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Summary 
With accelerated global urbanization, the expansion of cities has become a pressing concern for urban planners and researchers. 
The growth and dynamics of urban encroachment are closely tied to changes in land use, especially in urbanized areas. This study 
seeks to evaluate the accuracy of the CA-Markov (Cellular Automata) model in predicting land use/land cover changes (LULCC) 
in the Kurunegala district, Sri Lanka as a result of urban expansion. The investigation employs secondary data, including 2007, 
2012, 2017, and 2022 Landsat 05, 07, 08, and 09 images respectively. Using software applications such as ArcGIS 10.8, IDRISI 
17.0, and MS-Excel 2019, diverse techniques including supervised classification, Markovian transition estimation, and CA-
Markov chain analysis, this study attempts to analyze the Urban Growth Modeling for 2027 and 2037 using CA-Markov Chain 
Multi-criteria Analysis (MCA) under Markov-Markovian Transition Estimator. The study used 32 spatial variables for determining 
the LULCC. As per the derived results, from 2022 to 2027, urban areas have increased quite markedly. The vegetation cover area 
has reduced and the areas of water bodies have increased spatially. From 2027 to 2037, the urban area increment is 72.552%. 
Also, vegetation cover and water body distribution have reduced by 8.051% and 39.91% respectively.

Keywords: Urbanization, Urban Encroachment, Ca-Markov Model, Markovian Transition Estimation, Ca-Markov Chain Analysis, 
Multi-Criteria Analysis

1. Introduction 
Researchers have paid a lot of attention to urban growth because 
cities around the world are growing rapidly [1]. Urbanization is an 
ongoing worldwide phenomenon that has resulted in significant 
shifts in land use trends and the accelerated growth of cities [2]. 
Urban sprawl is considered a phenomenon that deals with the 
expansion of auto-oriented development which has a considerable 
impact on the surrounding ecosystem [3]. As metropolitan areas 
continue to expand, urban expansion has emerged as a significant 
issue with far-reaching consequences for sustainable development, 
the preservation of the environment, and the overall standard of 
life [4-6]. Recognizing and precisely forecasting the land use 
changes resulting from urban sprawl is essential for successful 
urban planning and policymaking [7]. This growth has directly 
caused urban development to help spread within a city, which is 
especially clear in places like Sri Lanka, India, and China [8]. For 
example, between 1992 and 2013, the built-up areas of China's 
cities grew by an average of about 5.6% per year. Also, in 2014, 
the global rural population was surpassed by the global urban 
population which is currently identified as 54%, and this value is 
expected to reach up to 66% by the end of 2050 [9,10]. 

Numerous urban growth models were developed and extensively 
utilized to study the patterns of urban expansion also, how this 
could affect the urban ambient environment [11]. These models 
could be affiliated with urban policy-making or evaluation of the 
different development scenarios [12]. For analyzing urban growth 
various models such as Land use/ Transportation models, Cellular 
Automata (CA) models, Agent-based models…etc. are introduced 
[9]. Several methods of modeling have been devised for simulating 
and predicting the dynamics of urban development [13]. In urban 
growth modeling, the Markov-Markovian Transition Estimator 
and Cellular Automation/Markov Chain MCA are two common 
approaches [14]. These methods provide an understanding of 
both the temporal and spatial patterns of land use change, thereby 
assisting decision-makers in conceptualizing and controlling urban 
growth [15]. 

Recognizing how land use/land cover change (LULCC) fluctuates 
over time is important for achieving favorable urban growth and 
making cities more peaceful and less congested places to live 
[16]. LULCC interactions are all about how people change land 
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for economic reasons [17]. In the last few decades, advances in 
technology like remote sensing and Geographic Information 
Systems (GIS) have made it easier to keep track of and evaluate 
the changes in LULCC by using high-resolution images [18]. 
For recognizing LULCC, various computational models, which 
include Markov models, cellular models, hybrid models, multi-
agent models, statistical models, and evolutionary models, are 
developed [19]. In specific, the Markov model is a structure for 
anticipating the course of events of Markov stochastic process 
systems [20]. In the 1960s and 1970s, this model was widely 
employed to simulate the changing patterns of large-scale land 
use in the discipline of urban analysis. Using Land Use Land 
Cover (LULC) maps, the Markov model provides a transition 
probability matrix that enables the evaluation of the probability of 
LULCC to another category or continuation throughout the same 
classification [21].

CA, on the other hand, represents a discontinuous dynamic system 
commonly used for simulating global as well as local computation 
changes [22]. In part because of its ability to support sophisticated 
spatial patterns, this model has acquired a growing continuation in 
urban growth evaluation [23]. The Markov-Markovian Transition 
Estimator employs historical land use data and probabilities of 
transition to predict impending land use patterns (Wang & Osaragi, 
2024). This approach implies that the probability of land use 
change depends entirely on the current state of land use, ignoring 
various variables that might impact land use changes [24]. CA-
Markov Chain MCA, on the other hand, incorporates multiple 
criteria, including proximity to roads, population density, and land 
suitability…etc. to estimate the probability of land use conversion 
(Mondal, Sharma, Kappas, & Garg, 2019). This method provides a 
more comprehensive comprehension of the complicated nature of 
urban development by incorporating multiple factors. In the context 
of the district of Kurunegala, which is experiencing enhanced 
urbanization and rising concerns about urban encroachment, it is 

necessary to assess and compare the efficacy of the aforementioned 
modeling techniques. The purpose of this study is to evaluate the 
applicability and effectiveness of the CA-Markov model, a variant 
of CA/Markov Chain MCA, for forecasting modifications in land 
use resulting from urban expansion in the district.

This study will analyze and synthesize prior research on urban 
development modeling, concentrating on the implications of the 
Markov-Markovian Transition Estimator and CA-Markov Chain 
MCA. This research will contribute to a better comprehension 
of the abilities of the approach and applicability in forecasting 
urban development patterns by evaluating the advantages and 
disadvantages. This research will produce concrete knowledge 
into the LULCC and urban growth structure in the Kurunegala 
district through the use of secondary data, including Landsat 
images from 2007 and 2022, as well as methods such as supervised 
classification, Markovian transition estimation, and CA-Markov 
chain analysis. Through the outputs of the Markov-Markovian 
Transition Estimator and CA/Markov Chain MCA, this study 
seeks to identify critical differences and evaluate the precision 
and dependability of the approach in documenting urban growth 
patterns. This study will contribute to the existing corpus of 
knowledge on urban growth modeling, offering urban planners, 
policymakers, and researchers interested in sustainable urban 
development valuable insights. By comprehending the advantages 
and disadvantages of various simulation methods, stakeholders 
can make well-informed decisions and begin implementing 
successful strategies for handling and directing urban development 
in the Kurunegala district. Accordingly, section 01 discusses 
the introduction, and Section 02 discusses the literature review. 
Subsequently, the third section will discuss the methodology, and 
section 04 will illustrate the results and discussion. Finally, section 
05 will include the conclusion of the research. 

1.1. Study Area 

Figure 01: Study area selected for the analysis Source: Author, 2023 
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Figure 01 shows the study area within Kurunegala that opted for 
the demonstration of the analysis, Kurunegala is one of the most 
thriving urban centers in the Northwestern province, of Sri Lanka. 
Thus, it is apparently, a significant urban center where it allows 
analyzing the urban growth patterns as well as the distribution 
of the clustering of urban densities. The study was conducted 
using the secondary data obtained from the USGS Earth Explorer 
and the data for the variable customization were analyzed and 
selected from the different organizations such as UDA (Urban 
Development Authority). This analysis of urban growth modeling 
was done using 32 variables (Maximum number of variables for 
IDRISI 17.0). 

2. Literature Review 
Urbanization is an inevitable process which is normally taking 
place due to economic development as well as the increased 
population growth in a region [25]. Urban growth is considered a 
significant worldwide phenomenon that addresses the percentage 
of the urban population along with the physical expansion 
of the existing urbanized areas.  Accurate as well as updated 
LULCC information is required to comprehend and analyze the 
environmental consequences of such processes [26]. Urbanization 
is considered one of the major phenomena in the contemporary 
world that is influencing the outward spreading of cities with 
fewer city planning endeavors [27]. The built-up area is generally 
considered a fundamental parameter for quantifying the urban 
sprawl scenarios [28]. 

Unplanned urbanization which is taking place within cities can 
affect pollution levels, traffic congestion in the cities, congestion 
in places, and deforestation levels [29]. Uncontrollable urban 
population growth as well as migration patterns have created major 
issues like urban sprawl and population growth as well as urban 
sprawl has direct relationships [9]. Also, rapid and uncontrolled 
urban growth has become a fundamental challenge faced by urban 
planners and policy-makers and this condition has affected the 
urban sustainability as well as the livelihood conditions of the 
urban communities [30]. Modeling the spatial dynamics mostly 
depends on the LULCC [38]. Consequently, it is crucial to address 
the relationship between urban sprawl and LULCC through 
the process of simulation since LULC dynamics are vital to a 
sustainable urban environment [31,32]. This helps urban planners, 
policy-makers as well as resource managers to obtain the most up-
to-date data on this rapidly changing urban environment [33]. 

CA models are dynamic models that are separate in the composition 
of time, space, and context [34]. Also, CA are rule-based approaches 
which are working on the micro-level contexts which have the 
flexibility towards simplifying the spatial simulations based on 
the transition rules [35]. CA models are commonly utilized in all 
urban growth models which are found to be performing well in the 
process of predicting urban growth more closely to the realistic 
nature rather than the mathematical models [36]. Hybrid models 
of CA are specifically dominating the existing geospatial domain 
such as the CA-Markov chain models, CA Logistic regression 

models [37]. CA uses site-specific rules in representing the land 
use transitions also, it uses the raster-based mechanisms for 
simulating the urban expansion for separate time steps [38]. CA 
models are predominantly used in geometrically simulating the 
spatial phenomenon [28]. There are some inadequacies in CA 
models such as some of these models fail to integrate with certain 
causal factors that drive the urban sprawl for instance; population 
growth, accessibility to available land plots, and proximity to 
centers of the nearest cities. To address these concerns, certain 
Machine Learning (ML) techniques are being introduced such as 
Neural Networks [28]. 

For analyzing the urban growth various geospatial and statistical 
models are utilized that can be attributed to the regression models, 
CA, Markov models, CA-Markov models, and CA-logistic 
regression models [39]. Among most of these established models, 
CA models are the most popular and used for the urban growth 
simulation processes [40]. For simulating the urban land use 
change, and analyzing the urban expansion, different variants of 
CA models are developed such as SLEUTH, DUEM (Dynamic 
Urban Evolution Model), MCE-CA (Multi-Criteria-Evaluation), 
MAS (Multi-Agent-System) CA, Markov CA Model, and Voronoi-
CA model [41].  

Modeling urban growth utilizing satellite-based images has 
become increasingly popular depending on the scope of the 
integrated statistical algorithms that use remote sensing data, 
also, the availability of high-resolution satellite imageries, which 
is affected by enhanced computational power [42].  GIS, remote 
sensing, and database management systems have become crucial 
technologies in analyzing, evaluating, and simulating urban 
sprawl scenarios [28]. The growth of advanced technologies 
such as GIS and Remote Sensing utilize high-resolution images 
which are to measure and evaluate the LULCC. Predominantly, 
these technologies are focused on the integration of spatial models 
that allow the users to analyze the transformation of land use 
while simulating. Apart from the historical land use data for the 
models, different types of agents triggering urban growth are 
also considered in urban modeling. Agents such as roads, slopes, 
development exclusion areas…etc. are used in exploring the urban 
growth [39]. 

Different types of LULC simulation approaches were developed 
for the evaluation of existing and future conditions of urban 
structures and though these approaches have evolved and these 
modeling techniques have a wide variety in their conceptual 
basis, the geo-simulation approaches have obtained considerable 
attention with reference to the development of GIS and remote 
sensing. As a result, to address these concerns, Markov chain CA 
models and multi-agent system models were introduced [43]. 

LULCC is important in many dimensions for the provision of 
various infrastructure-based services such as transportation, 
different utilities provisioning, medical facilities, schools…
etc. Accordingly, this information can be obtained for planning 
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future growth or to control future urban sprawl [44]. LULCC 
can be identified using various models such as Markov chain, 
CA, different hybrid models, evolutionary models, and statistical 
models as well as multi-agent models [45]. Markov models are 
fundamentally utilized for prediction that is formed out of Markov 
random process systems. Since the 1960s’, these prediction models 
have been utilized for large-scale land-use simulations related to 
land use [46]. Tools for instance the city evolution trees, provide 
new approaches to investigating urban growth on a larger scale 
and provide an integrative vision of land use change also, how 
those changes affect the urban environment. Agent-based models 
(ABM) represent the linkage between individuals and land use 
change and this has become one of the latest techniques in urban 
growth modelling [39].

 Markov model is a theoretical form that uses Markov random 
process systems in the evaluation of future statuses. Markov models 
are utilized to produce transition probabilities in two different 
periods of LULCC. By integrating the CA these models can be 
adapted to analyze the intricate spatial patterns. CA-Markov models 
are hybrid-based dynamic models that are fundamentally utilized 
for predicting urban land use change [47]. CA-Markov models are 
effective models that are effectively built utilizing CA and Markov 
models. As a result of this effective combination, these models 
can simulate long-term spatial variations [48]. Markov models are 
equipped with the facilitation of simple calibration abilities, are 
highly efficient also, the capability to simulate multiple changing 
patterns and scenarios [45].  

3. Methodology 
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Step 01 

32 variables – .Tiff files - ASCII format  

Urban Water Vegetation Agriculture 

Inputs 

Setting the objective for modeling 

Setting the constraints and factors 

Standardizing the Fuzzy model 

Setting up the membership function shape 

Running the FUZZY Model 

Running the MCE Model 

Running Multi-Objective Decision-Wizard 

IDRISI Collection Editor  

Running the CA-Markov Cellular Automata 
Change Predictor Model 

Simulated urban growth 

Running the Markovian Transition Estimator 

2022 LU 2017 LU 2012 LU 2007 LU 

Source: Author, 2023 
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3.1. Data Source 
This study was primarily conducted using the secondary data, 
which is the remote sensing data, and used the Landsat satellite 

images downloaded from the USGS Earth Explorer. Table 01 
shows data which was obtained for the years 2007, 2012, 2017, 
and 2022. 

Type of satellite Image ID Acquisition data Resolution
Landsat 05 - 2007 LT05_L2SP_141055_20070323 2007 March 23 30m
Landsat 07 - 2012 LE07_L2SP_141055_20120328 2012 March 28 30m
Landsat 08 - 2017 LC08_L2SP_141055_20170113 2017 January 13 30m
Landsat 09 - 2022 LC09_L2SP_141055_20220204 2022 February 04 30m

Factors Reference
Density of main governmental administrative functions LUPPD
Density of schools UDA
Developable land density LUPPD
Distance from environment-sensitive areas LUPPD
Distance from future sensitive areas LUPPD
Distance from hazardous places UDA
Distance from inappropriate garbage disposals LUPPD
Distance from inappropriate landfills LUPPD
Distance from industrial sites LUPPD
Distance from industrial buildings LUPPD
Distance from scenic beauty locations UDA
Distance from the "B" type of roads OSM
Distance from the disaster-prone areas - Protected areas LUPPD
Distance from the expressways OSM
Distance from the Major "A" type roads OSM
Distance from the nearest sub-city centers OSM
Distance from touristic attractive places LUPPD
Distance from unauthorized activities LUPPD
Distance to 2nd order type of Grocery shops - Marketplaces OSM
Distance to bus stands OSM
Distance to bus stops UDA
Distance to health facilities - Hospitals OSM
Distance to Main Town Center LUPPD

Table 1 - Details about the satellite imageries, Source: USGS, 2023
Source: USGS Earth Explorer 

3.2. Data Processing 
After downloading the Landsat images, the composite band tool 
was used for the composition. Then utilizing the symbol options, 
the false color compositions were generated.  All the satellite 
images were projected to the WGS 1984 coordinate system and 
for the image enhancement, sharpen, blur, and smoothing tools 
were utilized. After clipping to the study area, a supervised 
classification tool was used. After obtaining the training samples, a 
signature file was used for the maximum likelihood classification. 
The land use maps were categorized into four land use classes 
such as urban, vegetation, agriculture, and water bodies. A total 
of 145 ground truth points were generated at different locations 

for the Kappa accuracy assessment. All the land use classifications 
obtained an agreement between 0.6 and 0.8 which is nominated as 
good agreement. Classified images were then used for the land use 
simulation. Markov chain modeling was employed in monitoring, 
and simulating the future land use changes. The transition 
probability matrix for the land use change that took place was 
developed through the Markovian transition estimator. 

4. Used Variables  
32 variables have been utilized for the land use modeling and the 
opted variables and sources are mentioned below (Table 02).



Volume 7 | Issue 2 | 6Eart & Envi Scie Res & Rev,  2024

Distance to railway stations OSM
Distance to religious locations OSM
Distance to water bodies OSM
Land availability UDA
Overall road density OSM
Physical geographical characteristics - Slope USGS
Population density UDA
Population growth rate UDA
Road infrastructure facility distribution LUPPD

Factors Membership function shape Membership 
function type

Density of main governmental administrative functions Monotonically decreasing J-Shaped
Density of schools Monotonically decreasing J-Shaped
Developable land density Monotonically decreasing Sigmoidal
Distance from environment-sensitive areas Monotonically decreasing J-Shaped
Distance from future sensitive areas Monotonically decreasing J-Shaped
Distance from hazardous places Symmetric Sigmoidal
Distance from inappropriate garbage disposals Symmetric Linear
Distance from inappropriate landfills Symmetric Sigmoidal
Distance from industrial sites Monotonically decreasing J-Shaped
Distance from industrial buildings Monotonically decreasing J-Shaped
Distance from scenic beauty locations Symmetric Sigmoidal
Distance from the "B" type of roads Monotonically decreasing J-Shaped
Distance from the disaster-prone areas - Protected areas Monotonically decreasing J-Shaped
Distance from the expressways Monotonically decreasing J-Shaped
Distance from the Major "A" type roads Monotonically decreasing J-Shaped
Distance from the nearest sub-city centers Monotonically decreasing J-Shaped
Distance from touristic attractive places Monotonically decreasing J-Shaped
Distance from unauthorized activities Monotonically decreasing Sigmoidal
Distance to 2nd order type of Grocery shops - Marketplaces Symmetric J-Shaped
Distance to bus stands Symmetric Sigmoidal
Distance to bus stops Monotonically decreasing Sigmoidal
Distance to health facilities - Hospitals Symmetric Linear
Distance to Main Town Center Symmetric Sigmoidal
Distance to railway stations Monotonically decreasing J-Shaped
Distance to religious locations Monotonically decreasing Sigmoidal
Distance to water bodies Monotonically decreasing J-Shaped
Land availability Monotonically decreasing J-Shaped

Table 2 - Factors used and references, Source – Author, 2023

(UDA – Urban Development Authority; LUPPD – Land Use Policy Planning Department; OSM – OpenStreetMap; USGS – United 
States Geological Survey).  

The weights of the MCA have been obtained from literature reviews as well as expert opinions. For setting up the MCA Multi-Objective 
Decision-Wizard, for each variable, the membership function shape as well as the membership function type have to be set using the 
histogram shape. 
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Overall road density Monotonically decreasing Sigmoidal
Physical geographical characteristics - Slope Monotonically decreasing Sigmoidal
Population density Monotonically decreasing J-Shaped
Population growth rate Monotonically decreasing J-Shaped
Road infrastructure facility distribution Monotonically decreasing J-Shaped

LULC 2007 2012 2017 2022
Urban 58.4586 61.2548 75.075 89.311
Vegetation 796.255 798.459 755.259 731.489
Agriculture 478.562 448.326 439.022 434.259
Water 28.3254 33.5617 32.2458 36.5418

Table 3 - Membership function shape and type, Source – Author, 2023

Table 4 - LULCC from 2007 to 2022 in sq. km, Source – Author, 2023

 6. LULC from 2007 to 2022

Table 03 Describes the summary of membership function shape 
and type used in the MCA Multi-Objective Decision-Wizard. 

5. Results and Discussion   
5.1. LULCC analysis
Land use patterns were classified using the supervised classification 
technique to understand the urban growth simulation impacts in 
the Kurunegala district. Under the four land use categories, such as 
urban, vegetation, agriculture, and water the analysis was carried 

out for the years of 2007, 2012, 2017, and 2022. In the selected 
study area, the most prominent character can be identified as 
the vegetation cover. The next dominant land use type has been 
agricultural dissipation. The urban area dissipation from 2007 to 
2022 has been identified as 52.78%, vegetation distribution has 
been lost by 8.13% from 2007 to 2022. Also, Agriculture has been 
reduced by 9.26% and finally, the water bodies in the study area 
have been increased by 29%. 
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LULC 2007 2012 2017 2022 
Urban  58.4586 61.2548 75.075 89.311 
Vegetation 796.255 798.459 755.259 731.489 
Agriculture 478.562 448.326 439.022 434.259 
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LULC from 2007 to 2022 

Figure 2 – LULC – 2007, Source: Author, 2023  Figure 3 ‐ LULC ‐ 2012, Source: Author, 2023 
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Figures 2, 3, 4, and 5 show the LULC classification conducted for the years 2007, 2012, 2017, and 
2022 respectively. Overall Kappa accuracy values have also been obtained in Table 05. The overall 
accuracy of each period has received over 70% accuracy and the Kappa Accuracy has received a 
good precision which ranges from 0.65 to 0.88.  

Table 5 ‐ Accuracy Assessment, Source – Author, 2023 

Accuracy type LU 2007 LU 2012 LU 2017 LU 2022 
Overall Accuracy 

75.65% 74.12% 81.25% 88.96% 
Kappa Index 
Accuracy 0.6932 0.66748 0.7958 0.8745 

4.2. MCA analysis  

MCA analysis was done prior to the LULC simulation. MCA is a popular as well as a powerful 
tool for analyzing the most conflicting factors that influence land-use decisions. MCA can 
accommodate most complex decision-making that can also balance various factors such as 
environmental sustainability, economic aspects, infrastructure requirements, and economic 
development. Additionally, for the integration of diverse parties and the incorporation of varied 
perspectives, MCA can be used. Therefore, this approach enables the integration of diverse parties 
as well as the provisioning of quantitative and transparent decision support. Additionally, for 
scenario planning and identifying future simulations, MCA can be effectively utilized (Antoine et 
al., 1997).  

Figure 4 ‐ LULC ‐ 2017, Source: Author, 2023 Figure 5 ‐ LULC ‐ 2022, Source: Author, 2023 

Figures 2, 3, 4, and 5 show the LULC classification conducted for the years 2007, 2012, 2017, and 2022 respectively. Overall Kappa 
accuracy values have also been obtained in Table 05. The overall accuracy of each period has received over 70% accuracy and the Kappa 
Accuracy has received a good precision which ranges from 0.65 to 0.88. 

Table 5 - Accuracy Assessment, Source – Author, 2023

Accuracy type LU 2007 LU 2012 LU 2017 LU 2022
Overall Accuracy 75.65% 74.12% 81.25% 88.96%
Kappa Index Accuracy 0.6932 0.66748 0.7958 0.8745

7. MCA Analysis 
MCA analysis was done prior to the LULC simulation. MCA 
is a popular as well as a powerful tool for analyzing the most 
conflicting factors that influence land-use decisions. MCA can 
accommodate most complex decision-making that can also 
balance various factors such as environmental sustainability, 
economic aspects, infrastructure requirements, and economic 
development. Additionally, for the integration of diverse parties 
and the incorporation of varied   perspectives, MCA can be used. 

Therefore, this approach enables the integration of diverse parties 
as well as the provisioning of quantitative and transparent decision 
support. Additionally, for scenario planning and identifying future 
simulations, MCA can be effectively utilized [49]. 

MCA was used by the land use types utilized (Refer to Table 04).  
The MCA-related illustrations were generated using IDRISI 17.0 
software (Refer to figures 6, 7, 8, and 9).  
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Figure 6 ‐ MCA Vegetation, Source: Author, 2023 Figure 7 – MCA Water, Source: Author, 2023 

Figure 8 ‐ MCA Agriculture, Source: Author, 2023 Figure 9 ‐ MCA Urban, Source: Author, 2023 

8. Simulated Land Use Change 
The land use prediction was simulated using the CA-Markov chain 
model that generated significant land use changes in the overall 
configuration. Figures 10 and 11 illustrate the simulated LULC 
in 2027 and 2037. In the simulated LULC maps, the land use 

categories have been dropped to three and fundamentally three 
land use categories stand out such as Urban, water, and vegetation. 

9. 2027 and 2037 LULC analysis
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4.3. Simulated Land use change  

The land use prediction was simulated using the CA-Markov chain model that generated 
significant land use changes in the overall configuration. Figures 10 and 11 illustrate the simulated 
LULC in 2027 and 2037.   

In the simulated LULC maps, the land use categories have been dropped to three and 
fundamentally three land use categories stand out such as Urban, water, and vegetation.  

2027 and 2037 LULC analysis 
Table 6 ‐ Simulated results, Source – Author, 2023 

Land Use type 2022 – sq. km 2027 - sq. km 2037 - sq. km 
Urban 89.311 179.583 309.874 
Vegetation 731.489 701.235 644.781 
Water 36.5418 68.6595 41.256 

 
As per the projected land use types (Table 06), from 2022 to 2027, urban areas have increased 
quite markedly. The vegetation cover of the area has reduced and the water bodies have increased 
quite noticeably. From 2027 to 2037, the urban area increment is 72.552%. Also, vegetation cover 
and water body distribution have reduced by 8.051% and 39.91% respectively. As per the 
simulation results, the agricultural areas have been dropped from the model.  

Figure 10 ‐ Simulated 2027 Land Use, Source: Author, 2023 Figure 11 ‐ Simulated 2037 Land Use, Source: Author, 2023 

10. Validation
For the analysis conducted using the MCA using CA-Markov 
chain modeling, the new cutting threshold value, is normally 
used for classifying the observations into two groups based on 
the model’s predicted probabilities. The main objective of the 
new cutting threshold value is to match the actual and predicted 
values. The simulation got the new cutting threshold value as 
0.1071 which is a lower threshold value of 0.5 and this indicates 
that even in cases when the observations' expected probability is 
not very high, the model is identifying them as positive values. 
Additionally, the model has got True Positive Rate (TPR) of 
98.88% which is a good value and this indicates model is able 
to successfully identify most of the actual positive cases in the 
simulation process. Also, this value suggests a good sensitivity. 
Moreover, the Markov model simulation obtained the Adjusted 
Odds Ratio (AOR) as 6.9755. This implies a strong relationship 
between the dependent and independent variables. Furthermore, 
the model has a False Positive Rate (FPR) of 3.13% and this 

suggests that the model has misclassified this amount of negative 
cases as positive and this value can be emphasized using the high 
TPR value too. Accordingly, the model seems to perform well 
based on the TPR and AOR. Finally, the Markov model obtained 
the (Receiver Operating Characteristic) ROC value as 0.7142 and 
this signifies a moderate performance in distinguishing between 
different classes in the model. (ROC = 1 indicates a perfect fit, and 
ROC = 0.5 indicates a random fit). Apart from the above statistical 
analysis obtained from the Markov model, the development 
suitability evaluation was conducted using the same model to 
reevaluate the development pattern. The above image (Figure 12) 
shows the development suitability that has been derived using the 
CA-Markov model. The urban growth distribution and dissipation 
for the years 2027 and 2037 have obtained favorable results that 
correspond to the development suitability that was obtained above. 
Accordingly, this outcome can also be taken for the validation of 
the derived results as per the areas that are appropriate for further 
development. 
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Figure 12 ‐ Markov Chain simulation ‐ Suitability, Source: Author, 2023 

11. Conclusion 
Urban sprawl is a phenomenon that can be analyzed using the 
built-up area dissipation which is taking place due to the various 
socioeconomic developments [31]. Due to this phenomenon, the 
structure of the land can be changed drastically. The land use 
patterns are mostly affected by various anthropogenic activities 
such as housing developments, infrastructure development 
projects, and commercialization impacts. Thus, this research 
approach attempted to simulate the LULCC using the CA-Markov 
model through the IDRISI 17.0 software. This projection provides 
a higher accurate prediction of the land use change that was done 
using MCA with 32 spatial variables which was identified as a 
fresh attempt to utilize this number of spatial factors in any of the 
urban growth models. Based on the results generated from this 
attempt, the LULC map for 2037 would be a prospect for the land 
use prediction. However, the development techniques can impact 
the built-up area change in this area and the simulated map can 
be used for the development of suitability modeling maps for 
Kurunegala, which has been predominantly growing from 2007 to 
2022. Consequently, effective and necessary planning initiatives 
will be demanded in the future to control this urban sprawling 
effect in Kurunegala [50,51]. 
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