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Abstract
In this work we study the behavior of some climate data (annual temperature and precipitation averages) obtained from 
climate stations in eleven countries in different regions of the world. One of the goals of the study is to determine whether 
the climate variables have  change-points  that  could  indicate  the  possible  beginning  of  a  change  in  climate.  Another  
goal  is  to  analyze the possible changes detected by the change-points in terms of the linear trends of the climate variables 
under investigation. Based on the information provided, differences between different regions in terms of the locations of the 
change-points and the changes they produce may also be inferred. The data sets used in the study consist of the annual av-
erages of the twelve monthly temperature averages and the annual averages of the total rain precipitation observed in each 
one of the twelve months of the year obtained over a period of time from the end of the 19th century to the end of the 20th 
century. Segmented linear regression models are used to study the existence of possible changes in the behavior of climatic 
variables, as well as the types of changes produced.
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Introduction
In the past few decades, different effects of climate change, par-
ticularly changes in temperature and precipitation, have been 
observed around the world.  These effects include shrinkage 
of glaciers, earlier melting of ice in rivers and lakes, changes 
in plant and animal habitats, and earlier flowering of trees. As 
pointed out by the Intergovernmental Panel on Climate Change, 
when we look at the data collected by different climate agencies 
around the world, it is also possible to observe a loss of sea ice, 
accelerated sea level rise, and worldwide longer and more in-
tense heat waves (i.e., periods of unusually hot weather lasting 
from days to weeks).

Human-induced temperature and precipitation changes have not 
been uniform over time,  across the planet,  and even in dif-
ferent regions of the same country.  For instance, the average 
rainfall in the United States of America (USA) has increased 
since 1900, but some areas of the country experienced increases 
greater than the national rainfall average while other areas had 
increases that were lower than the national average. Throughout 
the twenty-first century, precipitation during winter and spring is 
projected to be higher for the northern part of the USA and lower 
for the southwest. Additionally, for many regions of the planet 
there are predictions that heat waves will become more intense 
and cold waves will be less intense everywhere.

Another example is changes occurring in the global temperature.  

For instance, the global average temperature remained at around 
13◦C (56.7◦F) throughout the nineteenth century and the first de-
cade of the twentieth (http://www.currentresults.com/

Environment-Facts/changes-in-earth-temperature.php, accessed 
on 01 July 2021).  Between 1920 and 1940, the average tem-
perature increased approximately 0.1◦C (0.18◦F) per decade.  
Even though during the 1980s the average temperature stabi-
lized around 14◦C (57.2◦F), since then, it has mainly increased 
at a rate of approximately 0.2◦C (0.36F) per decade. From 2000 
to 2009 the annual average global temperature has been 0.61◦C 
(1.1◦F) higher than the period ranging from 1950 to 1980. If this 
rate of increase is maintained, the average world temperature is 
expected to increase in the twenty-second century an additional 
2◦C (3.6◦F) from its twenty-first century average.

For all the reasons mentioned so far, it is therefore important to 
study the changes occurring in the global temperature and pre-
cipitation averages. This becomes even more important due to 
the different behaviors of the changes in different parts of the 
world, since some regions may be more greatly affected than 
others.

In recent years, we have seen the publication of a large num-
ber of scientific works related to climate change events, such 
as, change in precipitation, temperature, sea levels, among oth-
ers, and their implications. For instance, [1] study the impact 
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of climate change on water resources and flooding; [1, 2] deal 
with the relation between climate change and health effects; 
[3] perform an analysis of the changes in global temperature 
considering information since the preindustrial era; [4] study 
the relationship between global warming and climate change; 
[5] analyze the impact of climate change on the coastal areas 
of Bangladesh; [6] deal with sea level changes in connection 
to global warming; [7]. study the impact of climate change on 
migration; [8]. describes the developments in the understanding 
of how temperature and humidity have changed; [9] study the 
impact of climate change on the marine life; [10] analyze the 
impact of climate change on the sub-Saharan Africa; [11] study 
the health effects of future food production under climate change 
[12]. analyze the threat posed on ecosystems by climate change; 
[13]. present an analysis of the relationship between tempera-
ture increase and crop production; [14] analyze the changes in 
extreme temperature data; [15] study the joint change in tem-
perature and precipitation from multiple climate models using a 
Bayesian point of view.

Using the annual temperature and precipitation averages (annual 
averages of the twelve monthly temperature averages and the 
annual averages of the observed total rain precipitation in each 
month) collected in eleven climate stations from different conti-
nents of the world from the late nineteenth-century until recent 
years,  one of the goals of this study is to identify by statistical 
analysis, possible changes in the behavior of the global annu-
al temperature and precipitation averages.  Possible changes in 
climatic variables will be identified by detecting change points 
using the statistical model.  Another objective is to analyze what 
types of changes are observed in the linear trends of the two 
assumed climatic variables. Among the many works that discuss 
the presence of change-points in time series are the studies of 
[16,17] where Bayesian analyses of change-point problems are 
presented; [16-18] with an analysis of the presence of change-
points in auto-regressive series; [19-20], in which change-points 
detection is also applied to temperature and precipitation data; 
and, in which a genetic algorithm is used to detect change- points 
with an application to climate data [21].  In the present work, the 
estimation of the location of the possible change-points and the 
changes in behavior they might register will be performed us-
ing segmented linear regression models.  Additionally, once the 
possible change-points are identified, an analysis is performed 
in order to see whether the changes they detect are statistically 
significant.

Segmented regression (piecewise regression) models are used 
when the dependent variable is analyzed through partitions of 
the time interval and a separate line segment is fitted to each one 
of them. Segmented regression is useful in climate data, since 
the response (dependent) variables are clustered in different time 
periods.  This allows the analysis of the different relationships 
between the response variables and the time (considered as an 
explanatory variable).  The boundaries between the segments 
are known as change-points.  In general, in segmented regres-
sion, the point in the explanatory variable at which the function-
al form of the response variable changes is of great interest in 
climate change studies.  This importance resides in the fact that 
this point in time may represent a shift in the climate behavior 
at a specified region of the world.  Some models consider that 

adjacent regression segments meet at the change-point and oth-
ers assume a discontinuity.  The latter will be considered in the 
present work.

Since models in the presence of change-points usually have 
some complex forms for the likelihood function, many authors 
consider a Bayesian approach when estimating the parameters 
present in those models.  In particular, the Markov chain Monte 
Carlo (MCMC) methods are useful in the analysis (see, for ex-
ample [22-26]). A Bayesian approach is also considered in this 
study in order to estimate the regression parameters, the change-
points, and the variances of the error terms present in the regres-
sion model.  Other statistical models could also be used in the 
analysis of climate data to obtain the inferences of interest; see, 
for instance [27-31].

This work is organised as follows.  Section 2 presents the mod-
el considered in the analysis.  Section 3 gives the methodolo-
gy used to estimate the parameters.   Section 4 presents a brief 
description of the data used.   In Section 5, we give the results 
obtained.  Finally, in Section 6 we present a discussion of the 
results and their implications.  This work also contains one sup-
plementary information files, presented as online resources, in 
which further information regarding the model and estimation 
of the parameters are given.

Description of the Model
The segmented regression models used in the present work will 
allow the presence of one or more change-points.  These change-
points may represent changes in the linear trend behavior of the 
annual temperature and precipitation averages data collected 
from several climate stations in different parts of the world.

To begin describing the model, let T > 0 be an integer indicating 
the number of observed values in a given data set, i.e., the length 
of the follow-up period (in the present case, T represents the 
number of years of climate series monitoring). Let Z(t), t = 1, 2, . 
. . , T , indicate the elements of this data set.  When we use linear 
regression models and the dependent variable Z(t) is different of 
zero from all t, t = 1, 2, . . . , T , we may assume transformations 
of Z(t), t = 1, 2, . . . , T , to satisfy the assumptions required for 
the usual linear regression models (i.e., normality and constant 
variance of the so-called residuals). In our case, we assume a 
log-transformation of Z(t), i.e., we define Y (t) = log Z(t), t = 1, 
2, . . . , T .  Hence, Y = {Y (1), Y (2), . . . , Y (T )} will denote the 
observed data. In the model considered here, we have the time as 
a covariate (explanatory variable) indicated by R(t) = t, t = 1, 2, 
. . . , T . When there is only one change-point, denoted by τ1, we 
could assume the model,

where αi  and βi, i = 1, 2, are the regression parameters, and ϵ is 
the error parameter assumed to have normal distribution with 
mean zero and variance σ2  , i.e., ϵ ∼ N (0, σ  ).  If the regression 
is continuous, we need to have α1 + β1 τ1 + ϵ = α2 + β2 τ1 + ϵ. 
Replacing the expression for α2 in (1) gives the model, Y (t) = 
α1 + β1 t + ϵ, t ≤ τ1,
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(2)

Nonlinear least squares regression techniques are usually used to fit model (2) for the data set.93

The approach followed here differs from (2). We consider a simpler linear regression model borrowed from the BUGGS94

manual (see, for instance, http://pmean.com /11/segmented.html, accessed on 13 September 2021). If we assume the possible95

presence of J ≥ 1 change-points, then the general form of the model may be described, for j = 1, 2, . . . , J , as,96
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and αj , βj1, and βj2, j = 1, 2, . . . , J , are the regression coefficients. (Note that the variance σ2
j may not be the same for all100
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Hence, when we have J change-points, the parameters to be estimate are αj , βj1, βj2, σ
2
j , and τj , j = 1, 2, . . . , J , with102

the estimation performed sequentially. That is, we start by considering the first change-point τ1. In this case, we will need103

to estimate α1, β11, β12, σ1, and τ1. Once τ1 is located and the remaining parameters are estimated, we keep the estimated104

regression formula for all t ≤ τ1. If there is no need for a second change-point, then we also keep the estimated regression105

formula for τ1 < t ≤ T . Suppose there is the need of a second change-point. Then, we consider the covariate R(t) defined only106
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on (τ2, T ). The procedure is repeated for the case j = 3, and the parameters are estimated accordingly and successively until110

we find all possible change-points.111

3 Estimation of the parameters112

The vector of parameters of the model is estimated using the Bayesian approach. Hence, the information provided by its113

posterior distribution will be used. If θ is the vector of parameters of a model describing a given set D of observed data, then its114

posterior distribution, denoted by P (θ | D), is such that P (θ | D) ∝ L(D | θ)P (θ), where L(D | θ) is the so-called likelihood115

function of the model and P (θ) is the prior distribution of θ. (Here, “∝” indicates “proportional to.”) Therefore, we need to116

specify the likelihood function of the model and the prior distribution of the vector of parameters.117
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Nonlinear least squares regression techniques are usually used to 
fit model (2) for the data set. RETIRAR

The approach  followed here differs from (2).   We consider a 
simpler linear regression model borrowed from the BUGGS 
manual (see, for instance, http://pmean.com /11/segmented.
html, accessed on 13 September 2021). If we assume the possi-
ble presence of J ≥ 1 change-points, then the general form of the 
model may be described, for j = 1, 2, . . . , J, as,
 

where we take τ0  = 0, and Y (t) denotes the climate response of 
interest at time t (mean temperature/precipitation) in logarith-
mic scale; R(t) = t is the independent variable (time measured 
in years here) defined on the interval [1, T ]; τ = (τ1, τ2, . . . , τJ ) 
is the vector of change-points; the error terms ϵj   are considered 
unobserved random variables with a normal distribution N (0, 
σ2); and  αj ,  βj1,  and  βj2,  j  = 1, 2, . . . , J,  are  the  regression  
coefficients.   (Note  that  the  variance  σ2  may  not  be  the  same  
for  a values of j.)

Hence, when we have J  change-points, the parameters to be 
estimate are αj , βj1, βj2, σ

2, and τj , j  = 1, 2, . . . , J, with the esti-
mation performed sequentially.  That is, we start by considering 
the first change-point τ1.  In this case, we will need to estimate α1, 
β11, β12, σ1, and τ1.  Once τ1  is located and the remaining param-
eters are estimated, we keep the estimated regression formula 
for all t ≤ τ1.  If there is no need for a second change-point, then 
we also keep the estimated regression formula for τ1  < t ≤ T .  
Suppose there is the need of a second change-point.  Then, we 
consider the covariate R(t) defined only in the interval (τ1, T ) 
and use (3) with j = 2. In this case, the parameters to be estimated 
are α2, β21, β22, σ2, and τ2. If there are no more change-points, then 
we keep this estimated regression in the interval (τ1, T ).  If there 
is a third change-point, then we keep the estimated regression 
in the case of j = 2 in the time interval (τ1, τ2) and consider the 
covariate R(t) defined now on (τ2, T ).  The procedure is repeated 
for the case j = 3, and the parameters are estimated accordingly 
and successively unti we find all possible change-points.

Estimation of the Parameters
The vector of parameters of the model is estimated using the 
Bayesian approach. Hence, the information provided by its pos-
terior distribution will be used. If θ is the vector of parameters of 
a model describing a given set D of observed data, then its pos-
terior distribution, denoted by P (θ | D), is such that P (θ | D) ∝ 
L(D | θ)P (θ), where L(D | θ) is the so-called likelihood function 
of the model and P (θ) is the prior distribution of θ.  (Here, “∝” 
indicates “proportional to.”)  Therefore, we need to specify the 
likelihood function of the model and the prior distribution of the 
vector of parameters.

The Bayesian methodology used in this work combines the prior 
information, usually elicited from climate experts, with the like-
lihood function to obtain the joint posterior distributions of all 
parameters.  This replaces the usual maximum likelihood infer-
ence approach, which uses classical inference methods.

The likelihood function of the model at the step whose parame-
ters are αj , βj1, βj2, σj, and τj , is given by,
 

      (4)

The other elements to be specified are the prior distributions of 
the parameters.  Hence, at the jth step (j  = 1, 2, . . . , J), the  re-
gression  parameters  αj ,  βj1,  and  βj2   will  have  normal  prior  
distributions  N (0, a)  with  possibly  different  values  for  the 
hyperparameter a for different parameters (a is taken sufficiently 
large in order to have approximately non-informative prior dis-
tributions);  the  parameter  1/σ2  is  assumed  either  with  a  gam-
ma  Gamma(a1, a2)  prior  distribution  with  mean  a1/a2   and 
variance  a1/(a2)

2  or  with  a  uniform  distribution  defined  on  
an  appropriate  interval.   The  first  change-point  is  assumed  
with  a uniform prior distribution U (0, T ) (an approximately 
non-informative prior).  The second change-point will have uni-
form prior distribution defined on (τ1, T ).  In general,  the jth 
change-point will have its prior distribution a uniform distribu-
tion defined on (τj−1, T ), j = 1, 2, . . . , J.  The specific values of 
the hyperparameters are given in the file Online-Resource-1.pdf 
given as supplementary  information.

In practical work we could use more informative prior distribu-
tions, especially for the change-points, by observing the plots of 
the climate time series and seeing the possible candidates for the 
change-points. 

This approach leads to better inference results and guarantees 
convergence of the MCMC simulation algorithm.  

We further assume prior independence of the parameters.

Once the regression coefficients are estimated and the possible 
change-points are located, an analysis is performed in order to 
assess whether the changes detected by the change-points are 
statistically significant.  As a consequence, information related 
to the significance of the change-points is also provided. This 
analysis is performed by constructing the 95% credible intervals 
of the differences ∆(j) = βj2  − βj1, where βj1 and βj2 are,  respective-
ly, the slopes of the linear regression models before and after the 
jth change-point.  If zero is part of a 95% credible interval, then 
that is an indication that the two slopes are not significantly  sta-
tistically  different.   Hence,  we  also  use  a  Bayesian  inference  
approach  to  see  whether  an  estimated  change- point detects 
significantly statistically different linear trends. This approach 
replaces standard hypothesis tests usually used in classical infer-
ence to test whether two parameters are equal.  The values used 
to produce the 95% credible intervals are those generated by the 
MCMC algorithm.

Data Sets Used
The  data  sets  considered  in  this  study  consist  of  the  annual  
averages  of  the  twelve  monthly  temperature  averages  and the 
annual averages of the total rain precipitation observed in each 
one of the twelve months of the year calculated from the monthly 

2 Description of the model77

The segmented regression models used in the present work will allow the presence of one or more change-points. These78

change-points may represent changes in the linear trend behavior of the annual temperature and precipitation averages data79

collected from several climate stations in different parts of the world.80

To begin describing the model, let T > 0 be an integer indicating the number of observed values in a given data set, i.e., the81

length of the follow-up period (in the present case, T represents the number of years of climate series monitoring). Let Z(t),82

t = 1, 2, . . . , T , indicate the elements of this data set. When we use linear regression models and the dependent variable Z(t) is83

different of zero from all t, t = 1, 2, . . . , T , we may assume transformations of Z(t), t = 1, 2, . . . , T , to satisfy the assumptions84

required for the usual linear regression models (i.e., normality and constant variance of the so-called residuals). In our case, we85

assume a log-transformation of Z(t), i.e., we define Y (t) = logZ(t), t = 1, 2, . . . , T . Hence, Y = {Y (1), Y (2), . . . , Y (T )} will86

denote the observed data. In the model considered here, we have the time as a covariate (explanatory variable) indicated by87

R(t) = t, t = 1, 2, . . . , T .88

When there is only one change-point, denoted by τ1, we could assume the model,89

Y (t) =

{
α1 + β1 t+ ϵ, t ≤ τ1,

α2 + β2 t+ ϵ, τ1 < t ≤ T,
(1)

where αi and βi, i = 1, 2, are the regression parameters, and ϵ is the error parameter assumed to have normal distribution with90

mean zero and variance σ2, i.e., ϵ ∼ N(0, σ2). If the regression is continuous, we need to have α1 + β1 τ1 + ϵ = α2 + β2 τ1 + ϵ.91

Replacing the expression for α2 in (1) gives the model,92

Y (t) =

{
α1 + β1 t+ ϵ, t ≤ τ1,

α1 + β1 τ1 + β2 (t− τ1) + ϵ, τ1 < t ≤ T.
(2)

Nonlinear least squares regression techniques are usually used to fit model (2) for the data set.93

The approach followed here differs from (2). We consider a simpler linear regression model borrowed from the BUGGS94

manual (see, for instance, http://pmean.com /11/segmented.html, accessed on 13 September 2021). If we assume the possible95

presence of J ≥ 1 change-points, then the general form of the model may be described, for j = 1, 2, . . . , J , as,96

Y (t) =

{
αj + βj1 [R(t)− τj ] + ϵj , τj−1 < t ≤ τj ,

αj + βj2 [R(t)− τj ] + ϵj , τj < t ≤ T,
(3)

where we take τ0 = 0, and Y (t) denotes the climate response of interest at time t (mean temperature/precipitation) in logarithmic97

scale; R(t) = t is the independent variable (time measured in years here) defined on the interval [1, T ]; τ = (τ1, τ2, . . . , τJ) is98

the vector of change-points; the error terms ϵj are considered unobserved random variables with a normal distribution N(0, σ2
j );99

and αj , βj1, and βj2, j = 1, 2, . . . , J , are the regression coefficients. (Note that the variance σ2
j may not be the same for all100

values of j.)101

Hence, when we have J change-points, the parameters to be estimate are αj , βj1, βj2, σ
2
j , and τj , j = 1, 2, . . . , J , with102

the estimation performed sequentially. That is, we start by considering the first change-point τ1. In this case, we will need103

to estimate α1, β11, β12, σ1, and τ1. Once τ1 is located and the remaining parameters are estimated, we keep the estimated104

regression formula for all t ≤ τ1. If there is no need for a second change-point, then we also keep the estimated regression105

formula for τ1 < t ≤ T . Suppose there is the need of a second change-point. Then, we consider the covariate R(t) defined only106

in the interval (τ1, T ) and use (3) with j = 2. In this case, the parameters to be estimated are α2, β21, β22, σ2, and τ2. If there107

are no more change-points, then we keep this estimated regression in the interval (τ1, T ). If there is a third change-point, then108

we keep the estimated regression in the case of j = 2 in the time interval (τ1, τ2) and consider the covariate R(t) defined now109

on (τ2, T ). The procedure is repeated for the case j = 3, and the parameters are estimated accordingly and successively until110

we find all possible change-points.111

3 Estimation of the parameters112

The vector of parameters of the model is estimated using the Bayesian approach. Hence, the information provided by its113

posterior distribution will be used. If θ is the vector of parameters of a model describing a given set D of observed data, then its114

posterior distribution, denoted by P (θ | D), is such that P (θ | D) ∝ L(D | θ)P (θ), where L(D | θ) is the so-called likelihood115

function of the model and P (θ) is the prior distribution of θ. (Here, “∝” indicates “proportional to.”) Therefore, we need to116

specify the likelihood function of the model and the prior distribution of the vector of parameters.117
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The Bayesian methodology used in this work combines the prior information, usually elicited from climate experts, with the118

likelihood function to obtain the joint posterior distributions of all parameters. This replaces the usual maximum likelihood119

inference approach, which uses classical inference methods.120

The likelihood function of the model at the step whose parameters are αj , βj1, βj2, σ
2
j , and τj , is given by,
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2
j , τj) =

τj∏
t=τj−1+1

1√
2π σ2

j

exp

(
− 1

2σ2
j

[Y (t)− αj − βj1 (t− τj)]
2

)

×
T∏

t=τj+1

1√
2π σ2

j

exp

(
− 1

2σ2
j

[Y (t)− αj − βj2 (t− τj)]
2

)
. (4)

The other elements to be specified are the prior distributions of the parameters. Hence, at the jth step (j = 1, 2, . . . , J),121

the regression parameters αj , βj1, and βj2 will have normal prior distributions N(0, a) with possibly different values for the122

hyperparameter a for different parameters (a is taken sufficiently large in order to have approximately non-informative prior123

distributions); the parameter 1/σ2
j is assumed either with a gamma Gamma(a1, a2) prior distribution with mean a1/a2 and124

variance a1/a
2
2 or with a uniform distribution defined on an appropriate interval. The first change-point is assumed with a125

uniform prior distribution U(0, T ) (an approximately non-informative prior). The second change-point will have uniform prior126

distribution defined on (τ1, T ). In general, the jth change-point will have its prior distribution a uniform distribution defined127

on (τj−1, T ), j = 1, 2, . . . , J . The specific values of the hyperparameters are given in the file Online-Resource-1.pdf given as128

supplementary information.129

In practical work we could use more informative prior distributions, especially for the change-points, by observing the plots130

of the climate time series and seeing the possible candidates for the change-points. This approach leads to better inference results131

and guarantees convergence of the MCMC simulation algorithm. We further assume prior independence of the parameters.132

Once the regression coefficients are estimated and the possible change-points are located, an analysis is performed in order133

to assess whether the changes detected by the change-points are statistically significant. As a consequence, information related134

to the significance of the change-points is also provided. This analysis is performed by constructing the 95% credible intervals135

of the differences ∆
(j)
12 = βj2 − βj1, where βj1 and βj2 are, respectively, the slopes of the linear regression models before and136

after the jth change-point. If zero is part of a 95% credible interval, then that is an indication that the two slopes are not137

significantly statistically different. Hence, we also use a Bayesian inference approach to see whether an estimated change-138

point detects significantly statistically different linear trends. This approach replaces standard hypothesis tests usually used in139

classical inference to test whether two parameters are equal. The values used to produce the 95% credible intervals are those140

generated by the MCMC algorithm.141

4 Data sets used142

The data sets considered in this study consist of the annual averages of the twelve monthly temperature averages and143

the annual averages of the total rain precipitation observed in each one of the twelve months of the year calculated from the144

monthly temperature averages and monthly total rain precipitation values extracted from the Research Data Archive managed145

by the Data Engineering and Curation Section of the Computational and Information Systems Laboratory at the National146

Center for Atmospheric Research, United States of America. This site contains a large and diverse collection of meteorolog-147

ical and oceanographic observations, operational and reanalysis model outputs, and remote sensing data sets to support at-148

mospheric and geosciences research (see, for example, https://rda.ucar.edu/index.html?hash=data user& action=register and149

https://rda.ucar.edu/datasets/ds570.0/#!subset.html, both accessed on 01 July 2021). It contains data from more than 4700150

different climate stations (2600 in more recent years) from all around the world. Different follow-up periods are given for the151

different climate stations, and collection of data for some of them goes as far back as the mid-1700s.152

The primary data sets consist of monthly average temperature and total monthly rain precipitation. Since the data sets153

have many missing observations (months with no data), these were replaced by the monthly averages of the available data for154

that month. For instance, if in a given year we have missing data for the month of April, we fill the hole in the data by assigning155

to that month the mean obtained using the values for the month April from all the years in which they are available. The data156

used in our calculations were the annual temperature and precipitation averages.157

In this study, we have considered data from eleven climate stations in countries located in the North and South America,158

Europe, Asia, and Oceania extracted from the file ds570 of the Research Data Archive. The climate stations, observational159

periods, the number T of observed data are: Station 30910 in Aberdeen, United Kingdom (UK) (1872–2020; T = 149); Station160
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temperature averages and monthly total rain precipitation values 
extracted from the Research Data Archive managed by the Data 
Engineering and Curation Section of the Computational and In-
formation Systems Laboratory   at the National Center for Atmo-
spheric Research, United States of America.  This site contains 
a large and diverse collection of meteorological and oceano-
graphic observations,  operational and reanalysis model outputs,  
and remote sensing data sets to support atmospheric and geo-
sciences research (see, for example, https://rda.ucar.edu/index.
html?hash=data user& action=register and https://rda.ucar.edu/
datasets/ds570.0/#!subset.html, both accessed on 01 July 2021). 
It contains data from more than 4700 different climate stations 
(2600 in more recent years) from all around the world.  

Different follow-up periods are given for the different climate 
stations, and collection of data for some of them goes as far back 
as the mid-1700s.

The primary data sets consist of monthly average temperature 
and total monthly rain precipitation.  Since the data sets have 
many missing observations (months with no data), these were 
replaced by the monthly averages of the available data for that 
month.  For instance, if in a given year we have missing data 
for the month of April, we fill the hole in the data by assigning 
to that month the mean obtained using the values for the month 
April from all the years in which they are available. 
The data used in our calculations were the annual temperature 
and precipitation averages.

In this study, we have considered data from eleven climate sta-
tions in countries located in the North and South America, Eu-
rope,  Asia,  and  Oceania  extracted  from  the  file  ds570  of  the  
Research  Data  Archive.   

The  climate  stations,  observational periods, the number T of 
observed data are: Station 30910 in Aberdeen, United King-
dom (UK) (1872–2020; T = 149); Station 16 67000 in Geneva, 
Switzerland (1826–2020; T = 195); Station 171300 in Ankara, 
Turkey (1826–2020; T = 195); Station 276120 in Moscow, Rus-
sia (1881–2020;  T  = 140);  Station 416400 in Lahore, Paki-
stan (1876–2020;  T  = 145);  Station 428070 in Calcutta, India 
(1878–2020; T = 143); Station 476620 in Tokyo, Japan (1876–
2020; T = 145); Station 607150 in Tunis, Tunisia (1896– 2020;  T  
=  124);  Station  722080  in  Charleston,  USA  (1832–2020;  T  
=  189);  Station  837810  in  São  Paulo,  Brazil  (1887–2019; T 
= 133); and Station 945780 in Brisbane, Australia (1887–2020; 
T = 134).

Figures 1 and 2 show plots of the annual temperature averages 
and Figures 3 and 4 present plots of the annual precipitation  av-
erages.   All  values  are  the  logarithms  of  the  measurements  
reported  at  the  different  climate  stations  during  their cor-
responding observational periods.  Looking at these figures, we 
see the possible presence of change-points indicating changes 
from increasing/decreasing trends to decreasing/increasing.

In  the  case  of  the  temperature  data,  Figures  1  and  2,  we  
see  that  in  the  final  years  of  the  follow-up  period,  for  each 
climate station, there is an indication of an increasing trend in 
the annual temperature averages.  In some cases, the variations 

throughout the observational period are very large, for instance, 
in the case of Moscow in the years close to 1940 and 1980, and 
in Lahore at several points during the observational period.  We 
also see large variations in the cases of Geneva, Charleston, An-
kara, and Brisbane.

If we look at the precipitation data in Figures 3 and 4, we see a 
decrease in the annual precipitation averages in the final years of 
the observation period in stations such as Geneva and Brisbane.  
Increasing trends in the final years of the observational period 
are detected in the remaining stations with a more pronounced 
increase in some (see, for instance, the data from the station lo-
cated in Tokyo).

When we look at Figures 3 and 4, we also see some patterns 
of large variations in the annual precipitation averages. In some 
stations, for instance, Aberdeen and Geneva around the year 
1925, Lahore and Brisbane around 1900, Calcutta around 1940, 
and Charleston around 1850, we have some sudden drops in the 
annual precipitation averages. In others, a steady oscillation be-
tween large and small values may be detected.

As we see in Figures 1, 2, 3, and 4, the annual temperature and 
precipitation averages behave differently for different stations 
located in different parts of the world.   Therefore,  analyzing 
the trends in these measurements is important for determining 
some of the consequences of climate changes in particular parts 
of the globe.

Results Obtained from the Segmented Regression Models
We see in Figures 1, 2, 3, and 4 that in all data sets, it is possible 
to detect at least one possible change-point.  Hence, depending 
on the data set, we assume the presence of either one, two, or 
three change-points.  The analysis is split into the two cases of 
temperature and precipitation.  We start with the estimation of 
the regression parameters and change-points in the case of the 
temperature and then proceed to the case in which the precipi-
tation data are analyzed.  Once an estimation of the parameters 
is made, we proceed to analyze the significance of the detected 
change-points.  Estimation of the parameters will be performed 
using the OpenBugs software (Spiegelhalter et al. 2007). Con-
vergence of the MCMC algorithm is monitored using the trace-
plots of the generated Gibbs samples.

Average Temperature
When we look at Figures 1 and 2, we see that when data from 
Aberdeen and Geneva are used, perhaps we should allow the 
possible presence of two change-points.  For the remaining sta-
tions one change-point might suffice.  The corresponding prior 
distributions of the parameters are given in Table 1 in the file 
Online-Resource-1.pdf. Estimation of the parameters was made 
using a sample of size 1000 in the case of Moscow, 4000 in the 
case of Ankara, and 11000 in the case of Geneva (first change-
point). The sample size when we consider data from Aberdeen 
(second change point), Calcutta, Tokyo, Tunis, and Brisbane is 
5000, and it is 6000 in the remaining cases. In order to have ap-
proximately uncorrelated values, samples were obtained using 
values taken every 100th iteration of the algorithm.  These were 
taken after burn-in periods of 911000 and 611000 steps in the 
case of Geneva’s first and second change-points, respectively.  
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In the remaining cases, the burn-in period was 411000 iterations.
Table 2 in the file Online-Resource-1.pdf gives the values of the 
estimated regression coefficients, variances, and change- points.  
Looking at that Table 2 we see that the estimated change-points 
in the case of stations in Ankara, Moscow, Lahore, Calcutta,  To-
kyo,  Charleston,  Tunis,  and  São  Paulo  are  as  follows.  Those  
corresponding  to  Moscow  and  Lahore  are  located  in the 
years 1972 and 1976, respectively; those related to Ankara and 
Tokyo are both in the year 1987; in Tunis and Charleston they  
are  located  in  1954  and  1966,  respectively;  in  Calcutta  it  is  
located  in  the  year  1965;  and  that  of  São Paulo  is  located 
in 1914.   The two estimated change-points related to the data 

from stations in Aberdeen and Geneva are as follows.   Those 
corresponding to Aberdeen are located in the years 1927 and 
1949.  In the case of Geneva, they are located in the years 1968 
and The estimated change-point corresponding to the station in 
Brisbane is 2012.

The estimated segmented regression models for the annual mean 
temperatures are shown in Figures 1 and 2. We observe in those 
figures that the estimated segmented regressions capture very 
well the annual averaged temperature trends.  We also see that 
the increasing trends in the average annual temperatures after 
the last change-points are captured accurately by the model.
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5.2 Averaged precipitation216

When we look at the case of annual precipitation averages given by Figures 3 and 4, we see the possible presence of two217

change-points in the case of Moscow and Calcutta; in the case of Brisbane, we have three possible candidates; and in all the218

remaining stations, we detect only one possible change-point.219

The prior distributions of the regression parameters, errors variances, and change-points are given in Table ??. In all cases,220

estimation of the parameters was performed using a sample of size 5000 collected every 100th iteration of the MCMC algorithm221

after a burn-in period of 411000 iterations.222

In Table 4 in the file Online-Resource-1.pdf file we have the Bayesian estimates of the regression parameters αj , βj1, and223

βj2, of the variance σ2
j , j = 1, 2, . . . , J , as well as the corresponding estimated change-points. Looking at this table, we see224
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Figure 1: Annual average temperature and fitted segmented linear regressions (Aberdeen, Geneva, Ankara, Moscow, Lahore, and 
Calcuta). The jagged lines represent the average temperature, while the heavy lines are the fitted linear regressions.

Figure 2:  Annual average temperature and fitted segmented linear regressions (Tokyo, Tunis, Charleston, S˜ao Paulo, and Bris-
bane). The jagged lines represent the average temperature, while the heavy lines are the fitted linear regres- sions.

Averaged Precipitation
When we look at the case of annual precipitation averages given 
by Figures 3 and 4, we see the possible presence of two change-
points in the case of Moscow and Calcutta; in the case of Bris-
bane, we have three possible candidates; and in all the remaining 
stations, we detect only one possible change-point.

The prior distributions of the regression parameters, errors vari-
ances, and change-points are given in Table 3.  In all cases, esti-
mation of the parameters was performed using a sample of size 
5000 collected every 100th iteration of the MCMC algorithm 
after a burn-in period of 411000 iterations.

In Table 4 ini the file Online-Resource-1.pdf file we have the 
Bayesian estimates of the regression parameters αj , βj1, and βj2,  
of  the  variance  σ2,  j  =  1, 2, . . . , J,  as  well  as  the  correspond-
ing  estimated  change-points.   Looking  at  this  table,  we  see 
that  the  change-points  corresponding  to  data  from  stations  in  
Aberdeen,  Geneva,  Ankara,  Lahore,  Tokyo,  Tunis,  Charles-
ton, and  São  Paulo  are  as  follows.   Those  of  São  Paulo  and  
Aberdeen  are  located,  respectively,  in  the  years  1889  and  
1886;  and that corresponding to the station in Ankara is located 
in 1935.  Lahore and Tunis have change-points located, respec-
tively, in the years 1906 and 1924.  The change-points corre-
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sponding to Tokyo and Geneva are located in the years 1977 and 
2008, respectively.   Stations  located  in Moscow,  Calcutta,  and 
Charleston  that  have two  possible  change-points have  them  
located as follows. In Charleston, we have them in the years 
1843 and 1895; in Moscow, in 1900 and also in 1936. When we 
look at the station in Calcutta, we see that the change-points are 

in the years 1943 and 2015.  The three change-points occurring 
in Brisbane are located in the years 1900, 1925, and 1970.

The estimated segmented regression models are shown in Fig-
ures 3 and 4.

that the change-points corresponding to data from stations in Aberdeen, Geneva, Ankara, Lahore, Tokyo, Tunis, Charleston,225
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Figure 3: Annual average rain precipitation and fitted segmented linear regressions (Aberdeen, Geneva, Ankara,

Moscow, Lahore, and Calcuta). The jagged lines represent the average rain precipitation, while the heavy lines are

the fitted linear regressions.

Figure 4: Annual average rain precipitation and fitted segmented linear regressions (Tokyo, Tunis, Charleston, São

Paulo, and Brisbane). The jagged lines represent the average rain precipitation, while the heavy lines are the fitted

linear regressions.

When we look at those figures we see that the estimated linear regressions capture very well the trends of the observed234

data. In the present case, we also have that the steep changes in the trend are captured as well; see for instance, the final years235

in Geneva and Calcutta, where, respectively, a steep decrease and increase in the annual averaged precipitation occurred. The236

steep decrease and increase in the beginning of the observational period in the data from the stations in Brisbane and Ankara,237

respectively, were also captured accurately.238
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Figure 3: Annual average rain precipitation and fitted segmented linear regressions (Aberdeen, Geneva, Ankara, Moscow, Lahore, 
and Calcuta). The jagged lines represent the average rain precipitation, while the heavy lines are the fitted linear regressions.

Figure 4: Annual  average  rain  precipitation  and  fitted  segmented  linear  regressions  (Tokyo,  Tunis,  Charleston,  S˜ao Paulo, 
and Brisbane). The jagged lines represent the average rain precipitation, while the heavy lines are the fitted linear regressions.

When we look at those figures we see that the estimated linear 
regressions capture very well the trends of the observed data. 
In the present case, we also have that the steep changes in the 
trend are captured as well; see for instance, the final years in 
Geneva and Calcutta, where, respectively, a steep decrease and 
increase in the annual averaged precipitation occurred. The steep 
decrease and increase in the beginning of the observational peri-
od in the data from the stations in Brisbane and Ankara,
respectively, were also captured accurately.

Discussion
In this work we have used a simple segmented linear regres-
sion model to estimate the linear trends as well as the points in 
time where changes in the trends of the annual temperature and 
precipitation averages might have occurred. We could see from 
Figures 1, 2, 3, and 4 that, in general, the changes in the trends as 
well as the change-points were estimated accurately.

When we look at Figures 1 and 2, we see that, in all stations, 
trends indicating an increase in the annual mean temperature 
in the last decades are present. These linear trends are captured 
by the model in all cases. Additionally, changes that occurred 
throughout the observational period, again with few exceptions–
see, for instance, Geneva–were also captured by the model.  If 
we turn our attention to Figures 3 and 4 where we have the plots 
related to the average annual precipitation data and the corre-
sponding estimated linear regressions, we observe that results 
and data variations are more heterogeneous than those in the 
case of the average annual temperature.

In Table 1 we present a summary of the types of changes in the 
estimated linear trends of the annual temperature and precipita-
tion averages detected by the estimated change-points.

Once the locations of the possible change-points have been esti-
mated, we need to assess the significance of the detected chang-
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es. The estimated 95% credible intervals of ∆(j) are given in Table 
2. Those intervals not containing zero indicate that the changes 
detected by the corresponding change-points as well as change-
points themselves are significant.

We also see in that table that in the case of the annual tempera-
ture averages, the changes detected by the change-points in the 
data from Lahore, Calcutta, Tokyo, and the first change-point in 
the Aberdeen data, are deemed not significant.  That means that 
even though the estimated values of the slopes βj1 and βj2 are 
different, this difference is not statistically significant.

Hence, these detected change-points are not considered signif-
icant, as well as the changes detected by them.  Notice that, of 
these non-significant changes only in Lahore did the values of 
βj1 and βj2  produce changes in the trend (from decreasing to in-
creasing); in the other cases, the changes were only in the values 
of estimated parameters. When we look at the results given by 
the data from the remainder of the stations, the changes detect-
ed by the estimated change-points as well as the change-points 
themselves may be considered statistically significant.

When we consider the case of the annual precipitation averages, 
we may see that with the exception of the data from the stations 
in Aberdeen, Ankara, and Lahore, all the changes detected by the 
change-points are deemed statistically non-significant.

Focusing only on the statistically significant detected changes, 
we have that in the case of the annual temperature averages, we  
see  a  change  from  decreasing  trends  to  increasing  in  the  
data  from  Ankara,  São Paulo,  Charleston,  and  Brisbane.   In  
the remaining cases, the changes are only in the value of the 
slope.  The behavior is kept the same (see, for instance, the cases 
of Moscow, Tunis, Geneva, and Aberdeen second change-point). 
If we consider the cases of Moscow and Tunis, the values of β 
change from smaller to larger, hence producing a steeper trend 
increase after the change-point (see Figure 1) and, therefore, 
a more rapid increase in the annual temperature averages.  In 
the case of Geneva, the values of the slopes also change from 
smaller to larger producing steeper and steeper increasing trends 
as we move across the change-points. In the case of Aberdeen, 
the changes are also from smaller to larger slopes, producing a 
steeper increasing trend after the second estimated change-point.

6 Discussion239

In this work we have used a simple segmented linear regression model to estimate the linear trends as well as the points240

in time where changes in the trends of the annual temperature and precipitation averages might have occurred. We could see241

from Figures 1, 2, 3, and 4 that, in general, the changes in the trends as well as the change-points were estimated accurately.242

When we look at Figures 1 and 2, we see that, in all stations, trends indicating an increase in the annual mean temperature243

in the last decades are present. These linear trends are captured by the model in all cases. Additionally, changes that occurred244

throughout the observational period, again with few exceptions–see, for instance, Geneva–were also captured by the model. If245

we turn our attention to Figures 3 and 4 where we have the plots related to the average annual precipitation data and the246

corresponding estimated linear regressions, we observe that results and data variations are more heterogeneous than those in247

the case of the average annual temperature.248

In Table 1 we present a summary of the types of changes in the estimated linear trends of the annual temperature and249

precipitation averages detected by the estimated change-points.250

Station Temperature Precipitation

Ankara (↓, ↑) (↑, ↑)
Moscow (↑, ↑) (↑, ↑, ↑)
Lahore (↓, ↑) (↓, ↑)
Calcutta (↑, ↑) (↑, ↑, ↑)
Tokyo (↑, ↑) (↓, ↑)
Tunis (↑, ↑) (↓, ↑)
Charleston (↓, ↑) (↓, ↓, ↑)
São Paulo (↓, ↑) (↓, ↑)
Aberdeen (↑, ↑, ↑) (↓, ↑)
Geneva (↑, ↑, ↑) (↑, ↓)
Brisbane (↓, ↑) (↓, ↓, ↑, ↓)

Table 1: Types of behaviors detected by the change-points for each station and response variable. Here, ↓ and ↑
indicate a decreasing and an increasing trend, respectively.
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Table 1: Types of behaviors detected by the change-points for each station and response variable.  Here, ↓ and ↑ indicate a 
decreasing and an increasing trend, respectively.
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Temperature Precipitation

Station change-point 95% Cred. Int change-point 95% Cred. Int

Ankara τ1 = 1987 (−7.113E−03; −3.05E−03) τ1 = 1935 (1.59E−03; 0.1951)

Moscow τ1 = 1970 (−1.685E−02; −1.303E−04) τ1 = 1900 (−6.645E−03; 2.327E−02)

– – τ2 = 1936 (−6.517E−03; 4.543E−04)

Lahore τ1 = 1976 (−1.582E−02; 1.081E−04) τ1 = 1906 (−5.4575E−02; −4.991E−03)

Calcutta τ1 = 1965 (−4.226E−04; 1.086E−03) τ1 = 1943 (−5.577E−02; 5.969E−03)

– – τ2 = 2015 (−0.1116; 9.019E−02)

Tokyo τ1 = 1987 (−1.842E−03; 9.136E−04) τ1 = 1977 (−3.476E−02; 3.243E−03)

Tunis τ1 = 1954 (−2.242E−03; −2.096E−04) τ1 = 1924 (−0.1972; 0.1675)

Charleston τ1 = 1966 (−2.212E−03; −1.191E−03) τ1 = 1843 (−0.1424; 0.1152)

– – τ2 = 1895 (−5.594E−03; 4.099E−04)

São Paulo τ1 = 1914 (−3.326E−03; −1.663E−03) τ1 = 1889 (−0.327; 6.6605E−02)

Aberdeen τ1 = 1927 (−1.263E−03; 6.941E−04) τ1 = 1886 (−6.348E−02; −4.0E−03)

τ2 = 1948 (−1.941E−03; −3.899E−05) – –

Geneva τ1 = 1968 (−3.404E−03; −1.65E−03) τ1 = 2008 (−3.596E−03; 7.143E−02)

τ2 = 1957 (−6.372E−03; −3.064E−05) – –

Brisbane τ1 = 2012 (−1.106E−02; −2.918E−03) τ1 = 1900 (−0.2552; 2.167E−03)

– – τ2 = 1925 (−1.433E−02; 4.514E−03)

– – τ3 = 1970 (−2.285E−03; 1.295E−02)

Table 2: 95% credible intervals for the differences ∆
(j)
12 = βj2 − βj1 of the fitted linear regression models delimited by

the corresponding change-points.

Hence, taking into account the significant changes detected by the change-points and looking at the detected behavior after the272

last statistically significant detected change-point, we have that in all cases, an increasing linear trend is detected in the annual273

temperature averages.274

If we turn our attention to the statistically significant changes in the case of the precipitation data, for Aberdeen and Lahore275

we detect changes from decreasing to increasing, while a change only in the value of the slope occurs in the case of Ankara.276

Note that this change in values is from a larger to a smaller value; hence the speed at which the annual precipitation average277

increases decreases after the change-point, i.e., the trend is still increasing, but now at a lower speed.278

Note that in the cases in which the change-points did not indicate statistically significant changes in trends of the annual279

averages, the estimated parameters, and consequently the fitted linear regression curve, described accurately the general trend280

of the data in all cases. Taking this into account, we see that in more recent years of the corresponding observational periods,281

there is a steeper increase in the annual temperature averages in Geneva, Ankara, Lahore, Charleston, and Brisbane. We also282

have a consistent increase during the whole observational period in the case of Tokyo and for most of the observational period in283

the case of São Paulo. In addition to that, after the last detected change-point, we have a more gradual increase in the annual284

temperature averages in the cases of Calcutta and Tokyo. Therefore, even though changes were not considered statistically285

significant, they do represent the trend behavior of the data.286

For the annual precipitation averages, looking at Figure 3 and 4, we observe different behaviors for the eleven climate287

stations, but in general, the change-points do not indicate significant differences between the slopes of the linear regression288

models for most of the cases (with the exception of Ankara and Aberdeen). It is important to point out that the effects of289

climate change in precipitation could be more localized in time, such as occurrences of large precipitation values in short periods290

of time and long dry periods; hence the annual precipitation averages might not be affected significantly.291

Therefore, based on the results presented here, we observe that the annual averages are changing worldwide in different forms292

in different parts of the world. The segmented regression model considered in this work captures fairly well those differences.293

Detecting statistically significant points in time where changes in the behavior of the annual temperature and precipitation294

averages occur as well as the type of changes is very important, since these may affect food production, the occurrences of295

natural disasters, and deterioration of human health, among many other hazardous events. Additionally, if the changes are not296

considered significant, the estimated behavior of the data during the observational period may provide information that may297
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Table 2: 95% credible intervals for the differences ∆(j) = βj2 − βj1 of the fitted linear regression models delimited by the corre-
sponding change-points.

Hence, considering the significant changes detected by the 
change-points and looking at the detected behavior after the last 
statistically significant detected change-point, we have that in all 
cases, an increasing linear trend is detected in the annual tem-
perature averages.

If we turn our attention to the statistically significant changes in 
the case of the precipitation data, for Aberdeen and Lahore we 
detect changes from decreasing to increasing, while a change 
only in the value of the slope occurs in the case of Ankara.

Note that this change in values is from a larger to a smaller val-
ue; hence the speed at which the annual precipitation average 
increases decreases after the change-point, i.e., the trend is still 
increasing, but now at a lower speed.

Note that in the cases in which the change-points did not indicate 
statistically significant changes in trends of the annual averag-
es, the estimated parameters, and consequently the fitted linear 
regression curve, described accurately the general trend of the 
data in all cases.  Taking this into account, we see that in more 
recent years of the corresponding observational periods, there is 
a steeper increase in the annual temperature averages in Geneva, 
Ankara, Lahore, Charleston, and Brisbane.  

We also have a consistent increase during the whole observation-
al period in the case of Tokyo and for most of the observational 
period in the case  of São Paulo.  In  addition to that,  after  the 
last detected  change-point,  we have a more  gradual  increase 
in the  annual temperature averages in the cases of Calcutta and 
Tokyo.   Therefore,  even though changes were not considered 
statistically significant, they do represent the trend behavior of 

the data. For the annual precipitation averages, looking at Figure 
3 and 4, we observe different behaviors for the eleven climate 
stations, but in general, the change-points do not indicate sig-
nificant differences between the slopes of the linear regression 
models for most of the cases (with the exception of Ankara and 
Aberdeen).   It is important to point out that the effects of climate 
change in precipitation could be more localized in time, such as 
occurrences of large precipitation values in short periods of time 
and long dry periods; hence the annual precipitation averages 
might not be affected significantly.

Therefore, based on the results presented here, we observe that 
the annual averages are changing worldwide in different forms 
in different parts of the world. The segmented regression model 
considered in this work captures fairly well those differences.

Detecting statistically significant points in time where changes 
in the behavior of the annual temperature and precipitation av-
erages occur as well as the type of changes is very important, 
since these may affect food production, the occurrences of nat-
ural disasters, and deterioration of human health, among many 
other hazardous events.  Additionally, if the changes are not con-
sidered significant, the estimated behavior of the data during the 
observational period may provide information that may be of 
use in implementing measures to decrease any negative impact 
they may produce.  For instance, the series of changes in Bris-
bane pointing to a decrease in the annual precipitation average 
may produce an alert of possible occurrences of prolonged dry 
seasons, and this may affect food production and/or the occur-
rences of severe fires, causing human health problems as well 
as economic losses, among other nuisances, whereas as in the 
case of Calcutta, the steep increase in the annual precipitation 
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average detected at the end of the observation period may also 
affect food production, loss of human life due to flooding, as 
well as economic loss and disease. On the other hand, the steep 
and consistent drop in the annual average precipitation in the 
final years of the observational period at the station in Geneva, 
may also produce problems.

In the case of the annual temperature averages, the consistent 
increase in their values at the end of all observational periods, 
may accelerate the melting of the ice cap at the poles as well as 
in glaciers present in some of the regions where data used here 
were collected. For instance, the consistent increase in the annu-
al temperature averages seen in Moscow could also be happen-
ing in Siberia, and changes in that ecosystem may affect wild-
life present in the region and even worldwide, as well as human 
health, since the melting of permafrost may result in the release 
into the atmosphere of greenhouse gases as well as pathogens to 
which humans may be susceptible.

It  is  important  to  point  out  that  the  detected  change-point  
for  the  São  Paulo  station,  from  which  there  is  a  continu-
ous increase in the annual mean temperature, could be related to 
global climate change.  However, this city had a large population 
growth in the last 100 years. This increase in the population may 
have affected the local climate, contributing to the continuous 
growth in the annual temperature averages.  That should be con-
sidered in addition to other factors caused by human behavior 
that are changing the climate of the entire planet.   The more re-
cent change-point year (1987) for Ankara could be related to the 
elevation of this city (894 meters), where the influence of global 
climate change might be not so strong.

Hence, considering the information provided by statistical 
analyses, and in particular the information provided by models 
similar to those used in the present study, governments, and the 
population in general, could take actions to mitigate the poten-
tial impact produced by those changes in the climate variables 
considered here.

The changes detected in earlier time intervals of the observa-
tional periods could serve as an indicator of what could happen 
if they were to repeat in the future. That could be done by taking 
advantage of the information we have regarding the consequenc-
es of the sudden drop in temperature averages and/or sudden in-
crease in the precipitation averages that occurred in the past. The 
segmented regression models could be of use in all these cases.
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