f = ћki,f / Mp. Expression (18b) adopts the 2nd 
quantization representation for the super uid, and the co-ordinate (r) 
representation for the scattering particle. Unlike the simultaneous 
creation/annihilation of a single QP and S vacuons, it is easy to see 
that the creation/annhilation of 2 or more QPs is a multiparticle 
process, forbidden at rst order. In fact:

                                                                                                  (19)

What precedes leads one to conclude that in any scattering process, 
the rst-order allowed transitions correspond to odd multiples ϵ(k)
(2S + 1) of the adsorbed/emitted energy, while the even order ones 
are forbidden, as shown in Fig. 2. In particular, the energy 2ϵ(k) can 
be revealed just as a second-order eect.

Experimental verications and conclusions
As for the experimental verication of the new results obtained, 
doublephoton Bragg spectroscopy is a current method to observe 
QPs [12, 13, 14, 15], thanks to which it is possible to estimate the 
resonant values ωres(k) of the dierence between the two incident 
photonsʼ frequencies, in the phonon regime k < ξ‒1, or in the free 
particle regime k > ξ‒1 (see, for example, Fig. 2 of ref. [12]). The 
knowledge of ωres(k) leads to the static structure factor F0(k) [16], 
from which, however, no dierence can be revealed, between exact 
results and Bogoliubov theory. In fact, F0(k) involves just the ground
state (S = 0, η = 0), which is the same in both cases, as shown in (I).
However, a direct observation of the vacuons could stem from the 
measured ωres(k)s themselves. On a qualitative feet, in fact, the 
double oscillator spectrum eq.ns (12) should result in a succession 
of resonant frequencies ωres = ω(k) [1 + 2S], each corresponding 
to a hump in the transferred moment per particle. In particular, the 
activation of a single QP (η = 1) with zero or one vacuon (S = 0; 1) is 
expected to produce two humps at ωres = ω(k); 3ω(k). The possible 
hump at !res = 2!(k), corresponding to the creation of two QPs and 
zero vacuons, is expected to be a second-order eect, as discussed 
above. All the way, the data presently available (to the author's 
knowledge) do not cover a range of frequencies large enough to 
include the second (predicted) hump at !res = 3!(k) (see Figure 3).
Extending the measurements in ref. [12] up to frequencies values 
of order 2 П X104Hz could provide a hint, in the interacting bosons 
regime (k < ξ‒1). Unfortunately, the data for the non interacting case 
(k > ξ‒1), as reported in Fig 3 of ref. [12], stop just below the value 
3ω(k), at which the second hump is expected to occur [17].

In principle, the proliferation of critical velocities in eq.n (17) could
be observed by angle-resolved spectroscopy of bullet particles, 
impinging on a thin layered (single-scattering approximation) super
uid. Due to the switching on of a new channel of scattering, one 
would expect a hump in the ux of scattered particles at nite angle, 
whenever the incident beam's velocity crosses (from below) one 
of the critical values eq.n (17). The scattering particle velocities 
involved in experiments with Na [12] or Rb [13] atoms (  ͌10 mm=s) 
are unfeasible, in a real experiment, while
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Figure 3: Measured momentum transfer from ref. [12].

Full and empty circles refer to freely expanding and trapped particles
regime, respectively. The resonant frequencies ω● and ωo and 
the positions of the expected peaks at 3ω● and 3ωo are indicated 
accordingly. The antisymmetric part of negative frequencies is 
ignored.

those involved in exciton-polariton condensates ( ͌ 107cm/s for 
electrons, 105cm=s for neutrons), as roughly estimated from data 
in ref. [14], look more accessible.

Thermal depletion could provide an indirect evidence of the 
cohexistence of QPs and vacuons. From the exact energy (12a), 
one denes

                                                                                                (20)

as the number of thermally activated vacuons and QPs. Then the 
exact thermal depletion follows from the calculated number of 
excited bosons in | ± k � :

                                                                                                (21)

to be compared with measured values, as those reported, for instance, 
in ref. [15]. However, in the experimental procedure and in the 
theoretical calculations of ref. [15] there are a number of details that 
must be carefully accounted for, in view of a reliable comparison 
with eq.ns (21). This is a program for the future.

In conclusion, the exact diagonalization of the truncated Hamiltonian
Hc (eq.n (1)) reveals a hidden side of Bogoliubov collective 
excitations, i.e. the existence of an equispaced ladder of zero-point 
energies, each corresponding to an immobile ʻseaʼ of boson pairs 
with opposite moment, on which QPs can be created/annihilated, as 
unpaired bosons producing an asymmetry in the opposite moment 
populations. Bogoliubov theory accounts just for the QPs created 
from the lowest-level vacuum, but ignores all the higher-level CEs. 
Passing from one vacuum to another corresponds to the creation/
annihilation of what we call ʋacuons. Those CEs, reminiscent of 
bosonic Cooper pairs, are expected to produce observable eects, 
whose experimental verication represents a new challenging item 
for future investigations.
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