Twin Primes Segmented Sieve of Zakiya (SSoZ) Explained

Jabari Zakiya
District of Columbia, United States.

*Corresponding Author
Jabari Zakiya, District of Columbia, United States.

Submitted: 2023, Mar 10; Accepted: 2023, May 15; Published: 2023, June 20
Citation: Zakiya J. (2023). Twin Primes Segmented Sieve of Zakiya (SSoZ) Explained. J Curr Trends Comp Sci Res, 2(2), 119-147.

1. Introduction

In 2014 I released The Segmented Sieve of Zakiya (SSoZ) [1]. It described a general method to find primes using an efficient prime sieve based on Prime Generators (PG). I expanded upon it, and in 2018 I released The Use of Prime Generators to Implement Fast Twin Primes Sieve of Zakiya (SoZ), Applications to Number Theory, and Implications for the Riemann Hypotheses [2]. The algorithm has been improved and is now also used to find Cousin Primes. This paper explains in detail the what, why, and how of the algorithm and shows its implementation in 6 software languages, and performance data for these 6 languages run on 2 different cpu systems with 8 and 16 threads.

2. General Description

The programs count the number of Twin \mid Cousin Primes between two numbers within a 64 -bit range, i.e. $0-18,446,744,073,709,551,615$ $(2 * * 64-1)$, and also returns the largest twin|cousin value within it. The algorithm has no mathematical limits, but [hard|soft]ware does, so it is coded to run on commonly available 64-bit multi-core systems containing a reasonable amount of memory (the more the better).

Below is a diagram and description of the major functional components of the algorithm and software.

> Inputs Formatting

Pn Selection and Parametization

Sieve Primes Generation

Residues Sieves

Outputs Collection and Display

2.1 Inputs Formatting

One or two values are entered (order doesn't matter) specifying the numerical range. They're converted to odd values, and|or defaults, after conditional checks.

2.2 Pn Selection and Parameterization

The inputs numerical range is used to select the Pn generator used to perform the residues sieve. Once determined, its generator parameters are created.

2.3 Sieve Primes Generation

The sieving primes \leq sqrt(end_num) for the range are generated, but only those with multiples within the numerical range are used for the Pn generator

2.4 Residues Sieves

In parallel for each twin|cousin residues pair for Pn, the sieve primes are used to create the nextp array of start locations for marking their multiples for each segment size the input numerical range is split into.

2.5 Outputs Collection and Display

The prime pairs count, and the largest pair value, are collected for each residue pair thread, and their final greatest values displayed, along with timing data.

3. Math Fundamentals

Prime numbers do not exist randomly! When we break the number line into even-sized groups of integers (the group numerical bandwidth and prime generator modulus value), the primes are evenly distributed along the residues in each group, i.e. the coprime values to the modulus (their greatest common divisor (gcd) with the modulus is 1). Thus, a modulus, and its associated residues, form a Prime Generator (PG), a mathematical expression and framework for generating and identifying every prime, not a modulus prime factor.

While a PG modulus can be any even number, the most efficient moduli are strictly prime primorials. These prime generators have the smallest ratios of (\# of residues)/modulus and make the number space primes exist within the smallest possible for a given number of residues. As more primes are used to form the PG moduli they systematically squeeze the primes into smaller and smaller number spaces.

The $\mathrm{S} \mid \mathrm{SoZ}$ algorithms are based on the structure and framework of Prime Generators, whose math and properties are formalized in Prime Generator Theory (PGT). For an extensive review read [1], [2], [3] and see the video - (Simplest) Proof of the Twin Primes and Polignac's Conjectures. https://www.youtube.com/ watch? $\mathrm{v}=\mathrm{HCUiPknHtfY} \& \mathrm{t}=940 \mathrm{~s}$ [4].

Below is a list of the major properties of Prime Generators that comprise the mathematical foundation for the $\mathrm{S} \mid \mathrm{SoZ}$ algorithms and code.
4. Major Properties of Prime Generators

- A prime generators has notational form:
$\mathbf{P n}=\operatorname{modpn} * \mathbf{k}+\left\{\mathbf{r}_{0} \ldots \mathrm{r}_{\mathrm{n}}\right\}$
- The modulus for prime generator with last prime value \boldsymbol{p}_{n} has primorial form: $\mathbf{m o d p n}=\boldsymbol{p}_{n} \#$
- The number of residues are even, with counts:
rescntpn $=\left(p_{n}-1\right) \#=p_{n}{ }^{-1} \#$
- The residues occur as modular complement pairs (mcp) to its modulus: modpn $=\mathbf{r}_{\mathbf{i}}+\mathbf{r}_{\mathrm{j}}$
- The last two residues of a generator are constructed as:
(modpn - 1) (modpn +1)
- The residues, by definition, will include all the coprime primes $<$ modpn
- The first residue \mathbf{r}_{0} is the next prime $>\boldsymbol{p}_{n}$
- The residues from \mathbf{r}_{0} to $\mathbf{r}_{0}{ }^{2}$ are consecutive primes
- Each generator has a characteristic Prime Generator Sequence (PGS) of even size residue gaps
- The last 3 sequence gaps have form:

$$
\left(\mathbf{r}_{0}-1\right) 2\left(\mathbf{r}_{0}-1\right)
$$

- The gaps are distributed with a symmetric mirror image around a pivot gap size of $\underline{4}$
- The residue gaps sum from \mathbf{r}_{0} to $\left(\mathbf{r}_{\mathbf{0}}+\right.$ modpn $)$ equals the modulus: modpn $=\Sigma \boldsymbol{a}_{\boldsymbol{i}} \cdot \mathbf{2 i}$
- The coefficients \boldsymbol{a}_{i} values are the frequency each gap of size $\mathbf{2 i}$ occurs in a $\boldsymbol{P G S}$
- The sum of the coefficients \boldsymbol{a}_{i} values equal the number of residues: $\boldsymbol{r e s e n t p n}=\boldsymbol{\Sigma} \boldsymbol{a}_{\boldsymbol{i}}$
- Coefficients $\boldsymbol{a}_{1}=\boldsymbol{a}_{2}$ are odd and equal values with form: $a_{1}=a_{2}=\left(p_{n}-2\right) \#=p_{n}{ }^{-2} \#$
- The coefficients $\boldsymbol{a}_{\boldsymbol{i}}$ are even values for $i>2$
- The number of coefficients \boldsymbol{a}_{i} in a sequence for

Pn is of order $\boldsymbol{p}_{\boldsymbol{n}-1}$
Residues have Canonical Form values (1...modpn-1), as 1 is always coprime to any modulus, but for coding|math efficiency their Functional Form values ($\mathrm{r}_{0} \ldots \operatorname{modpn}+1$) are used, with $\mathbf{r}_{\mathbf{0}}$ defined above, and modpn $+\mathbf{1} \equiv \mathbf{1} \bmod \operatorname{modpn}$ is the permuted first congruent value for 1 . Also, as the residues exist as modular complement pairs the code determines their first half values and their 2nd half values come for FREE. To find the residues for a Pn, a smaller generator's PGS (in the code for P3) is used to reduce the larger moduli number space to identify the residue candidates ($r c$) that need to be gcd checked.

Shown here is the primes candidates (pcs) table for P5 up to the $100^{\text {th }}$ prime 541 . It shows the only possible pc values that can be prime for 30 integer groupings. Each of the \mathbf{k} columns is a residue group (resgroup) of prime candidates. The colored pc values are nonprime composites and can be sieved out by the Sieve of Zakiya (SoZ), leaving only the prime values shown.

Table 1: P5 = 30 * $k+\{7,11,13,17,19,23,29,31\}$

k	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
r 0	7	37	67	97	127	157	187	217	247	277	307	337	367	397	427	457	487	517
r1	11	41	71	101	131	161	191	221	251	281	311	341	371	401	431	461	491	521
rt	13	43	73	103	133	163	193	223	253	283	313	343	373	403	433	463	493	523
r3	17	47	77	107	137	167	197	227	257	287	317	347	377	407	437	467	497	527
r4	19	49	79	109	139	169	199	229	259	289	319	349	379	409	439	469	499	529
r5	23	53	83	113	143	173	203	233	263	293	323	353	383	413	443	473	503	533
r6	29	59	89	119	149	179	209	239	269	299	329	359	389	419	449	479	509	539
r7	31	61	$\mathbf{9 1}$	121	151	181	211	241	271	$\mathbf{3 0 1}$	331	$\mathbf{3 6 1}$	391	421	451	481	511	541

Every PG represents a pcs table like this, which visually display all their properties. To identify all the Twin Primes we merely observe the residue pair values that differ by $2,(11,13),(17,19)$, $(29,31)$, and for Cousins those that differ by $4,(7,11),(13,17)$, $(19,23)$. These residue gaps form the basis for the Twins|Cousins SSoZ implementations, and other k-tuples of interest.

To find larger constellations of prime pairs, et al, we merely identify the residue pairs of the desired size. For Sexy Primes $(p, p+6)$, we just use the pairs $(7,13),(11,17),(13,19),(17$, $23),(23,29),(31,37)$. Using them, we easily see and count there are 47 Sexy Primes (with [5:11]) within the first 100 primes. Larger generators have more residues and larger gaps and enable identifying more desired size k-tuples.

In my video [4], I define the residue gaps as the gaps between consecutive residues, and thus I refer to prime gaps as consecutive prime ($2, \mathrm{n}$) tuples, with n any even number. Thus, in the video, I state there are 25 Sexy Primes in the table above, i.e. 25 pairs of consecutive primes that differ by 6 . However, in the academic math world, Sexy and Cousin primes are defined as any $(2,6)$ and $(2,4)$ tuple, thus [7:13] is a Sexy Prime even though we see 11 is between them. So [5:11] is defined as the first Sexy Prime and [3:7] the first Cousin, and [3:103] would be the first $(2,100)$ tuple, i.e. 2 primes that differ by 100 .

However, if you want to know and understand the true distribution of primes, what you want to know is the distribution of the gaps between consecutive primes, which I'll define as prime gap $\boldsymbol{k}_{p g}$-tuples. So, the actual first $(2,100) k_{p g}$-tuple is [396,733: 396,833], a very big difference. It's from the $k_{p g}{ }^{-}$ tuples that inform you where the prime deserts are (long number stretches without primes), and characterize the true average thinning (density) of primes as the integers grow larger. And
as shown and explained in [3] and [4], there are an infinity of consecutive prime gaps of any even size.

Thus, the PGS for the Pn's provide a deterministic floor (minimum) value of the number of $k_{p g}$-tuples of any size, and their prime values, over any range of numbers, which we can (in theory) create an SSoZ residues sieve to identify and count.

Shown here are the PG parameters for the first 9 Pn generators
$\mathrm{P} 2-\mathrm{P} 23$ where modpn $=\prod_{i=1}^{m} p_{i}$
Here $\mathrm{pn}=p_{m}$ is the prime value of the mth prime, thus: $\mathrm{p} 2=p_{1}$, $\mathrm{p} 3=p_{2}, \mathrm{p} 5=p_{3}, \mathrm{p} 7=p_{4}$, etc.
Pn's modulus value modpn: $\left(p_{n}-0\right) \#=p_{n}^{-0} \#=\Pi\left(p_{n}-0\right)=(2-0)$ * $3-0) *(5-0) \ldots *\left(p_{m}-0\right)$

Number of residues rescnt: $\left(p_{n}-1\right) \#=p_{n}{ }^{-1} \#=\Pi\left(p_{n}-1\right)=(2-1)$

* $(3-1) *(5-1) \ldots *\left(p_{m}-1\right)$
\# of twins|cousins pairscnt: $\left(p_{n}-2\right) \#=p_{n}^{-2 \#}=\Pi\left(p_{n}-2\right)=(2-2)$
* $(3-2) *(5-2) \ldots *\left(p_{m}-2\right)$

For P23 modulus: modp $23=2 * 3 * 5 * 7 * 11 * 13 * 17 * 19 *$ $23=223092870$
For P23 residues: rescount $=1 * 2 * 4 * 6 * 10 * 12 * 16 * 18 *$ $22=36495360$
For P23 twins|cousin: pairs $=1 * 1 * 3 * 5 * 9 * 11 * 15 * 17 *$ $21=7952175$

The primes number space $\%$ is: $($ resentpn $/$ modpn $) * 100=$ $\left(p_{n}^{-1} \# / p_{n} \#\right) * 100$

The pairscnt number space $\%$ is: (pairscntpn*2/modpn) * $100=$ $\left(p_{n}^{-2} \# / p_{n} \#\right) * 200$

P_{n}	P 2	P3	P5	P7	P11	P13	P17	P19	P23
modulus (modpg)	2	6	30	210	2310	30030	510510	9699690	223092870
residues count (rescnt)	1	2	8	48	480	5760	92160	1658880	36495360
twins\|cousins pairscnt	0	1	3	15	135	1485	22275	378675	7952175
primes \% number space	50.00	33.33	26.67	22.86	20.78	19.18	18.05	17.10	16.36
pairs \% number space	50.00	33.33	20.00	14.29	11.69	9.89	8.73	7.81	7.13

Table 2
As the Pn primorial primes p_{m} increase, the number space containing primes and twins|cousins steadily decreases, and can be made an arbitrarily small value $\varepsilon>0$ of the total number spaces as $m \rightarrow \infty$.

Primes Number Space

This graph shows the decreasing prime number space for Pn using the first 100 primes. Once past the knee of the curve, the differential change becomes smaller for each additional p_{m}. For many common use cases, we can effectively limit usable Pn generators to the first 10 primes or so. However, for prime searches in large number value ranges, using the largest generator possible for a system is desirable, to make the maximum searchable number space as small as possible.

5. Generating Sieve Primes

The SSoZ uses the necessary sieving primes $\leq \sqrt{\text { end_num }}$ (i.e. only those with multiples within the inputs range) to sieve out their nonprime multiples. An efficient coded P5 Sieve of Zakiya (SoZ) generates them at runtime (though other means can be used). Below is its algorithm.

5.1 SoZ Algorithm

To find all the primes $\leq \mathrm{N}=\sqrt{\text { end_num }}$

1. For Prime Generator P5, using its generator parameters
2. Determine kmax, the number of residue groups (resgroups) up to N
3. Create byte array prms[kmax] to represent the value|residue of each resgroup pc
4. Perform outer sieve loop:

- Starting from the first resgroup, determine where each pc bit location is prime
- If bit location a prime, keep its residue value in prm_r; numerate its prime value
- Exit loop when prime $>\mathbf{s q r t}(\mathbf{N})$

5. Perform inner sieve loop with each residue ri:

- Create cross-product ($\mathbf{p r m} \mathbf{r}$ * ri)
- Determine the resgroup kn it's in, and its residue rn
- Compute first prime multiple resgroup kpm for the prime with ri
- Mark in prms each primenth kpm resgroup bitn[rn] as nonprime until its end

6. Repeat from 4 for next resgroup
7. When sieve ends, numerate|store from each prms resgroup the needed sieving primes $\leq \mathrm{N}$

P5's primes candidates (pcs) table up to 541 (the 100th prime) is shown below.

k	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
rt0	7	37	67	97	127	157	187	217	247	277	307	337	367	397	427	457	487	517
rt1	11	41	71	101	131	161	191	221	251	281	311	341	371	401	431	461	491	521
rt2	13	43	73	103	133	163	193	223	253	283	313	343	373	403	433	463	493	523
rt3	17	47	77	107	137	167	197	227	257	287	317	347	377	407	437	467	497	527
rt4	19	49	79	109	139	169	199	229	259	289	319	349	379	409	439	469	499	529
rt5	23	53	83	113	143	173	203	233	263	293	323	353	383	413	443	473	503	533
rt6	29	59	89	119	149	179	209	239	269	299	329	359	389	419	449	479	509	539
rt7	31	61	91	121	151	181	211	241	271	301	331	361	391	421	451	481	511	541

The function sozpg performs the P5 sieve exactly as shown. An array prms of kmax bytes is created to represent each resgroup|column of 8 pc values|rows up to the resgroup that covers the input value.

Each row represents a residue value|bit position|residue track. prms is initialized to ' 0 ' to make all bit positions be prime. The sieve computes for each prime $\leq \sqrt{\text { end_num }}$ its first prime multiple resgroup $\mathbf{k p m}$ on each row, and starting from these, sets each primenth resgroup bit on each row to ' 1 ', to mark its multiples (colors), to eliminate the nonprimes. The process is explained in greater detail as follows.

5.2 Performing Soz Sieve

To sieve the nonprimes from P5's pcs table up to 541 we use the primes $\leq \operatorname{isqrt}(541)=23$. They are the first 6 primes|residues: 7, $11,13,17,19,23$, whose first unique multiples are shown with 6 different colors. The value 541 resides in residue group $\mathrm{k}=17$, so $\mathbf{k m a x}=\mathbf{1 8}$ is the number of resgroups up to it.

Starting with the first prime in regroup $\mathrm{k}=0,7$ multiplies each pc in the resgroup, whose multiples are in blue: 7 * $[7,11,13,17$, $19,23,29,31]=[49,77,91,119,133,161,203,217]$. Each 7th resgroup|col along each restrack|row from these start values are 7's multiples. Thus $7 * 7=49$ in resgroup $\mathrm{k}=1$, on $\mathrm{rt4} \mid \mathrm{r}=19$ is 7's first multiple. Every 7th regroup starting there ($k=1,8,15$) < kmax on rt4 is a multiple of 7 and set to ' 1 ' to mark as nonprime. We repeat for 7 's other first multiples 77,91 , etc, on their rows.

We then use the next prime location in resgroup $\mathrm{k}=0$ after 7, which is 11 , and repeat the process with it. $11 *[7,11,13,17$, $19,23,29,31]=[77,121,143,187,209,253,319,341]$, whose first unique multiples are red. Note, the first unique multiple for each prime is its square, which for 11 is 121 . The first multiples with smaller primes, e.g. 11* $7=77$, are colored with those primes' colors (here $7 \mid$ blue). Also note, each prime must multiply each member in its resgroup, whether prime or not, to map its starting first prime multiple onto each distinct row in some $\mathbf{k p m}$ resgroup.

As shown, this process is very simple and fast, and we can perform the multiplications very efficiently. We can also perform the sieve and primes extraction process in parallel, making it even faster.

5.3 Extracting Sieve Primes

To extract the primes from prms in sequential order, we start at resgroup $\mathbf{k}=\mathbf{0}$ and iterate over each byte bit, then continue with each successive byte. A ' 0 ' bit position represents a prime value in each byte, and if ' 1 ' we skip to the next bit. The prime values are numerated as: prime $=\boldsymbol{\operatorname { m o d p g }} * \mathbf{k}+\mathbf{r i}$, with \mathbf{k} the resgroup index, ri the residue for the bit position, and modpg $=\mathbf{3 0}$ for P5's modulus.

Alternatively, we can reverse the order, and for each bit row, iterate over each resgroup byte and find the primes along them. This may provide certain software computational advantages, but the primes will no longer be extracted in sequential order (though if necessary they could be sorted afterward). For the purposes of the SSoZ algorithm, it's not necessary the primes be used in sequential order.

To optimize the performance of the SSoZ , during the prime sieve extraction process, primes which don't have multiples within the inputs range are filtered out. This significantly increases SSoZ performance for small input ranges between large input numbers, by reducing the work the residues sieves do.

The algorithm described here is generic to all Pn generators, where only their parameters change for each. Implementations may vary based on hardware|software particulars, but the work performed is the same. Larger generators systematically reduce the primes number space, by having larger modulus sizes and more residues, but we generally want to pick the smallest Pn generator that optimizes the system resources for given input values and ranges.

For the implementations provided, whose inputs range is constrained to 64-bits, using P5 to perform the SoZ to generate the sieve primes was the overall most efficient choice, as it's straightforward to code, and as we'll see, can also be done in parallel to increase its performance.

5.4 Efficient Residue Multiplications

To find the resgroup (column) for a pc value in the table we integer divide it by the PG modulus. To find its residue value, we find its integer remainder when dividing by the PG modulus. Thus, each pc regroup value has parameters: $\mathbf{k}=\mathbf{p c}$ div modpg, with residue value: $\mathbf{r i}=\mathbf{p c}$ mod modpg.

Multiplying two regroup pcs e.g. $(17 * 19)=323$ gives: \mathbf{k}, $\mathbf{r i}=$ (17 * 19). divmod $30 \rightarrow \mathrm{k}=10$, ri $=23$. From P5's pc table, we see $\mathrm{pc}=323$ is in resgroup $\mathrm{k}=10$ with residue 23 on restrack rt5.

Each prime can be parameterized by its residue \mathbf{r} and resgroup \mathbf{k} values e.g.: $\mathbf{p r i m e}=\boldsymbol{\operatorname { m o d }} \mathbf{+}+\mathbf{r}$, where $\operatorname{modk}=\operatorname{modpg} * \mathbf{k}$ for each resgroup, and each resgroup $\mathbf{p c} \mathbf{i}$ has form: $\mathbf{p c} \mathbf{i}=\mathbf{m o d k}+$ ri. Thus, the multiplication - (prime * pc_i) - translates into the following parameterized form:

$$
\begin{gathered}
\text { prime } * p c _i \\
(\bmod k+r) *\left(\bmod k+r_{i}\right) \\
\bmod k * \bmod k+\bmod k *\left(r+r_{i}\right)+\left(r * r_{i}\right) \\
\bmod k *\left(\bmod k+r+r_{i}\right)+\left(r * r_{i}\right) \\
(\operatorname{modpg} * k) *\left(\text { prime }+r_{i}\right)+\left(r * r_{i}\right) \\
\operatorname{modpg} *\left[k *\left(\text { prime }+r_{i}\right)\right]+\left[r * r_{i}\right]
\end{gathered}
$$

The original multiplication has now been transformed to the form: product $=\mathbf{m o d p g} * \mathbf{k k}+\mathbf{r r}$
where $\mathbf{k} \mathbf{k}=\mathbf{k}$ * $($ prime $+\mathbf{r i})$ and $\mathbf{r r}=\mathbf{r}$ * $\mathbf{r i}$, which also has the general form: $\mathbf{p c}=\boldsymbol{\operatorname { m o d p g }} * \mathbf{k}+\mathbf{r}$.

The ($\mathbf{r} * \mathbf{r i}$) term represents the base residues $(\mathrm{k}=0)$ cross products (which can be pre-computed). We extract from it its resgroup value: $\mathbf{k n}=(\mathbf{r} * \mathbf{r i}) / \mathbf{m o d p g}$, and residue: $\mathbf{r n}=(\mathbf{r}$ * ri) \% modpg, which maps to a restrack bit value as rt_n = residues.index(rn). Thus for P5, $\mathrm{r}=7$ is at residues[0], so that its rt_i row value is: $i=$ residues.index $(7)=0$, whose bit mask is: bit_r $_{-}=\mathbf{2}^{\mathbf{i}}=(\mathbf{1} \ll \boldsymbol{i})$ in the code .

Thus, the product of two members in resgroup \mathbf{k} maps to a higher resgroup: $\mathbf{k p}=\mathbf{k} \mathbf{k}+\mathbf{k n}$ on $\mathbf{r t} \mathbf{n}$, comprised of two
components; $\mathbf{k n}$ (their cross-product resgroup), and $\mathbf{k k}$ (their k resgroup component).

To describe this verbally, to find the product resgroup $\mathbf{k p}$ of any two resgroup members, numerate one member (for us a prime), call its residue \mathbf{r}, add the other's residue ri to it, multiply their sum by the resgroup value \mathbf{k}, then add it to their residues crossproduct resgroup. For (97 * 109) with $\mathrm{k}=3$ gives:

$$
\begin{aligned}
\text { Ex: } \mathrm{kp}=(97 * 109) / 30 & =3 *(97+19)+(7 * 19) / 30 \\
& =3 *(109+7)+(19 * 7) / 30 \\
& =352
\end{aligned}
$$

For each Pn the last resgroup pc value is: $(\boldsymbol{m o d p g}+\mathbf{1}) \equiv \mathbf{1} \mathbf{~ m o d}$ modpg, so for P5, its modpg*k $+\mathbf{3 1}$. To ensure pc $/ \mathbf{m o d p g}=$ \mathbf{k} always produces the correct k value, 2 is subtracted before the division.

Thus, the resultant residue value is 2 less than the correct one, so 2 is added back to get the true value. In sozpg: kn, $\mathbf{r n}=$ (prm * ri-2).divmod md; kn is the correct resgroup and (rn $+2)$ the correct residue. The code uses rn without the addition sometimes when doing memory addressing. (In the code, the posn array performs the mapping at address $(\mathrm{r}-2)$ into restrack rtn indices $(0-7)$.

Ex: $(7 * 43) / 30=301 / 30=10$, but 301 is the last pc in resgroup 9 , so $(301-2) / 30$ is correct value.

Also $301 \% 30=1$, but $299 \% 30=29$, and when 2 is added we get the correct residue 31 for pc 301 . sozpg

```
def sozpg(val, res 0, start num, end num)
    # Compute the primes r0..sqrt(inpu\overline{t num) and store in 'primes' array.}
    # Any algorithm (fast|small) is usab}le. Here the SoZ for P5 is used.
    md, rscnt = 30u64,8 % #5's modulus and residues count
    res = [7,11,13,17,19,23,29,31] # P5's residues
    bitn = [0,0,0,0,0,1,0,0,0,2,0,4,0,0,0,8,0,16,0,0,0,32,0,0,0,0,0,64,0,128]
    kmax = (val - 2) // md + 1 # number of resgroups upto input value
    prms = Array(UInt8).new(kmax, 0) # byte array of prime candidates, init '0'
    modk, r, k = 0, -1, 0 # initialize residue parameters
    loop do # for r0..sqrtN primes mark their multiples
        if (r += 1) == rscnt; r = 0; modk += md; k += 1 end # resgroup parameters
        next if prms[k] & (1 << r) != 0 # skip pc if not prime
        prm r = res[r] # if prime save its residue value
        prime = modk + prm_r # numerate the prime value
        break if prime > Mäth.isqrt(val) # exit loop when it's > sqrtN
        res.each do |ri| # mark prime's multiples in prms
            kn,rn = (prm_r * ri - 2).divmod md # cross-product resgroup|residue
            bit_r = bitn[rn] # bit mask for prod's residue
            kpm = k * (prime + ri) + kn # resgroup for lst prime mult
            while kpm < kmax; prms[kpm] |= bit_r; kpm += prime end
    end end
    # prms now contains the nonprime positions for the prime candidates r0..N
    # extract only primes that are in inputs range into array 'primes'
    primes = [] of UInt64 # create empty dynamic array for primes
    prms.each_with_index do |resgroup, k| # for each kth residue group
        res.each_with_index do |r_i, i| # check for each ith residue in resgroup
            if resgroup & (1 << i) == 0 # if bit location a prime
                prime = md * k + r_i # numerate its value, store if in range
            # check if prime hàs multiple in range, if so keep it, if not don't
            n, rem = start_num.divmod prime # if rem 0 then start_num is multiple of prime
            primes << prime if (res_0 <= prime <= val) && (prime * n <= end_num - prime || rem == 0)
    end end end
    primes
end
Inputs:
                            Output:
                                primes - array of sieving primes within inputs range
```



```
res_0 - first residue for selected SSoZ Pn
end_num - inputs high value
start_num - inputs low value
```

sozpg sieves the prime multiples \leq val to create P5's pcs table held in byte array prms, as described. To extract only the necessary primes for the $\mathbf{S S o Z}$ it uses inputs: res_0, start_num, end_num.
res_0 is the first residue of the selected Pn for the SSoZ. For P5 it's 7, but when Pn is larger, e.g. P7, P11, P13 etc, their res_0 are greater, i.e. $11,13,17$, etc, so only the primes \geq res_ 0 are kept. The last byte prm[kmax-1] may also have bit positions for primes $>$ val, which aren't needed and are discarded.

We thus perform two checks for each found prime, the first being: (res_0 $<=$ prime $<=$ val). This filters out from P5's pcs table the primes outside the SSoZ inputs range for the selected Pn.

The second check filters out the primes without multiples within the SSoZ inputs range. For small input ranges, primes $>$ the range size can be discarded if they don't have multiples within it, by doing: (prime * $\mathbf{n}<=$ end_num - prime $\|$ rem $==\mathbf{0}$).

All the primes $\leq \sqrt{\text { end_num }}$ are used if their values are \leq range $=($ end_num - start_num $)$. But if range $=($ end_num - start_num $)<\sqrt{\text { end_num }}$ some sieving primes may be discarded, i.e. when (end_num $-\sqrt{\text { end_num }})<$ start_num some primes may not have multiples within the range.

Example:

$$
\begin{array}{r}
\text { end_num }=4,000,000 ; \sqrt{\text { end_num }}=2,000 \\
(\text { end_num }-\sqrt{\text { end_num }})<\text { start_num } \\
(4,000,000-2,000)<\text { start_num } \\
3,998,000<\text { start_num }
\end{array}
$$

If start_num $\leq 3,998,000$; say 500,000 ; the input range is ≥ 1999, the largest prime less than 2000, and all the primes $<\sqrt{\text { end_num }}$ will have at least one multiple in the range, and must be used.

If start_num $>3,998,000$, say 3,999,300, the primes <700 (the input range) will have multiples in the range; 122 for P5. But some of the 178 primes between $700<p<2,000$ will not, and can be discarded. The second test finds 103 are needed. So,
for P5 only 75% (225 of 300) of the primes <2000 are used. Described below is the process to determine if a prime p has at least one multiple in the inputs range.

Here, $\mathrm{n}^{*} p+$ rem $=$ start_num, where n is the number of prime's multiples e.g. $\mathrm{n} p \leq$ start_num. If rem $=0$ then start_num is a multiple of p, otherwise $0<$ rem $<p$. If $p>$ start_num, $\mathrm{n}=0$. Thus $\left(\mathrm{n}^{*} p+p\right)=p^{*}(\mathrm{n}+1)$ is the next multiple of p whose value is > start_num. If $p^{*}(\mathrm{n}+1) \leq$ end_num p is in range, if not, but rem $=0$, then $p^{*} \mathrm{n}=$ start_num, and p is in range.

To code, for every prime we do:

n = start_num // prime; rem = start_num \% prime

In Crystal, et al, we can just do:
n, rem = start_num.divmod prime
Then we perform the above tests as:
prime * $(\mathrm{n}+1)<=$ end_num $|\mid$ rem $=\mathbf{0}$
To avoid arithmetic overflow, we do:
prime * n <= end_num - prime $\|$ rem $=\mathbf{=} 0$
Also, when performing: $\mathbf{k n}, \mathbf{r n}=(\mathbf{p r m} \mathbf{r} * \mathbf{r i} \mathbf{- 2})$. divmod md, rn's true value is reduced by 2 , but we need to know its true residue bit position to mark the prime multiples for those bit positions.

Conceptually, given residue $\mathbf{r n}$, its bit index is:
$\operatorname{posn}[\mathbf{r n}]=$ res.index(rn), for P5, a value from 0..7.
Because the $\mathbf{r n}$ values are 2 less than their real values, (rn-2) is used as their addresses into the array posn used to map them,
coded as: $\mathbf{p o s n}=[1 ;(\mathbf{0} .$. rsent $-\mathbf{1})$, each $\{|\mathbf{n}| \operatorname{posn}[\mathbf{r e s}[\mathbf{n}]-2]=\mathbf{n}\}$ Then posn [7-2] $=\mathbf{0}$, posn $[11-2]=1$, etc, and each $\mathbf{r n}$ bit value is: $\mathbf{b i t} \mathbf{r}=\mathbf{1} \ll$ posn[rn], which are OR'd into prms to mark the prime multiples as: $\mathbf{p r m s}[\mathbf{k p m}] \mid=$ bit_r. The shift values 2^{i} can be converted to their bit position values directly using array bitn[] e.g. now: bit_r= bitn[r n].
posn $=$
$[0,0,0,0,0,0,0,0,0,1,0,2,0,0,0,3,0,4,0,0,0,5,0,0,0,0,0,6,0,7]$
bitn $=$
$[0,0,0,0,0,1,0,0,0,2,0,4,0,0,0,8,0,16,0,0,0,32,0,0,0,0,0,64,0,128]$
In both cases byte arrays can be used to store the values, as they all can be represented by just 8 bits. This is an implementation detail to decide.

Because the processing of each row is independent from the others we can perform both the sieve and prime extraction processes in parallel. Below shows Rust code using the Rayon crate to do this.

```
fn atomic_slice(slice: &mut [u8]) -> &[AtomicU8] {
    unsafe { &*(slice as *mut [u8] as *const [AtomicU8]) }
}
fn sozpg(val: usize, res_0: usize, start_num : usize, end_num : usize) -> Vec<usize> {
    // Compute the primes \overline{r0..sqrt(input_num) and store in 'primes' array.}
    // Any algorithm (fast|small) is usable. Here the SoZ for P5 is used.
    let (md, rscnt) = (30, 8); // P5's modulus and residues count
    static RES: [usize; 8] = [7,11,13,17,19,23,29,31];
    static BITN: [u8; 30] = [0,0,0,0,0,1,0,0,0,2,0,4,0,0,0,8,0,16,0,0,0,32,0,0,0,0,0,64,0,128];
    let kmax = (val - 2) / md + 1; // number of resgroups upto input value
    let mut prms = vec![0u8; kmax]; // byte array of prime candidates, init '0'
    let sqrt_n = val.integer_sqrt(); // compute integer sqrt of val
    let (mut modk, mut r, mut k) = (0, 0, 0 );
    loop { // for r0..sqrtN primes mark their multiples
        if r == rscnt { r = 0; modk += md; k += 1 }
        if (prms[k] & (1<< r)) != 0 { r += 1; continue } // skip pc if not prime
        let prm_r = RES[r]; // if prime save its residue value
        let prime = modk + prm_r; // numerate the prime value
        if prime > sqrt_n { break } // exit loop when it's > sqrtN
        let prms atomic = atomic slice(&mut prms); // share mutable prms among threads
        RES.par_íter().for_each (|ri| { // mark prime's multiples in prms in parallel
            let prod = prm_r** ri - 2; // compute cross-product for prm_r|ri pair
            let bit_r = BITN[prod % md]; // bit mask for prod's residue
            let mut kpm = k * (prime + ri) + prod / md; // lst resgroup for prime mult
            while kpm < kmax { prms_atomic[kpm].fetch_or(bit_r, Ordering::Relaxed); kpm += prime; };
        });
        r += 1;
    }
    // prms now contains the nonprime positions for the prime candidates r0..N
    // numerate the primes on each bit row in prms in parallel (won't be in sequential order)
    // return only the primes necessary to do SSoZ for given inputs in array 'primes'
    let primes = RES.par_iter().enumerate().flat_map_iter( |(i, ri)| {
        prms.iter().enumerate().filter_map(move |(k, resgroup)| {
            if resgroup & (1 << i) == 0 {
            let prime = md * k + ri;
            let (n, rem) = (start num / prime, start num % prime);
            if (prime >= res_0 && prime <= val) && (prime * n <= end_num - prime || rem == 0) {
                return Some(prime);
            } } None
    }) }).collect();
    primes
}
```

Here the primes are extracted from each row in parallel using 8 threads, thus not kept in sequential order. Reversing the loops, as in the Crystal code, will extract them in order but will be slower as the number of resgroups increase. Since sequential order isn't necessary to do the SSoZ this is optimal.

For systems with more than 8 threads, using P7 with 48 residues may be faster, especially for large input values, if P7's smaller number space can be processed faster with those threads than using P5.

We can see the performance gain that's achieved between using all the sieving primes for end_num, to only using those with multiples within the input's ranges, to then generating them in parallel in sozpg. The following examples using Rust show the three cases and the progressive performance increases.

This is the Rust output of the original unoptimized sozpg using these two 63-bit numbers as inputs. It shows (in nextp[2 x 129900044]) $129,900,044$ sieving primes were generated, which accounted for most of the setup time. The times shown are for the i7 $6700 \mathrm{HQ} 4 \mathrm{C} \mid 8 \mathrm{~T}$ and AMD 5900HX 8C|16T cpus.

```
$ echo 7200011140000000000 7200011139993250000 | ./twinprimes_ssoz157
threads = 8 // 16
using Prime Generator parameters for P5
segment size = 65536 resgroups; seg array is [1 x 1024] 64-bits
twinprime candidates = 675003; resgroups = 225001
each of 3 threads has nextp[2 x 129900044] array
setup time = 13.098702568 secs // 7.089318922 secs
perform twinprimes ssoz sieve
3 of 3 twinpairs done
sieve time = 9.731177018 secs // 4.944145598 secs
total time = 22.829885781 secs // 12.033471504 secs
last segment = 28393 resgroups; segment slices = 4
total twins = 4711; last twin = 7200011139999998808+/-1
```

These are the result from filtering out the unnecessary primes (no multiples in inputs range), using 49x fewer primes - 2,636,377. Though there's some setup time increases for 8 threads, there's
a massive decrease in the sieve time, as each thread now does significantly less work (and use less memory).

```
$ echo 7200011140000000000 7200011139993250000 | ./twinprimes_ssoz158
threads = 8 // 16
using Prime Generator parameters for P5
segment size = 65536 resgroups; seg array is [1 x 1024] 64-bits
twinprime candidates = 675003; resgroups = 225001
each of 3 threads has nextp[2 x 2636377] array
setup time = 13.743127493 secs // 6.987116498 secs
perform twinprimes ssoz sieve
3 of 3 twinpairs done
sieve time = 0.175270322 secs // 0.107544045 secs
total time = 13.918427314 secs // 7.094673324 secs
last segment = 28393 resgroups; segment slices = 4
total twins = 4711; last twin = 7200011139999998808+/-1
```

Finally, when sozpg performs the prime generation and filtering process in parallel the setup times drop from $13.7 \mid 6.9$ to $5.3 \mid 4.7$ secs, with a total time drop from $22.8 \mid 12.0$ to $\sim 5.5 \mid 4.9$ secs.

```
$ echo 7200011140000000000 7200011139993250000 | ./twinprimes_ssoz159
threads = 8 // 16
using Prime Generator parameters for P5
segment size = 65536 resgroups; seg array is [1 x 1024] 64-bits
twinprime candidates = 675003; resgroups = 225001
each of 3 threads has nextp[2 x 2636377] array
setup time = 5.296482074 secs // 4.74022821 secs
perform twinprimes ssoz sieve
3 of 3 twinpairs done
sieve time = 0.180924203 secs // 0.116552963 secs
total time = 5.477426691 secs // 4.856791579 secs
last segment = 28393 resgroups; segment slices = 4
total twins = 4711; last twin = 7200011139999998808+/-1
```

6. Constructing nextp
nextp is a table of the resgroups for the first prime multiples for the sieving primes along each restrack. From P5's pcs table we can look at each row and create Table 3 of their first prime multiples resgroups.

k	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
rt0	7	37	67	97	127	157	187	217	247	277	307	337	367	397	427	457	487	517
rt1	11	41	71	101	131	161	191	221	251	281	311	341	371	401	431	461	491	521
rt2	13	43	73	103	133	163	193	223	253	283	313	343	373	403	433	463	493	523
rt3	17	47	77	107	137	167	197	227	257	287	317	347	377	407	437	467	497	527
rt4	19	49	79	109	139	169	199	229	259	289	319	349	379	409	439	469	499	529
rt5	23	53	83	113	143	173	203	233	263	293	323	353	383	413	443	473	503	533
rt6	29	59	89	119	149	179	209	239	269	299	329	359	389	419	449	479	509	539
rt7	31	61	91	121	151	181	211	241	271	$\mathbf{3 0 1}$	331	$\mathbf{3 6 1}$	391	421	451	481	511	541

Table 3

rt	res	List of resgroup values for the first prime multiples - prime * (modk + ri) - for the primes shown.																	
		7	11	13	17	19	23	29	31	37	41	43	47	53	59	61	67	71	73
0	7	7	6	8	6	8	22	22	7	75	64	70	64	104	104	75	203	182	192
1	11	5	11	7	7	18	5	18	11	65	83	67	67	65	96	83	185	215	187
2	13	4	8	13	16	4	8	16	13	60	72	87	92	72	92	87	176	196	221
3	17	2	2	12	17	14	14	12	17	50	50	84	95	86	84	95	158	158	216
4	19	1	10	5	9	19	17	10	19	45	80	61	73	93	80	99	149	210	177
5	23	6	4	4	10	10	23	6	23	72	58	58	76	107	72	107	198	172	172
6	29	3	6	9	3	6	9	29	29	57	66	75	57	75	119	119	171	186	201
7	31	2	3	2	12	11	12	27	31	52	55	52	82	82	115	123	162	167	162

Note on each row, when two primes have the same resgroup table value they were multiplied. When only one value occurs, its either for a prime square, or a (prime * nonprime) value. Also, for a prime in any resgroup k, its first prime multiple resgroup value on its own row is just: prime * $(\mathbf{k}+\mathbf{1})+\mathbf{k}$. For P5's pcs table this is equivalent to:
\mathbf{k} * (prime + 31) + ($\mathbf{p r m}$ _r * 31) - 2) / 30
(This is a property for every pc member in a resgroup for every Pn , for its first multiple on its row).

To construct Table 3, each prime in P5's pcs table multiplies each regroup member, whose products are other table values. Their row|col cell locations are entries into nextp. Thus, starting with first prime $7: 7$ * $[7,11,13,17,19,23,29,31]=$
[49, 77, 91, 119, 133, 161, 203, 217]
We see in P5's pcs table, 49 occurs in resgroup $\mathrm{k}=1$ for residue value 19 , which is residue track 4 (rt4). Similarly, for the remaining multiples of 7 , we see their placement in the table. Repeating this process for each prime, we compute their first multiples, then determine their resgroup value for each restrack.

These first prime multiple locations in Table 3 are used to start marking off successive prime multiples along each restrack|row. The SoZ computes each prime's multiples on the fly once and doesn't need to store them for later use. The SSoZ computes an initial nextp for the inputs range first segment, which is updated at the end of each segment slice to set the first prime multiples for the next segment(s).

For each sieve prime we compute its first multiple resgroup \mathbf{k} for the restracks of interest, e.g. for twin pair residues. We then determine its regroup $\mathrm{k}^{\prime} \geq \mathrm{kmin}$, where $\mathbf{k m i n}$ is the resgroup for the start_num, input value ($\mathrm{kmin}=1$ if one input given). Thus $k^{\prime} \geq 0$ is the number of resgroups starting from kmin.

In the picture below, \mathbf{k} is a prime's 1 st multiple resgroup on a row, and \mathbf{k} 'its projection relative to kmin . If $\mathrm{k} \geq \mathrm{kmin}$, then $\mathrm{k}=$ $\mathrm{k}-\mathrm{kmin}$. Thus if $\mathrm{kmin}=3$ and $\mathrm{k}=7, \mathrm{k}^{\prime}=4$ is its first resgroup inside the segment starting at kmin . If $\mathrm{k}=\mathrm{kmin}$ then $\mathrm{k}^{\prime}=0$, i.e. that first prime multiple starts at the segment's beginning.

If $\mathrm{k}<\mathrm{kmin}$, we compute prime's multiple closest to kmin , i.e. where $\mathrm{k}^{\prime}=0$...prime- 1 resgroups $\leq \mathrm{kmin}$:
$\mathrm{k}^{\prime}=(\mathrm{kmin}-\mathrm{k}) \%$ prime $\quad \rightarrow$ value of rem in picture $k^{\prime}=$ prime $-k^{\prime}$ if $k^{\prime}>0 \quad \rightarrow$ translated k^{\prime} value $>$ kmin

Ex: for prime 7 on rt0, let $\mathrm{k}=7, \mathrm{kmin}=21$: then $\mathrm{k}=(21-7) \%$ $7=0$; to start from (multiple of 7).

Ex: for prime 7 on rt0, let $\mathrm{k}=7, \mathrm{kmin}=25$: then $\mathrm{k}=(25-7) \%$ $7=4 ; \mathrm{k}^{\prime}=7-4=3$; to start from.

In software, we can reassign the variable k to use for k ', so the (Crystal, et al) code just becomes:
$\mathrm{k}<\mathrm{kmin} ?(\mathrm{k}=(\mathrm{kmin}-\mathrm{k}) \%$ prime; $\mathrm{k}=$ prime -k if $\mathrm{k}>0)$: $\mathrm{k}-=\mathrm{kmin}$

It should be noted, while the sieve primes have at least 1 multiple within the inputs range, some may not have multiples on each restrack, especially for small ranges, and for them $\mathrm{k}>\mathrm{kmax}$. If this happens for both residue pairs, those primes could be discarded from the primes lists for those residues sieves. For general purposes though, it won't happen enough to increase performance to justify the extra code.

To make the process|code simple, the \mathbf{k} values for each sieve prime are generated and stored in nextp, without worry if they're $>\mathbf{k m a x}$. If a prime's \mathbf{k} is larger than a segment size its skipped for it (not used to mark prime multiples) and reduced|updated by $\mathbf{k n}$ with smaller values for the next segment(s). When less than a segment size, it's used in the residues sieve to mark prime multiples. Thus, in twins_sieve, only primes with multiples in a segment for each restrack are used to mark prime multiples, or skipped.

A unique nextp array is created for each residues pair in each thread for the sieving primes. Thus, for twin|cousin primes, nextp holds their first prime multiples resgroups values for each segment slice for both residue pairs restracks. Thus, its memory increases with inputs values (more sieving primes) and larger generators (more residue pairs), though active memory use will be determined by the number of parallel threads holding onto memory. How different languages manage memory affects the size and throughput they can achieve for various inputs and ranges, for a system's memory sizes and profile.
6.1 Creating nextp for SSoZ

In the SoZ, a prime's residue \mathbf{r} multiplies each Pn residue $\mathbf{r}_{\mathbf{i}}$ and ($\mathbf{r} * \mathbf{r}_{\mathbf{i}}$) mod modpg maps to a unique restrack $\mathbf{r}_{\mathbf{t}}$ in some resgroup \mathbf{k}, is the starting point to mark off that prime's multiples for that $\mathbf{r}_{\mathbf{i}}$. We now want to multiply \mathbf{r} by the \mathbf{r}_{i} that makes $\left(\mathbf{r} * \mathbf{r}_{\mathbf{i}}\right)$ be on a given restrack \mathbf{r}_{t}, for each sieving prime.

Thus, if for some $\mathbf{r}_{\mathbf{i}},\left(\mathbf{r}^{*} \mathbf{r}_{\mathbf{i}}\right)$ mod modpg $=\mathbf{r}_{\mathbf{t}}$, to find the \mathbf{r}_{i} that maps each \mathbf{r} to a specific $\mathbf{r}_{\mathbf{t}}$ we do:

$$
\begin{aligned}
r * r_{i} & =r_{t} \quad \bmod \bmod p g \\
\left(r * r_{i}\right) * r^{-1} & =r_{t} * r^{-1} \bmod \bmod p g \\
r_{i} *\left(r * r^{-1}\right) & =r_{t} * r^{-1} \bmod \bmod p g \\
r_{i} * 1 & =r_{t} * r^{-1} \bmod \bmod p g \\
r_{i} & =r_{t} * r^{-1} \bmod \bmod p g
\end{aligned}
$$

Where for $\mathbf{r}^{-1}, \mathbf{r}_{\mathbf{-}} \mathbf{i n v}=\operatorname{modinv}(\mathbf{r}, \operatorname{modpg})$ in the code, with \mathbf{r} being the residue for a sieve prime. (A property of prime generators is that every residue has an inverse, either itself or another residue.)

Now kn = (r * ri-2) / modpg, and $\mathbf{k}=($ prime - 2) $/$ modpg, so again: $\mathbf{k p m}=\mathbf{k} *($ prime $+\mathbf{r i})+\mathbf{k n}$.

If \mathbf{r}_{-}inv is a prime's residue inverse, and $\mathbf{r}_{\mathbf{t}}$ the desired restrack: $r_{i}=\left(r_{-}\right.$inv $\left.* r_{t}-2\right) \bmod \operatorname{modpg}+2$.

For each residues pair, nextp_init creates the nextp array of the sieve primes first resgroup multiples relative to kmin, for the $\mathbf{r}_{\mathbf{t}}$ values $\mathbf{r}_{\mathbf{-}} \mathbf{l o}$ and $\mathbf{r}_{\mathbf{h}} \mathbf{h i}$, the upper|lower residues pair. With no loss of generality, it can be used to construct nextp for any architecture for any number of specified restracks.

nextp_init

```
def nextp_init(rhi, kmin, modpg, primes, resinvrs)
    # Initialize 'nextp' array for twinpair upper residue rhi in 'restwins'.
    # Compute lst prime multiple resgroups for each prime r0..sqrt(N) and
    # store consecutively as lo_tp|hi_tp pairs for their restracks.
    nextp = Slice(UInt64).new(primes.size*2) # 1st mults array for twinpair
    r_hi, r_lo = rhi, rhi - 2 # upper|lower twinpair residue values
    primes.èach_with_index do |prime, j| # for each prime r0..sqrt(N)
            k = (prime - 2) // modpg # find the resgroup it's in
            r = (prime - 2) % modpg + 2 # and its residue value
            r inv = resinvrs[r].to u64 # and residue inverse
            r\overline{l}=(r_inv * r_lo - 2) % modpg + 2 # compute r's ri for r_lo
            rh = (r_inv * r_hi - 2) % modpg + 2 # compute r's ri for r_hi
            kl = k }\mp@subsup{}{*}{}(prime + + rl) + (r* rl - 2) // modpg # kl 1st mult` resgroup
            kh = k * (prime + rh) + (r* rh - 2) // modpg # kh lst mult resgroup
            kl < kmin ? (kl = (kmin - kl) % prime; kl = prime - kl if kl > 0) : (kl -= kmin)
            kh < kmin ? (kh = (kmin - kh) % prime; kh = prime - kh if kh > 0) : (kh -= kmin)
            nextp[j * 2] = kl.to_u64 # prime's lst mult lo_tp resgroup val in range
            nextp[j * 2 | 1] = kh.to_u64 # prime's 1st mult hi_tp resgroup val in range
    end
```

 nextp
 end
Inputs:
rhi - hi residue value for this twinpair
kmin - resgroup value for start_num
modpg - modulus value for chosen pg
primes - array of sieving primes
resinvrs - array of residues modular inverses

Output:
nextp - array of primes 1 st mults for given residues
rhi - hi residue value for this twinpair
kmin - resgroup value for start_num
modpg - modulus value for chosen pg
primes - array of sieving primes
resinvrs - array of residues modular inverses

6.2 Twins|Cousins SSoZ

Let's now construct the process to find twin primes $\leq \mathrm{N}$ with a segmented sieve, using our P5 example. Twin primes are consecutive odd integers that are prime, the first two being [3:5], and [5:7]. Thus, from our original P5 pcs table, we use just the consecutive pc residue tracks, whose residues table is below. A twin prime occurs when both twin pair pc values in a column are prime (not colored), e.g. [191:193].

k	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17																		
rt1	11	41	71	101	131	161	191	221	251	281	311	341	371	401	431	461	491	521																		
rt2	13	43	73	103	133	163	193	223	253	283	313	343	373	403	433	463	493	523																		
r\|c	c	c	c	c	c	c	c	c	c	c	c	c	c	c	c	c	c																			
rt3	17	47	77	107	137	167	197	227	257	287	317	347	377	407	437	467	497	527																		
rt4	19	49	79	109	139	169	199	229	259	289	319	349	379	409	439	469	499	529																		
rt6	29	59	89	119	149	179	209	239	269	299	329	359	389	419	449	479	509	539																		
rt7	31	61	$\mathbf{9 1}$	121	151	181	211	241	271	301	331	361	391	421	451	481	511	541																		

Table 4: Twin Primes Residues Tracks Table for P5(541)

We see from the table the twin pair residue tracks for [11:13] has 10 twin primes $\leq 541,[17: 19]$ has 6 , and [29:31] has 7 . Thus, the total twin prime count ≤ 541 is $23+[3: 5]+[5: 7]=25$, with the last being [521:523]. Twin primes are usually referenced to the mid (even) number between the upper and lower consecutive odd primes pair, so the last (largest) twin pair ≤ 541 for [521:523] is written as 522 ± 1.

As shown before, the number of twin|cousin residue pairs are equal to: $\left(p_{n}-2\right) \#=p_{n}{ }^{-2} \#=\Pi\left(p_{n}-2\right)$.

Thus, P5 has 3 residue pairs for each. Below are the three Cousin Prime pairs taken from P5's pcs table.

k	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
rt0	7	37	67	97	127	157	187	217	247	277	307	337	367	397	427	457	487	517
rt1	11	41	71	101	131	161	191	221	251	281	311	341	371	401	431	461	491	521
rt2	13	43	73	103	133	163	193	223	253	283	313	343	373	403	433	463	493	523
rt3	17	47	77	107	137	167	197	227	257	287	317	347	377	407	437	467	497	527
rt4	19	49	79	109	139	169	199	229	259	289	319	349	379	409	439	469	499	529
rt5	23	53	83	113	143	173	203	233	263	293	323	353	383	413	443	473	503	533

Table 5: Cousin Primes Residues Tracks Table for P5(541)

The SSoZ algorithm is the same for both, with their coding only differing to deal with accounting for low input values ranges, as the first cousin prime is defined as [3:7] and first twins are [3:5], [5:7].

Up to 541 , there are 25 twin and 27 cousin primes. Their ratio over increasingly larger input ranges remains close to unity (1), as their pairs count, and pair prime values, increase without end [3], [4].

7. Residues Sieve Description

The Segmented Sieve of Zakiya (SSoZ) is a memory efficient
way to find the primes using a given Pn. For an input range defined by a start_num and end_num, it divides the range into segments, which are efficiently sized to fit into usable memory for processing. This allows the reuse of the same memory to process long number ranges that otherwise would require more memory than a system has to use.

A standard segment slice is ks resgroups, with last one ks' usually less. For a given Pn and range size
set_sieve_parameters determines its optimal memory size, which is set to be a multiple of 64 (bits).

Here start|end_num are the lo|hi values that define a number range of interest. They also define the absolute values for kmin and kmax for a given Pn generator, as these resgroups cover these input values.

When only one input is given it becomes end_num, whose resgroup determines kmax, and start_num is set to 3 (low prime for first twin [3:5]), and kmin set to 1 (min number of resgroups). The residue sieve adjusts kmin|kmax for each residues pair when
necessary, to ensure only their pc values within the inputs range are processed.

For example, if start_num $=342$ and end_num $=540$, we see below the valid in-range pc values. Here $\mathrm{kmin}=12$ and $\mathrm{kmax}=$ 18. For twinpair [11:13], $341<342$, so kmin for it is increased to 13 . Then for [29:31], pc $541>540$ is outside the range, so kmax for it is reduced to 17 , and now all its resgroup values are in the range. For twinpair [17:19] no adjustment is needed (done). We can simplify this by just looking at the residue values
for start|end_num and check if they're within the residue pairs range.

Thus, for each residues pair, we check if r_{-}lo is < (start_num - 2) $\%$ modpg +2 (start_num's residue) and if so increment kmin, then if r_{-}hi $>$(end_num - 2) $\%$ modpg +2 (end_num's residue), and decrement kmax if so. In twins_sieve the adjusted kmin|kmax are first determined then used in nextp_init to create the sieve primes first k resgroups to start marking their multiples in the first seg.

k	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
rt1	11	41	71	101	131	161	191	221	251	281	311	341	371	401	431	461	491	521
rt2	13	43	73	103	133	163	193	223	253	283	313	343	373	403	433	463	493	523

$\mathrm{rt3}$	17	47	77	107	137	167	197	227	257	287	317	347	377	407	$\mathbf{4 3 7}$	467	$\mathbf{4 9 7}$	527
$\mathrm{rt4}$	19	49	79	109	139	169	199	229	259	289	319	349	379	409	439	$\mathbf{4 6 9}$	499	$\mathbf{5 2 9}$

rt6	29	59	89	119	149	179	209	239	269	299	329	359	389	419	449	479	509	$\mathbf{5 3 9}$
rt7	31	61	91	121	151	181	211	241	271	301	331	$\mathbf{3 6 1}$	391	421	$\mathbf{4 5 1}$	481	$\mathbf{5 1 1}$	541

Table 6: Twin Primes Residues Tracks Table for range 342-540
In twins_sieve segment array seg, its resgroups size ks is a multiple of 64-bit mem elements, where each bit represents a residues pair resgroup. Thus a resgroup k maps to bit: $(\mathrm{k} \bmod 64)$ in mem elem seg [k/64], where (k mod 64) masks k’s lower 6 bits: $(k$ \& $0 \times 3 F)$, and ($k / 64$) right shifts k by 6 bits. This is coded as: seg [(kn-1) >>6], bit value: $1 \ll((\mathrm{kn}-1) \& 63)$, ($\gg \mid \ll$ are right|left bit-shift opts).

Ex: for ks $=131072$ resgroups, seg size is 2048 64-bit mem elements
for resgroup $k=89257$, it maps to seg [1394], bit 2^{40}, mem value $=1 \ll 40=1099511627776$

Figure 2

ki is the absolute resgroup value to start each segment slice (in Fig. 1) initialized to kmin-1 (0 indexed arrays). kn is the resgroups size for each segment slice. It's initialized to ks, but if the last segment slice $\mathbf{k s}{ }^{\prime}<\mathbf{k s}$ resgroups it's set to its slice size.

To sieve for twin primes, etc, each instance of twins_sieve processes a unique twinpair for the entire inputs range split into ks resgroup size segments. It first determines the adjusted kmin|kmax values for the twinpair residues, then creates their initial nextp array of first resgroup sieve prime multiples k values. Using them, it iterates over the sieve primes, computes|updates

When the residues sieve finishes seg contains the resgroup bit positions for the twin primes. Because seg is set to all ' 0 's to start each segment, we need to set to ' 1 ' any unused hi bits in its last mem elem ks' is in when it's not a multiple of 64 .

```
k = nextp.to_unsafe[j * 2]
```

k = nextp.to_unsafe[j * 2]
while k < kn
while k < kn
seg[k >> s] |= 1_u64 << (k \& bmask)
seg[k >> s] |= 1_u64 << (k \& bmask)
k += prime end \#
k += prime end \#
nextp.to_unsafe[j * 2] = k - kn \#

```
nextp.to_unsafe[j * 2] = k - kn #
```

their prime multiples k values, and sets them to ' 1 ' in seg for each residues pair, until $\mathrm{k}>\mathrm{kn}$, the k value past the end of the current segment. When $\mathrm{k}>\mathrm{kn}$ it updates it to: $\mathrm{k}=\mathrm{k}-\mathrm{kn}$, which is the first k multiple value into the next segment, and stores it back into nextp for that prime to update it to use for the next segment(s).

This is the Crystal code to mark a prime's resgroup multiples in $\boldsymbol{s e g}$ to ' 1 '. This is done for the lo|hi residues pair, and if either resgroup member is a prime's multiple that resgroup isn't a twinprime.
starting from this resgroup in seg
mark primenth resgroup bits prime mults
\# set resgroup for prime's next multiple
\# save 1st resgroup in next eligible seg

Algorithmically this only needs to be done for the last segment. However, doing it after every segment is faster in software, as it eliminates the branching code to check for the last segment, and is more efficient to compile|run. Below is the Crystal code
to perform this.

```
seg.to_unsafe[(kn-1)>> s] |=~1u64 << ((kn-1) & bmask)
```

If $\mathrm{kn}=89257$ for the last segment, only the first 1395 64-bit seg mem elems are used, up to the $41^{\text {st }}$ bit in the last elem, so we need to set to ' 1 ' its bit values $2^{41} . .2^{63}$, because ($89257-1 \& 63$) $=$ 40 , for bit 2^{40}. Thus we invert 1 to be: $11111111 . .1110$ and leftshift it 40 bits, which is ORed with the last mem elem. If kn is a multiple of $64,(\mathrm{kn}-1) \&$ bmask $=63$, shifts the bits to be all 0 s , and thus when ORed doesn't change seg's last mem value. Thus left shifts of $\mathrm{n}=0 . .62$ bits mask all the upper bit values: $2^{63} \ldots 2^{n+1}$.

Once all the nonprime bits are set we can count|numerate the primes. We read each $\operatorname{seg}[\mathbf{0} . . \mathrm{kn} \mathbf{- 1}]$ and invert the bits, and use
popcount to count the ' 1 's (as primes) for each seg[i] (the Rust code counts the ' 0 's directly), and sum their segment count in variable ent.

If $\mathbf{e n t}>\mathbf{0}$ we find the largest prime resgroup in the segment. We first update the total pairs count with sum $+=$ ent. Then upk is set to the last resgroup value in the segment, then loops backward checking for the first bit that's prime (' 0 '), and then upk holds the largest|last prime pair resgroup in the segment. Its absolute resgroup value in the inputs range is then: hi_tp = $\mathbf{k i}+\mathbf{u p k}$. For each segment slice its value is updated to a larger value, and at the end holds the largest absolute resgroup for these residues pair in the inputs range. The $\mathbf{r}_{-} h i$ prime value is numerated and returned as: hi_tp * modpg + $\mathbf{r}_{-} \mathbf{h i}$, along with the total prime pairs count in the range, in variable sum.

```
seg.to_unsafe[(kn - 1) >> s] |= ~1u64 << ((kn - 1) & bmask)
cnt = 0 % # count the twinprimes in the segment
seg[0..(kn - 1) >> s].each { |m| cnt += (~m).popcount }
if cnt > 0 # if segment has twinprimes
    sum += cnt # add segment count to total range count
    upk = kn - 1 # from end of seg count back to largest tp
    while seg[upk >> s] & (1_u64 << (upk & bmask)) != 0; upk -= 1 end
    hi_tp = ki + upk s] & ( # set its full range resgroup value
end
```

twins_sieve can be modified for different purposes. The code to find the largest prime pair can be removed if all you want is their count. I also originally had code to print out the r_hi primes in each segment as a validity check (only for small ranges). However, if you really wanted to see|record the twins, a better way may be to return $\mathbf{k i} \mid \mathbf{s e g}$ for each segment and externally store|process them later for any desired range of interest. (This, of course, would be very memory intensive.)

8. Twin Primes Example

Using our example to find the twin primes ≤ 541 with P5, let's see how to process the first twin pair residues [11:13] with
$\mathbf{k m a x}=18 . \mathbf{t w i n} _$sieve can perform the sieve for each pair in a separate thread.
set_sieve_parameters sets the segment size, but here I'll set it to $\mathbf{k s}=\mathbf{6}$. Thus, the seg array will represent 6 resgroups. Below is the twin pair table for [11:13] separated into 3 segment slices of 6 resgroups each. Underneath it is what each seg array will look like after processing for each slice. (seg conceptually is a bitarray, so each $\operatorname{seg}[\mathbf{i}]$ is just 1 bit. I later show an implementation using a bitarray, which makes the code simpler|shorter, and faster, depending on a language's implementation.)

k	0	1	2	3	4	5
$\mathrm{rt11}$	11	41	71	101	131	$\mathbf{1 6 1}$
rt13	13	43	73	103	$\mathbf{1 3 3}$	163

6	7	8	9	10	11
191	221	251	281	311	341
193	223	253	283	313	343

12	13	14	15	16	17
371	401	431	461	491	521
373	403	433	463	493	523

k	0	1	2	3	4	5
seg	0	0	0	0	1	1

0	1	2	3	4	5
0	1	1	0	0	1

0	1	2	3	4	5
1	1	0	0	1	0

nextp_init initializes netxp for the sieve primes [$7,11,13,17,19,23$] for residues 11 and 13 , taking the values shown in Table 3. For each lo|hi residue, their k values are stored as consecutive pairs in nextp and seg is created and initialized to all primes (' 0 ').

j	0	1	2	3	4	5
primes	7	11	13	17	19	23

Initial nextp[11:13]						
2 j	0	2	4	6	8	10
$2 \mathrm{j}+1$	1	3	5	7	9	11
rt 11	5	11	7	7	18	5
rt 13	4	8	13	16	4	8

For each prime \mathbf{j} in $\mathbf{p r i m e s}$, nextp $[\mathbf{2 j} \mid \mathbf{2 j} \mathbf{+ 1]}$ give the pairs \mathbf{k} 's to start marking off prime's multiples (by incrementing k by prime's value). When $\mathbf{k}>\mathbf{k n}$, (here kn is always 6), it's reduced by it: $\mathbf{k}=\mathbf{k}-\mathbf{6}$, and updates nextp with the new \mathbf{k} values for the next segment. Below show's the changes to nextp and seg in twins_sieve. (It's coincidental here the index size for primes and nextp are the segment size.)

Start for Segment 1 nextp[11:13]						
2 j	0	2	4	6	8	10
$2 \mathrm{j}+1$	1	3	5	7	9	11
rt_11	5	11	7	7	18	5
rt_13	4	8	13	16	4	8

seg 1

k	0	1	2	3	4	5
seg	0	0	0	0	1	1

Start for Segment 2 nextp[11:13]						
2 j	0	2	4	6	8	10
$2 \mathrm{j}+1$	1	3	5	7	9	11
rt_11	6	5	1	1	12	22
rt_13	5	2	7	10	17	2

Start for Segment 3 nextp[11:13]						
2 j	0	2	4	6	8	10
$2 \mathrm{j}+1$	1	3	5	7	9	11
rt_11	0	10	8	12	6	16
rt_13	6	7	1	4	11	19

seg 2						
k	0	1	2	3	4	5
seg	0	1	1	0	0	1

Below is the Crystal code to perform the residues sieve (here for twins) for a given residues pair.

twins_sieve

def twins_sieve(r_hi, kmin, kmax, ks, start_num, end_num, modpg, primes, resinvrs) \# Perform in thread the ssoz for given twinpair residues for kmax resgroups.
\# First create|init 'nextp' array of 1st prime mults for given twinpair, \# stored consequtively in 'nextp', and init seg array for ks resgroups.
\# For sieve, mark resgroup bits to '1' if either twinpair restrack is nonprime \# for primes mults resgroups, and update 'nextp' restrack slices acccordingly. \# Return the last twinprime|sum for the range for this twinpair residues. $s=6 \quad$ \# shift value for 64 bits bmask = ($1 \ll$ s) - 1 \# bitmask val for 64 bits sum, ki, kn = 0_u64, kmin-1, ks \# init these parameters hi_tp, k_max $=0$ 0_u64, kmax \# max twinprime|resgroup seg = Slice(UInt64).new(((ks - 1) >> s) + 1) \# seg array of ks resgroups ki += 1 if r_hi - $2<($ start_num - 2) \% modpg +2 \# ensure lo tp in range k_max -= 1 if r_hi > (end_num - 2) \% modpg + 2 \# ensure hi tp in range nextp = nextp_init(r_hi, $\bar{k} i, ~ m o d p g, ~ p r i m e s, r e s i n v r s) ~ \# ~ i n i t ~ n e x t p ~ a r r a y ~$
while ki < k_max \# for ks size slices upto kmax
$\mathrm{kn}=\mathrm{k}$ _max - ki if $\mathrm{ks}>(\mathrm{k}$ max - ki) \# adjust kn size for last seg
primes.each_with_index do \rceil prime, $j \mid$ \# for each prime r0..sqrt(N)
\# for lower twinpair residue track
$\mathrm{k}=$ nextp.to_unsafe[j * 2] \# starting from this resgroup in seg
while k < kn \quad \# mark primenth resgroup bits prime mults
seg.to_unsafe[k >> s] |= $1 _u 64 \ll$ (k \& bmask)
$\mathrm{k}+=$ prime end \quad \# set resgroup for prime's next multiple
nextp.to_unsafe[j * 2] = k - kn \# save 1st resgroup in next eligible seg
\# for upper twinpair residue track
$\mathrm{k}=$ nextp.to_unsafe[j * 2 | 1] \# starting from this resgroup in seg
while $k<k n$
seg.to_unsafe[k >> s] |= \quad _ mark prime $4 \ll$ (k \& bmask)
k += prime end \# set resgroup for prime's next multiple
nextp.to_unsafe[j*2 | 1]= k - kn \# save 1st resgroup in next eligible seg

```
    end # set as nonprime unused bits in last seg[n]
    # so fast, do for every seg[i]
    seg.to_unsafe[(kn - 1) >> s] |= ~1u64 << ((kn - 1) & bmask)
    cnt = \overline{0}}\quad\mathrm{ # count the twinprimes in the segment
    seg[0..(kn - 1) >> s].each { |m| cnt += (~m).popcount } # invert to count '1's
    if cnt > 0 # if segment has twinprimes
    sum += cnt # add segment count to total range count
    upk = kn - 1 # from end of seg, count back to largest tp
    while seg.to_unsafe[upk >> s] & (1_u64 << (upk & bmask)) != 0; upk -= 1 end
    hi_tp = ki + upk # set its full range resgroup value
    end
        ki += ks # set lst resgroup val of next seg slice
        seg.fill(0) if ki < k_max # set next seg to all primes if in range
    end
    # when sieve done, numerate largest twin
    # for ranges w/o twins set largest to 1
    hi tp = (r_hi > end num || sum == 0) ? 1 : hi_tp * modpg + r_hi
    {hi_tp.to_ú64, sum.\overline{to_u64} # return largest twinprime|twins count}
end
```

Inputs:
ks - resgroups segment size
rhi - hi residue value for this twinpair
modpg - modulus value for chosen pg
kmin - total number resgroups upto for start_num
kmax - total number resgroups upto for end_num primes - array of sieving primes
resinvrs - array of modular inverses for residues end_num - inputs high value
start_num - inputs low value

Outputs:
sum - count of twinpairs for input range hi_tp - hi prime for largest twinprime in range

Starting with Crystal 1.4.0 (April 7, 2022) its bitarray implementation was highly optimized, making it faster than the 64 -bit mem array for seg on the AMD 5900 HX , while making the code substantially simpler to read|write and shorter. Below is the Crystal version using a bitarray for the seg array.

```
def twins_sieve(r_hi, kmin, kmax, ks, start_num, end_num, modpg, primes, resinvrs)
    # Perform in thread the ssoz for given twinpair residues for kmax resgroups.
    # First create|init 'nextp' array of 1st prime mults for given twinpair,
    # stored consequtively in 'nextp', and init seg array for ks resgroups.
    # For sieve, mark resgroup bits to '1' if either twinpair restrack is nonprime
    # for primes mults resgroups, and update 'nextp' restrack slices acccordingly.
    # Return the last twinprime|sum for the range for this twinpair residues.
    sum, ki, kn = 0_u64, kmin-1, ks # init these parameters
    hi_tp, k_max = 0_u64, kmax # max twinprime|resgroup
    seg = BitArray.new(ks) # seg array of ks resgroups
    ki += 1 if r_hi - 2 < (start_num - 2) % modpg + 2 # ensure lo tp in range
    k_max -= 1 if r_hi > (end_num - 2) % modpg + 2 # ensure hi tp in range
    nextp = nextp_in̄it(r_hi, \overline{ki, modpg, primes,resinvrs) # init nextp array}
    while ki < k_max # for ks size slices upto kmax
        kn = k_max- - ki if ks > (k_max - ki) # adjust kn size for last seg
        primes.each_with_index do \prime, j| # for each prime r0..sqrt(N)
                                    # for lower twinpair residue track
            k = nextp.to_unsafe[j * 2] # starting from this resgroup in seg
            while k < kn 
                    seg.unsafe_put(k, true) # mark primenth resgroup bits prime mults
                    k += prime end # set resgroup for prime's next multiple
            nextp.to_unsafe[j * 2] = k - kn # save 1st resgroup in next eligible seg
        # for upper twinpair residue track
```



```
            k = nextp.to_unsafe[j * 2 llom
            lon
            k = nextp.to_unsafe[j * 2 llom
            nextp.to_unsafe[j * 2 | 1]= k - kn # save 1st resgroup in next eligible seg
        end
        cnt = seg[...kn].count(false) # count|store twinprimes in segment
        if cnt > 0 # if segment has twinprimes
            sum += cnt # add segment count to total range count
            upk = kn - 1 # from end of seg, count back to largest tp
            while seg.unsafe_fetch(upk); upk -= 1 end
            hi_tp = ki + upk - # set its full range resgroup value
```

```
    end
    ki += ks # set 1st resgroup val of next seg slice
    seg.fill(false) if ki < k_max # set next seg to all primes if in range
    end # when sieve done, numerate largest twin
    # for ranges w/o twins set largest to 1
    hi_tp = (r_hi > end_num || sum == 0) ? 1 : hi_tp * modpg + r_hi
    {hi_tp.to_u64, sum.to_u64} # return largest twinprime|twins count
end
```

The code to find the largest twinprime in the range comes for FREE, and removing it has no detectable increase in speed, and for Crystal may even be a wee tad bit slower.

```
    sum += seg[...kn].count(false) # count|store twinprimes in segment
    ki += ks # set lst resgroup val of next seg slice
    seg.fill(false) if ki < k_max # set next seg to all primes if in range
    end
    sum.to_u64 # return twinprimes count in range
end
```

In general, a bitarray's performance depends on the language's implementation (test to determine), but should make the code simpler|shorter to read|write, while the memory array model should be more ubiquitous, and implementable for languages without (native or external) bitarrays.

```
gcd
def gcd(m, n)
    while m|l != 1; t = m; m = n % m; n = t end
    m
end
Inputs: Output:
n - even pg modulus value m
m
Output:
\(m\) - gcd of inputs; \((m, n)\) are coprime if 1
```

This is a customized ged (greatest common divisor) function that uses residue properties to shorten the time of the Euclidean gcd algorithm (https://en.wikipedia.org/wiki/Euclidean_algorithm). Here mis an odd residue candidate $<\mathrm{n}$, the even modulus value. Some of the language implementations just use the ged function provided with them.

modinv

```
def modinv(a0, m0)
    return 1 if m0 == 1
    a, m = a0, m0
    x0, inv = 0, 1
    while a > 1
        inv -= (a // m) * x0
        a, m = m, a % m
        x0, inv = inv, x0
    end
    inv += m0 if inv < 0
    inv.to u64
end
```

Inputs:
a0 - odd pc value < modulus m0
m 0 - even pg modulus value

```
def modinv1(r, m)
    r = inv = r.to u64
    while (r * inv) % m != 1
        inv = (inv % m) * r
    end
    inv % m
end
```

For a chosen Pn generator, gen_pg_parameters produces its parameters used to perform the SSoZ. It uses gcd to determine the residues and modinv to compute their inverses.

gen_pg_parameters

```
def gen_pg_parameters(prime)
    # Create prime generator parameters for given Pn
    puts "using Prime Generator parameters for P#{prime}"
    primes = [2, 3, 5, 7, 11, 13, 17, 19, 23]
    modpg, res_0 = 1, 0 # compute Pn's modulus and res_0 value
    primes.eac\overline{h { |prm| res_0 = prm; break if prm > prime; modpg *= prm }}
    restwins = [] of Int32 # save upper twinpair residues here
    inverses = Array.new(modpg + 2, 0) # save Pn's residues inverses here
    pc, inc, res = 5, 2, 0 # use P3's PGS to generate pcs
    while pc < (modpg >> 1) # find PG's lst half residues
        if gcd(pc, modpg) == 1 # if pc a residue
            mc = modpg - pc # create its modular complement
            inverses[pc] = modinv(pc, modpg) # save pc and mc inverses
            inverses[mc] = modinv(mc, modpg) # if in twinpair save both hi residues
            restwins << pc << mc + 2 if res + 2 == pc
            res = pc # save current found residue
            end
            pc += inc; inc ^= 0b110 # create next P3 seq pc: 5 7 11 13 17...
    end
    restwins.sort!; restwins <<(modpg + 1) # last residue is last hi_tp
    inverses[modpg+1] = 1; inverses[modpg-1] = modpg - 1 # last 2 arè self inverses
    {modpg, res_0, restwins.size, restwins, inverses}
end
```


Inputs:

prime - Pn prime value 5, 7... 17

Outputs:

res_0 - first residue of selected Pn (next prime > Pn prime)
modpg - modulus for generator Pn; value = (prime) \# inverses - array of the pg residue inverses, size $=($ prime -1$) \#$ restwins - ordered array of the hi pg twinpair (tp) values restwins.size - the number of pg twinpairs $=($ prime-2 $) \#$

For a given prime number, it generates its primorial value for modpg, and keeps its $\mathbf{r}_{\mathbf{0}}$ value in res_0. It then generates all the residues. It uses P3's PGS to generate Pn's first half res. It checks if they're coprime to modpg to identify the residues. For each residue it creates its modular complement ($\mathbf{m c}$) and stores both inverses at their address values. It then determines if the residue is part of a twin (cousin) pair, and if so, then so is its complement, and stores both hi pair values in restwins.

Upon generating all the residues, and storing their inverses and twin (cousin) pairs hi residues, the restwins array is sorted to put them in sequential order, then the last hi residue for the last twin pair modgp $\pm \mathbf{1}$ are included as the last ones. (For cousin primes, we include the hi residue for the pivot pair (modpg/2 +2) and then sort the array).

Finally, the inverses for the last two residues modgp $\pm \mathbf{1}$ are added at their address locations, and the outputs are returned for use in set_sieve_parameters.

Given the input values, set_sieve_parameters determine which prime generator to use, generates its parameters, then determines the range parameters and segment size to use. Here I use a rudimentary tree algorithm to determine for my laptops the switch points for using different generators. This can be made much more sophisticated and adaptable by also accounting for the number of system threads and cache and ram memory size, to pick better segment size values and generators for a given inputs range.

set_sieve_parameters

```
def set sieve_parameters(start_num, end_num)
    # Select at runtime best PG ānd segmeñt size parameters for input values.
    # These are good estimates derived from PG data profiling. Can be improved.
    nrange = end_num - start_num
    bn, pg = 0, \overline{3}
    if end_num < 49
        bn =- 1; pg = 3
    elsif nrange < 77_000_000
        bn = 16; pg = 5
    elsif nrange < 1_100_000_000
        bn = 32; pg = 7
    elsif nrange < 35 500_000_000
        bn = 64; pg = 1\overline{l}
    elsif nrange < 14_000_000_000_000
        pg = 13
        if nrange > 7 000 000 000 000; bn = 384
        elsif nrange > 2_500_000_000_000; bn = 320
        elsif nrange > 250_000_000_000; bn = 196
        else bn = 128
        end
    else
        bn = 384; pg = 17
    end
    modpg, res_0, pairscnt, restwins, resinvrs = gen_pg_parameters(pg)
    kmin = (start_num-2) // modpg + 1 # number of resgroups to start num
    kmax = (end_num - 2) // modpg + 1 # number of resgroups to end_num
    krange = kmax - kmin + 1 # number of resgroups in range, at least 1
    n = krange < 37_500_000_000_000 ? 4 : (krange < 975_000_000_000_000 ? 6 : 8)
    b = bn * 1024 *- n # set seg size tō op\overline{timizee for selected PG}
    ks = krange < b ? krange : b # segments resgroups size
    puts "segment size = #{ks} resgroups; seg array is [1 x #{((ks-1) >> 6) + 1}] 64-bits"
    maxpairs = krange * pairscnt # maximum number of twinprime pcs
    puts "twinprime candidates = #{maxpairs}; resgroups = #{krange}"
    {modpg, res_0, ks, kmin, kmax, krange, pairscnt, restwins, resinvrs}
end
```


Inputs:

end_num - high input value (min of 3)
start_num - low input value (min of 3)

Outputs:
ks - number of residue groups set for segment size
res_0 - first residue of selected Pn (next prime > Pn prime)
modpg - modulus value for chosen pg
kmin - number resgroups to start_num
kmax - number resgroups to end_num
krange - number of resgroups for inputs range (at least 1)
pairscnt - number of twinpairs for selected pg
resinvrs - modular inverses array for the residues
restwins - hi residue values array for each twinpair

Finally, this is the Crystal version of the main routine twinprimes_ssoz. It accepts the input values, performs the residues sieve, times the different parts of the process, and generates the program outputs.

twinprimes_ssoz

```
def twinprimes_ssoz()
    end num = {ARGV[0].to u64, 3u64}.max
    start_num = ARGV.size > 1 ? {ARGV[1].to_u64, 3u64}.max : 3u64
    start_num, end_num = end_num, start_num if start_num > end_num
    start_num |= 1 # if start_num even increase by 1
    end_num = (end_num - 1) | 1 # if end_num even decrease by 1
    start_num = end_num = 7 if end_num - start_num < 2
    puts "threads = #{System.cpu_count}"
    ts = Time.monotonic # start timing sieve setup execution
        # select Pn, set sieving params for inputs
```

```
    modpg, res_0, ks, kmin, kmax, krange,
        pairscnt, restwins, resinvrs = set_sieve_parameters(start_num, end_num)
    # create sieve primes <= sqrt(end_num), only use those whose multiples within inputs range
    primes = end_num < 49 ? [5] : sozpg(Math.isqrt(end_num), res_0, start_num, end_num)
    puts "each of #{pairscnt} threads has nextp[2 x #{primes.size}] array"
    lo_range = restwins[0] - 3 # lo_range = lo_tp - 1
    twīnscnt = 0 u64 # de\overline{termine couñt of 1st 4 twins if in range for used Pn}
    twinscnt += [3, 5, 11, 17].select { |tp| start_num <= tp <= lo_range }.size unless end_num == 3
    te = (Time.monotonic - ts).total_seconds.round(6)
    puts "setup time = #{te} secs" - # display sieve setup time
    puts "perform twinprimes ssoz sieve"
    t1 = Time.monotonic # start timing ssoz sieve execution
    cnts = Array(UInt64).new(pairscnt, 0) # number of twinprimes found per thread
    lastwins = Array(UInt64).new(pairscnt, 0) # largest twinprime val for each thread
    done = Channel(Nil).new(pairscnt)
    threadscnt = Atomic.new(0) # count of finished threads
    restwins.each_with_index do |r_hi, i| # sieve twinpair restracks
        spawn do
            lastwins[i], cnts[i] = twins_sieve(r_hi, kmin, kmax, ks, start_num, end_num, modpg, primes,
                                    resinvrs)
            print "\r#{threadscnt.add(1)} of #{pairscnt} twinpairs done"
            done.send(nil)
end end
pairscnt.times { done.receive } # wait for all threads to finish
print "\r#{pairscnt} of #{pairscnt} twinpairs done"
    last_twin = lastwins.max # find largest hi_tp twinprime in range
    twinscnt += cnts.sum # compute number öf twinprimes in range
    last_twin = 5 if end_num == 5 && twinscnt == 1
    kn =- krange % ks # set number of resgroups in last slice
    kn = ks if kn == 0 # if multiple of seg size set to seg size
    t2 = (Time.monotonic - t1).total_seconds # sieve execution time
    puts "\nsieve time = #{t2.round(6)} secs" # ssoz sieve time
    puts "total time = #{(t2 + te).round(6)} secs" # setup + sieve time
    puts "last segment = #{kn} resgroups; segment slices = #{(krange - 1)//ks + 1}"
    puts "total twins = #{twinscnt}; last twin = #{last_twin - 1}+/-1"
end
twinprimes_ssoz
```


8.2.1 Program Output

Below is typical program output, shown here for Rust, for single and two input values (order doesn't matter), run on an Intel i76700 HQ Linux based laptop. The programs is run in a terminal with the command-line interface (cli) shown, and display the output shown.

```
$ echo 5000000000 | ./twinprimes_ssoz
threads = 8
using Prime Generator parameters for P11
segment size = 262144 resgroups; seg array is [1 x 4096] 64-bits
twinprime candidates = 292207905; resgroups = 2164503
each of 135 threads has nextp[2 x 6999] array
setup time = 0.000796737 secs
perform twinprimes ssoz sieve
135 of 135 twinpairs done
sieve time = 0.184892352 secs
total time = 0.185704753 secs
last segment = 67351 resgroups; segment slices = 9
total twins = 14618166; last twin = 4999999860+/-1
```

```
$ echo 100000000000 200000000000 | ./twinprimes_ssoz
threads = 8
using Prime Generator parameters for P13
segment size = 524288 resgroups; seg array is [1 x 8192] 64-bits
twinprime candidates = 4945055940; resgroups = 3330004
each of 1485 threads has nextp[2 x 37493] array
setup time = 0.003883411 secs
perform twinprimes ssoz sieve
1485 of 1485 twinpairs done
sieve time = 3.819838338 secs
total time = 3.823732178 secs
last segment = 184276 resgroups; segment slices = 7
total twins = 199708605; last twin = 199999999890+/-1
```

The program output is described as follows:
Line 0 is the cli input command. When 2 inputs are given their hillo order doesn't matter.
Line 1 shows the number of available system threads,.
Line 2 shows the Pn generator selected based on the inputs.
Line 3 shows the selected resgroup segment size ks, and number of 64-bit memory elements (ks / 64) for the segment array.
Line 4 shows the number of twinprime candidates for the number of resgroups spanning the inputs range. In the second example, $($ kmax $-\mathrm{kmin}+1)=3,330,004$ resgroups $\times 1485$ (number of P13 twinpairs) $=4,945,055,940$ twinprime candidates .
Line 5 shows the number of twinpairs for the selected PG (here 1485 for P13) and the size of the nextp array, which shows the number of sieving primes used (6999 and 37493 for theses examples.
Line 6 shows the time to select and generate Pn's parameters and the sieve primes.
Line 7 announces when the residues sieve process starts.
Line 8 is a dynamic display showing in realtime how many twinpair threads are done, until finished.
Line 9 shows the runtime for the residues sieve.
Line 10 shows the combined setup and residues sieve times.
Line 11 shows how many resgroups were in the last segment slice and the number of segment slices.

Line 12 shows the number of twinprimes for the inputs range, and the value of the largest one.

9. Performance

The SSoZ performs optimally on multi-core systems with parallel operating threads. The more available threads the higher the possible performance. To show this, I provide data from two systems.

System 1: Intel i7-6700HQ, $2.6-3.5 \mathrm{GHz}, 4 \mathrm{C} \mid 8 \mathrm{~T}, 16 \mathrm{~GB}$, System 76 Gazelle (2016) laptop.
System 2: AMD 5900HX, 3.3 - $4.6 \mathrm{GHz}, 8 \mathrm{C} \mid 16 \mathrm{~T}, 40 \mathrm{~GB}$, Lenovo Legion Slim 7 (2022) laptop.

For a reference I used Primesieve 7.4 [5] - https://github.com/ kimwalisch/primesieve - described as "a command-line program and $\mathrm{C} / \mathrm{C}++$ library for quickly generating prime numbers...using the segmented sieve of Eratosthenes with wheel factorization." It's a well-maintained open source project of highly optimized C/C++ code libraries, which also takes inputs over the 64 -bit range (but doesn't produce results for cousin primes). Below are sample outputs for the Rust version of twinprimes_ssoz and Primesieve performed on both systems.

```
$ echo 378043979 1429172500581 | ./twinprimes_ssoz
threads = 8 // 16
using Prime Generator parameters for P13
segment size = 802816 resgroups; seg array is [1 x 12544]
twinprime candidates = 70654672440; resgroups = 47578904
each of 1485 threads has nextp[2 x 92610] array
setup time = 0.006171322 secs // 0.005839409 secs
perform twinprimes ssoz sieve
1485 of 1485 twinpairs done
sieve time = 55.836745969 secs // 18.062863872 secs
total time = 55.842928445 secs // 18.068715224 secs
last segment = 212760 resgroups; segment slices = 60
total twins = 2601278756; last twin = 1429172500572+/-1
$ echo 378043979 14291725005819 | ./twinprimes_ssoz
threads = 8 // 16
using Prime Generator parameters for P17
segment size = 1572864 resgroups; seg array is [1 x 24576]
twinprime candidates = 623572052400; resgroups = 27994256
each of 22275 threads has nextp[2 x 268695] array
setup time = 0.036543755 secs // 0.025222812 secs
perform twinprimes ssoz sieve
22275 of 22275 twinpairs done
sieve time = 675.667368646 secs // 235,003460103 secs
total time = 675.703922948 secs // 235.027696883 secs
last segment = 1255568 resgroups; segment slices = 18
total twins = 22078408103; last twin = 14291725004982+/-1
$ ./primesieve -c2 378043979 1429172500581
Sieve size = 128 KiB // 256 KiB
Threads = 8 // 16
```


100\%

Seconds: 101.873 // 33.781
Twin primes: 2601278756
\$./primesieve -c2 37804397914291725005819
Sieve size $=128 \mathrm{KiB} \quad / / 256 \mathrm{KiB}$
Threads $=8 \quad / / 16$
100\%
Seconds: 1218.502 // 471.776
Twin primes: 22078408103

I implemented both the twins|cousins ssoz in the 6 programming languages listed here. Again, these are reference implementations, and are not necessarily optimum for each language. The Rust versions are the most optimized, and generally the fastest, as they perform the SoZ algorithm in parallel. The code for each is <300 ploc (programming lines of code), which highlights the simplicity of the algorithm.

The next page shows tables of benchmark results for the 6 languages implementations, and Primesieve. They are the
best times for both systems from multiple runs under different operating conditions. Their code was developed on System 1, and those binaries also run on System 2. Their source code was then compiled on System 2 to compare performance differences, and those were used for the benchmarks. The 6 languages, and their development environments and versions are: C++, Nim 1.6 .4 (gcc 11.3.0), D (ldc2 1.28.0, LLVM 12.0.1), Crystal 1.4.1 (LLVM 10.0.0), Rust 1.60 , and Go 1.18 . They most likely can be improved, and I hope others will create more versions, especially for other compiled languages.

| Twin Prime Benchmark Comparisons - Intel i7 6700HQ | | | | | | | | | |
| :---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| N | Rust | $\mathrm{C}++$ | D | Nim | Crystal | Go | Prms | Twins Count | Largest in Range |
| $1 \times 10^{\wedge} 10$ | 0.35 | 0.45 | 0.46 | 0.53 | 0.48 | 0.61 | 0.51 | $27,412,679$ | $9,999,999,703 \mid-2$ |
| $5 \times 10^{\wedge} 10$ | 1.67 | 2.14 | 2.19 | 2.27 | 2.40 | 2.76 | 2.81 | $118,903,682$ | $49,999,999,591 \mid-2$ |
| $1 \times 10^{\wedge} 11$ | 3.41 | 4.24 | 4.31 | 4.34 | 4.69 | 5.51 | 5.91 | $224,376,048$ | $99,999,999,763 \mid-2$ |
| $5 \times 10^{\wedge} 11$ | 18.15 | 21.42 | 21.37 | 21.69 | 23.81 | 28.11 | 32.76 | $986,222,314$ | $499,999,999,063 \mid-2$ |
| $1 \times 10^{\wedge} 12$ | 37.67 | 44.48 | 44.25 | 44.71 | 49.05 | 58.08 | 69.25 | $1,870,585,220$ | $999,999,999,961 \mid-2$ |
| $5 \times 10^{\wedge} 12$ | 219.67 | 253.62 | 256.30 | 253.69 | 279.49 | 319.84 | 395.16 | $8,312,493,003$ | $4,999,999,999,879 \mid-2$ |
| $1 \times 10^{\wedge} 13$ | 482.51 | 543.74 | 542.23 | 541.35 | 602.63 | 678.61 | 825.71 | $15,834,664,872$ | $9,999,999,998,491 \mid-2$ |

| Cousin Prime Benchmark Comparisons - Intel i7 6700HQ | | | | | | | | |
| :---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| N | Rust | $\mathrm{C}++$ | D | Nim | Crystal | Go | Cousins Count | Largest in Range |
| $1 \times 10^{\wedge} 10$ | 0.36 | 0.45 | 0.46 | 0.53 | 0.48 | 0.62 | $27,409,998$ | $9,999,999,707 \mid-4$ |
| $5 \times 10^{\wedge} 10$ | 1.69 | 2.11 | 2.18 | 2.26 | 2.41 | 2.81 | $118,908,265$ | $49,999,999,961 \mid-4$ |
| $1 \times 10^{\wedge} 11$ | 3.35 | 4.20 | 4.46 | 4.32 | 4.64 | 5.52 | $224,373,159$ | $99,999,999,947 \mid-4$ |
| $5 \times 10^{\wedge} 11$ | 18.08 | 21.34 | 21.35 | 21.76 | 23.36 | 28.21 | $986,220,867$ | $499,999,999,901 \mid-4$ |
| $1 \times 10^{\wedge} 12$ | 37.17 | 44.57 | 44.44 | 44.51 | 49.14 | 58.25 | $1,870,585,457$ | $999,999,998,867 \mid-4$ |
| $5 \times 10^{\wedge} 12$ | 220.05 | 250.63 | 251.86 | 252.18 | 278.76 | 320.15 | $8,312,532,286$ | $4,999,999,999,877 \mid-4$ |
| $1 \times 10^{\wedge} 13$ | 478.96 | 534.17 | 541.85 | 540.81 | 597.89 | 678.48 | $15,834,656,001$ | $9,999,999,999,083 \mid-4$ |

| Twin Prime Benchmark Comparisons - AMD Ryzen 9 5900HX | | | | | | | | | |
| :---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| N | Rust | $\mathrm{C}++$ | D | Nim | Crystal | Go | Prmsv | Twins Count | Largest in Range |
| $1 \times 10^{\wedge} 10$ | 0.12 | 0.12 | 0.12 | 0.19 | 0.13 | 0.15 | 0.16 | $27,412,679$ | $9,999,999,703 \mid-2$ |
| $5 \times 10^{\wedge} 10$ | 0.54 | 0.49 | 0.58 | 0.59 | 0.66 | 0.67 | 0.92 | $118,903,682$ | $49,999,999,591 \mid-2$ |
| $1 \times 10^{\wedge} 11$ | 1.12 | 0.97 | 1.13 | 1.08 | 1.23 | 1.32 | 1.95 | $224,376,048$ | $99,999,999,763 \mid-2$ |
| $5 \times 10^{\wedge} 11$ | 5.85 | 4.88 | 5.75 | 5.22 | 6.22 | 6.92 | 11.17 | $986,222,314$ | $499,999,999,063 \mid-2$ |
| $1 \times 10^{\wedge} 12$ | 12.14 | 10.03 | 12.01 | 11.12 | 13.06 | 14.61 | 23.71 | $1,870,585,220$ | $999,999,999,961 \mid-2$ |
| $5 \times 10^{\wedge} 12$ | 68.04 | 65.41 | 69.24 | 73.54 | 74.29 | 81.23 | 132.99 | $8,312,493,003$ | $4,999,999,999,879 \mid-2$ |
| $1 \times 10^{\wedge} 13$ | 145.01 | 155.45 | 156.57 | 172.68 | 170.77 | 185.25 | 307.78 | $15,834,664,872$ | $9,999,999,998,491 \mid-2$ |

| Cousin Prime Benchmark Comparisons - AMD Ryzen 95900HX | | | | | | | | |
| :---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| N | Rust | $\mathrm{C}++$ | D | Nim | Crystal | Go | Cousins Count | Largest in Range |
| $1 \times 10^{\wedge} 10$ | 0.12 | 0.11 | 0.13 | 0.19 | 0.13 | 0.15 | $27,409,998$ | $9,999,999,707 \mid-4$ |
| $5 \times 10^{\wedge} 10$ | 0.55 | 0.49 | 0.57 | 0.59 | 0.63 | 0.66 | $118,908,265$ | $49,999,999,961 \mid-4$ |
| $1 \times 10^{\wedge} 11$ | 1.12 | 0.96 | 1.13 | 1.07 | 1.22 | 1.32 | $224,373,159$ | $99,999,999,947 \mid-4$ |
| $5 \times 10^{\wedge} 11$ | 5.87 | 4.89 | 5.78 | 5.25 | 6.18 | 6.92 | $986,220,867$ | $499,999,999,901 \mid-4$ |
| $1 \times 10^{\wedge} 12$ | 12.25 | 10.14 | 12.14 | 11.06 | 12.56 | 14.67 | $1,870,585,457$ | $999,999,998,867 \mid-4$ |
| $5 \times 10^{\wedge} 12$ | 67.69 | 68.51 | 68.74 | 74.68 | 74.86 | 80.29 | $8,312,532,286$ | $4,999,999,999,877 \mid-4$ |
| $1 \times 10^{\wedge} 13$ | 145.02 | 157.68 | 156.01 | 173.16 | 170.06 | 179.07 | $15,834,656,001$ | $9,999,999,999,083 \mid-4$ |

9.1 Enhanced Configurations

The software provided is designed to work on readily available 64-bit systems, and serve as reference implementations, to demonstrate how Prime Generators can be used to efficiently identify and count primes. They can be enhanced to take advantage of more hardware resources when available.

Ideally, we want to use as many system threads as possible. So for P5, which has 3 twin|cousin residue pairs, instead of using 3 threads over an input range it may be faster to divide the range into 2 equal parts and use 6 threads (3 for each half). Even if a system has only 4 threads, this may be faster as the range increases, but should definitely be faster (for sufficiently large ranges) if a system has 6 or more threads. In fact, if a system has at least 16 threads, using P7 (15 residue pairs) as the default generator for small ranges may be more efficient than P5, as they all can run in 1 parallel threads time (ptt).

Thus, a more sophisticated algorithm can be devised for set_ sieve_parameters to use threads count, and also cache|memory sizes, to pick the best generator and segment size for given input ranges. For best performance this would require the profiling of targeted hardware system(s), to optimize the differences between cpus and systems capabilities and resources. However, I think the algorithm would still be fairly simple to code, to dynamically compute these parameters to achieve higher performance.

9.2 Eliminating Sieving Primes

As the value for end_num becomes larger more|bigger sieve primes must be generated, and filtered out or kept. Generating them takes increasing time with increasing input values. This also affects the time to perform the residue sieve, by increasing the time (and memory) to create the nextp array, and use it. While it's possible to use stored lists of primes to eliminate dynamically generating them, this doesn't get around creating nextp with them, with the associated memory issues for it in each thread.

One simple way around this is to use a fast primality test algorithm to check each residue pair pc value in each resgroup in the threads. If one value isn't prime the other doesn't have to be checked. By using sufficiently large generators for a given input range, the number of resgroups over a range can be made
arbitrarily small to reduce the number of primality tests to perform.

For example, for P 47 , $\operatorname{modp} 47=614,889,782,588,491,410$ is the largest primorial value that can fit into (unsigned) 64-bits. Its $15,681,106,801,985,625$ residue pairs use 5.1% of the number space to hold the twin|cousin primes >47. Eliminating using sieving primes greatly reduces the work of the algorithm.

Realizable machines to perform this would use as many parallel compute engines as possible, but each would now be much simpler, eliminating sozpg and nextp_init. Now gen_pg_ parameters just identifies the residue pair values (and no longer their inverses), needing only a (fast) gcd function.

This could be done with massive arrays of graphic processing units (GPUs), or better, Simple Super Computers (SSCs).

To search for yet undiscovered million-digit primes, a distributed network can be constructed, similar to that for the Grand Internet Mersenne Prime Search (GIMPS) [7] and Twin Primes Search [8]. A benefit of creating this network, is that with all the available (free) compute power in the world, groups of residue pairs can be dedicated to machine clusters and run full time, and deterministically identify new twins|cousins (thus two primes for the price of one) forever, as there is an infinity of each [3], [4].

9.3 The Ultimate Primes Search Machine

Using just a few basic properties of Prime Generator Theory (PGT) we can construct a conceptually simpler and more efficient machine to find as many primes as physical reality and time will allow.

Because for any Pn, modpn $=p_{m} \#$ (primorial of first m primes), $\mathrm{r}_{0}=p_{m+1}$, and the residues from r_{0} to $\mathrm{r}_{0}{ }^{2}$ are consecutive primes, we don't have to do primality tests for them, but merely gcd tests to determine which values are coprime to modpn. Thus, we can arbitrarily use any prime as r_{0} of a Pn whose modpn is the primorial of all the primes $<\mathrm{r}_{0}$, to directly find the consecutive primes in $\left[\mathrm{r}_{0}, \mathrm{r}_{0}{ }^{2}\right)$. After finding the new additional primes, we can them create a larger Pn modulus with them, and repeat the process, to continually find more primes.

Number of Pn Primorial Primes

This graph shows the number of consecutive primes in the regions $\left[\mathrm{r}_{0}, \mathrm{r}_{0}{ }^{2}\right.$) for generator moduli made with the first 100 primes. Thus, for the last data point for $p_{100}=541$, from $\mathbf{r}_{0}=547$ to $\mathbf{r}_{\mathbf{0}}{ }^{2}=299,209$ there are 25,836 primes|residues, and we now know the first 25,936 primes, with 299,197 the largest prime.

Using this approach, we no longer have to even identify the residue pairs, but just maintain and use the growing modulus values to perform the gcd operations with. The key here is to do the gcd operations on chunks of partial primorial values as we identify more primes and not one humongous $p_{m} \#$ value. Thus, as we identify new primes, we make partial primorial chunks with them. To check if a value is a residue we perform repeated gcd tests with all the partial primorial chunks. If any partial gcd chunk is not 1 (coprime) then that $\mathbf{r c}$ value isn't a residue and we can stop testing it. Only re values that pass all the partial chunks tests (done in parallel) are residues to the full modpn value, and thus are new primes.

The main job for this machine would be to control the creation, distribution, and storage of the gcd operations, and their results, performed by a distributed network of compute engines. For each range $\left[\mathrm{r}_{0}, \mathrm{r}_{0}{ }^{2}\right.$) it would use the PGS for some smaller Pn, (e.g. P3's PGS in the code to reduce the residues candidates search space to $1 / 3$ of the range values) and distribute the res for testing. After creating a list of new consecutive primes, it can be processed to identify new primes or k-tuples of any type.

10. Source Code

The SSoZ is a good algorithm to assess hardware and software multi-threading capabilities. It's very simple mathematically, needing only basic computational functions most languages have, but are easy to implement if they don't. The implementations I provide should be considered as references and not necessarily optimum for each language. They should be considered as starting points to improve upon, as they, most importantly, produce correct results that other implementations can check results against.

The code source files can be found here [6]: https://gist.github. com/jzakiya, and individually below.

10.1 twinprimes_ssoz

Crystal - https://gist.github.com/jzakiya/
2b65b609f091dcbb6f792f16c63a8ac4
Rust - https://gist.github.com/jzakiya/
b96b0b70cf377dfd8feb3f35eb437225
Nim - https://gist.github.com/jzakiya/
6c7e1868bd749a6b1add62e3e3b2341e
C++ - https://gist.github.com/jzakiya/ fa76c664c9072ddb51599983be175a3f
Go - https://gist.github.com/jzakiya/
fbc77b8fdd12b0581a0ff7c2476373d9
D - https://gist.github.com/jzakiya/
ae93bfa03dbc8b25ccc7f97ff8ad0f61

10.2 cousinprimes_ssoz

Crystal - https://gist.github.com/jzakiya/ 0d6987ee00f3708d6cfd6daee9920bd7
Rust - https://gist.github.com/jzakiya/

8879c0f4dfda543eaf92a3186de554d7
Nim - https://gist.github.com/jzakiya/ e2fa7211b52a4aa34a4de932010eac69
C++ - https://gist.github.com/jzakiya/ 3799bd8604bdcba34df5c79aae6e55ac
Go - https://gist.github.com/jzakiya/ 0ea756a8f6fd09f56cd9374d0dcf4197
D - https://gist.github.com/jzakiya/
147747d391b5b0432c7967dd17dae124

11. Conclusion

Prime Generators allow for the creation of efficient, simple, and resource sparse generic algorithms that can be performed with any Pn generator. Generators can dynamically be chosen to optimize speed and memory use for given number ranges, to best use the hardware and software resources available.

The SSoZ algorithms are inherently implementable in parallel, and can be performed on any hardware or distributed system that provides multiple cores or compute engines. As shown, the more cores and threads that are available to use the higher the inherent performance will be for a given number range.

While the code to generate Twin and Cousin primes was shown here, the basic math and principles explaining the process for them can be applied similarly to find other k-tuples, and other specific prime types, such as Mersenne Primes [2].

It is hoped this detailed explanation of how the SSoZ works and performs will encourage its use in applied applications, and its inclusion in software libraries, et al, that are used in the study of primes.

References

1. Zakiya J., 2014.The Segmented Sieve of Zakiya (SSoZ) https://www.academia.edu/7583194/The_Segmented_ Sieve_of_Zakiya_SSoZ
2. The Use of Prime Generators to Implement Fast Twin Primes Sieve of Zakiya (SoZ), Applications to Number Theory, and Implications for the Riemann Hypotheses https://www.academia.edu/37952623/The_Use_of_Prime_ Generators_to_Implement_Fast_Twin_Primes_-_-Zakiya_SoZ_Applications_to_Number_Theory_and_Implications_for_the_Riemann_Hypotheses
3. On the Infinity of Twin Primes and other K-tuples https://www.academia.edu/41024027/On_The_Infinity_of_ Twin_Primes_and_other_K_tuples
4. (Simplest) Proof of Twin Primes and Polignacs' Conjectures (video): https://www.youtube.com/watch? $\mathrm{v}=\mathrm{HCUiP}$ knHtfY\& $\mathrm{t}=940 \mathrm{~s}$
5. Primesieve - https://github.com/kimwalisch/primesieve
6. Twins|Cousins SSoZ software language source files: https://gist.github.com/jzakiya
7. Grand Internet Mersenne Primes Search (GIMPS) https://www.mersenne.org/
8. Twins Primes Search
https://primes.utm.edu/bios/page.php?id=949
```
# This Crystal source file is a multiple threaded implementation to perform an
# extremely fast Segmented Sieve of Zakiya (SSoZ) to find Twin Primes <= N.
# Inputs are single values N, or ranges N1 and N2, of 64-bits, 0 -- 2^64 - 1.
# Output is the number of twin primes <= N, or in range N1 to N2; the last
# twin prime value for the range; and the total time of execution.
# This code was developed on a System76 laptop with an Intel I7 6700HQ cpu,
# 2.6-3.5 GHz clock, with 8 threads, and 16GB of memory. Parameter tuning
# probably needed to optimize for other hardware systems (ARM, PowerPC, etc).
# Compile as: $ crystal build twinprimes_ssozgist.cr -Dpreview_mt --release
# To reduce binary size do: $ strip twinprimes_ssoz
# Thread workers default to 4, set to system max for optimum performance.
# Single val: $ CRYSTAL WORKERS=8 ./twinprimes ssoz val1
# Range vals: $ CRYSTAL_WORKERS=8 ./twinprimes_ssoz vall val2
# Mathematical and technical basis for implementation are explained here:
# https://www.academia.edu/37952623/The Use of Prime Generators to Implement Fast
# Twin_Primes_Sieve_of_Zakiya_SoZ_Applications_to_Number_Theory_and_Implications_
# for_the_Riemann_Hypotheses
# htt\overline{ps://www.academia.edu/7583194/The Segmented_Sieve of_Zakiya_SSoZ}
# https://www.academia.edu/19786419/PRIMES-UTILS_HANDBOOK
# This source code, and its updates, can be found here:
# https://gist.github.com/jzakiya/2b65b609f091dcbb6f792f16c63a8ac4
# This code is provided free and subject to copyright and terms of the
# GNU General Public License Version 3, GPLv3, or greater.
# License copy/terms are here: http://www.gnu.org/licenses/
# Copyright (c) 2017-2022; Jabari Zakiya -- jzakiya at gmail dot com
# Last update: 2022/06/28
require "bit_array"
# Customized gcd for prime generators; n > m; m odd
def gcd(m, n)
    while m|l != 1; t = m; m = n % m; n = t end
    m
end
# Compute modular inverse a^-1 to base m, e.g. a*(a^-1) mod m = 1
def modinv(a0, m0)
    return 1 if m0 == 1
    a, m = a0, m0
    x0, inv = 0, 1
    while a > 1
        inv -= (a // m) * x0
            a, m = m, a % m
            x0, inv = inv, x0
    end
    inv += m0 if inv < 0
    inv
end
```

```
def gen_pg_parameters(prime)
    # Create prime generator parameters for given Pn
    puts "using Prime Generator parameters for P#{prime}"
    primes = [2, 3, 5, 7, 11, 13, 17, 19, 23]
    modpg, res 0 = 1, 0 # compute Pn's modulus and res 0 value
    primes.each { |prm| res_0 = prm; break if prm > prime; modpg *= prm }
    restwins = [] of Int32 # save upper twinpair residues here
    inverses = Array.new(modpg + 2, 0) # save Pn's residues inverses here
    pc, inc, res = 5, 2, 0 # use P3's PGS to generate pcs
    while pc < (modpg >> 1) # find PG's 1st half residues
        if gcd(pc, modpg) == 1 # if pc a residue
            mc = modpg - pc # create its modular complement
            inverses[pc] = modinv(pc, modpg) # save pc and mc inverses
            inverses[mc] = modinv(mc, modpg) # if in twinpair save both hi residues
            restwins << pc << mc + 2 if res + 2 == pc
            res = pc # save current found residue
        end
        pc += inc; inc ^= 0b110 # create next P3 sequence pc: 5 7 11 13 17...
    end
    restwins.sort!; restwins << (modpg + 1) # last residue is last hi_tp
    inverses[modpg + 1] = 1; inverses[modpg - 1] = modpg - 1 # last 2 residues are self inverses
    {modpg, res_0, restwins.size, restwins, inverses}
end
def set sieve parameters(start num, end num)
    # Select at runtime best PG ānd segment size parameters for input values.
    # These are good estimates derived from PG data profiling. Can be improved.
    nrange = end num - start num
    bn, pg = 0, }\overline{3
    if end num < 49
        bn =- 1; pg = 3
    elsif nrange < 77 000_000
        bn = 16; pg = 5
    elsif nrange < 1_100_000_000
        bn = 32; pg = 7
    elsif nrange < 35_500_000_000
        bn = 64; pg = 11
    elsif nrange < 14_000_000_000_000
        pg = 13
        if nrange > 7 000 000 000 000; bn = 384
        elsif nrange > 2_500_000_000_000; bn = 320
        elsif nrange > 250 000_000 000; bn = 196
        else bn = 128
        end
    else
        bn = 384; pg = 17
    end
    modpg, res_0, pairscnt, restwins, resinvrs = gen_pg_parameters(pg)
    kmin = (start_num-2) // modpg + 1 # number of resgroups to start_num
    kmax = (end_num - 2) // modpg + 1 # number of resgroups to end num
    krange = kmax - kmin + 1 # number of resgroups in range, at least
    n = krange < 37 500 000 000 000 ? 4 : (krange < 975 000 000 000 000 ? 6 : 8)
    b = bn * 1024 * n # set seg size to optimize for selected PG
    ks = krange < b ? krange : b # segments resgroups size
    puts "segment size = #{ks} resgroups for seg bitarray"
    maxpairs = krange * pairscnt # maximum number of twinprime pcs
    puts "twinprime candidates = #{maxpairs}; resgroups = #{krange}"
    {modpg, res_0, ks, kmin, kmax, krange, pairscnt, restwins, resinvrs}
end
def sozpg(val, res 0, start num, end num)
    # Compute the primes r0..sqrt(input_num) and store in 'primes' array.
    # Any algorithm (fast|small) is usab}le. Here the SoZ for P5 is used
    md, rscnt = 30u64, 8 # P5's modulus and residues count
```

```
    res = [7,11,13,17,19,23,29,31] # P5's residues
    bitn = [0,0,0,0,0,1,0,0,0,2,0,4,0,0,0,8,0,16,0,0,0,32,0,0,0,0,0,64,0,128]
    kmax = (val - 2) // md + 1 # number of resgroups upto input value
    prms = Array(UInt8).new(kmax, 0) # # byte array of prime candidates, init '0'
    loop do # for r0..sqrtN primes mark their multiples
    if (r += 1) == rscnt; r = 0; modk += md; k += 1 end # resgroup parameters
    next if prms[k] & (1 << r) != 0 # skip pc if not prime
    prm_r = res[r] # if prime save its residue value
    prime = modk + prm_r # numerate the prime value
    break if prime > Mäth.isqrt(val) # exit loop when it's > sqrtN
    res.each do |ri| # mark prime's multiples in prms
        kn,rn = (prm_r * ri - 2).divmod md # cross-product resgroup|residue
        bit r = bitn[rn] # bit mask for prod's residue
        kpm}=\mp@code{k * (prime + ri) + kn # resgroup for lst prime mult
        while kpm < kmax; prms[kpm] |= bit_r; kpm += prime end
    end end
    # prms now contains the nonprime positions for the prime candidates r0..N
    # extract only primes that are in inputs range into array 'primes'
    primes = [] of UInt64 # create empty dynamic array for primes
    prms.each_with_index do |resgroup, k| # for each kth residue group
    res.eac\overline{h_with}_index do |r_i, i| # check for each ith residue in resgroup
        if resğroup & (1<< i) =}==0 # if bit location a prim
            prime = md * k + r_i # numerate its value, store if in range
            # check if prime hās multiple in range, if so keep it, if not don't
            n, rem = start num.divmod prime # if rem 0 then start num is multiple of prime
            primes << primé if (res_0 <= prime <= val) && (prime *- n <= end_num - prime || rem == 0)
    end end end
    primes
end
def nextp_init(rhi, kmin, modpg, primes, resinvrs)
    # Initiàlize 'nextp' array for twinpair upper residue rhi in 'restwins'.
    # Compute lst prime multiple resgroups for each prime r0..sqrt(N) and
    # store consecutively as lo_tp|hi_tp pairs for their restracks.
    nextp = Slice(UInt64).new(primes.size*2) # lst mults array for twinpair
    r_hi, r_lo = rhi, rhi - 2 # upper|lower twinpair residue values
    primes.each_with_index do |prime, j| # for each prime r0..sqrt(N)
        k = (primè - 2) // modpg # find the resgroup it's in
        r = (prime - 2) % modpg + 2 # and its residue value
        r_inv = resinvrs[r].to_u64 # and residue inverse
        r\overline{l}}=(r\mathrm{ inv * r lo - 2) % modpg + 2 # compute r's ri for r lo
        rh = (r_inv * r_hi - 2) % modpg + 2 # compute r's ri for r_hi
        kl = k * (prime + rl) + (r * rl - 2) // modpg # kl 1st mult resgroup
        kh = k * (prime + rh) + (r* rh - 2) // modpg # kh lst mult resgroup
        kl < kmin ? (kl = (kmin - kl) % prime; kl = prime - kl if kl > 0) : (kl -= kmin)
        kh < kmin ? (kh = (kmin - kh) % prime; kh = prime - kh if kh > 0) : (kh -= kmin)
        nextp[j * 2] = kl.to_u64 # prime's lst mult lo_tp resgroup val in range
        nextp[j * 2 | 1] = kh..to_u64 # prime's lst mult hi_tp resgroup val in range
    end
    nextp
end
```

def twins_sieve(r_hi, kmin, kmax, ks, start_num, end_num, modpg, primes, resinvrs)
\# Perform in thread the ssoz for given twinpair residues for kmax resgroups.
\# First create|init 'nextp' array of lst prime mults for given twinpair,
\# stored consequtively in 'nextp', and init seg array for ks resgroups.
\# For sieve, mark resgroup bits to '1' if either twinpair restrack is nonprime
\# for primes mults resgroups, and update 'nextp' restrack slices acccordingly.
\# Return the last twinprime|sum for the range for this twinpair residues.
sum, ki, kn = 0_u64, kmin-1, ks \# init these parameters
hi_tp, k_max = 0_u64, kmax \# max twinprime|resgroup
seg = Bī̄Array.nēw(ks) \# seg array of ks resgroups
ki $+=1$ if r_{-}hi $-2<($ start_num - 2) $\%$ modpg +2 \# ensure lo tp in range
k_max -= 1 if r_hi $>$ (end_num - 2) \% modpg +2 \# ensure hi tp in range
nextp $=$ nextp_in̄it(r_hi, $\bar{k} i, ~ m o d p g, ~ p r i m e s, r e s i n v r s) ~ \# ~ i n i t ~ n e x t p ~ a r r a y ~$
while ki < k_max \# for ks size slices upto kmax
$\mathrm{kn}=\mathrm{k}_{\mathrm{m}} \mathrm{max}^{-}-\mathrm{ki}$ if ks > (k_max - ki) \# adjust kn size for last seg
primes.each_with_index do |prime, j| \# for each prime r0..sqrt(N)

```
    # for lower twinpair residue track
        k = nextp.to unsafe[j * 2]
        while k < kn
            seg.unsafe_put(k, true)
            k += prime end
        nextp.to_unsafe[j * 2] = k - kn
        k = nextp.to_unsafe[j * 2 | 1]
        while k < kn
            seg.unsafe_put(k, true)
            k += prime end
        nextp.to_unsafe[j * 2 | 1]= k - kn
    end
    cnt = seg[...kn].count(false) # count|store twinprimes in segment
    if cnt > 0 # if segment has twinprimes
    sum += cnt
    upk = kn - 1
    while seg.unsafe_fetch(upk); upk -= 1 end
    hi_tp = ki + upk # set its full range resgroup value
        end
        ki += ks # set lst resgroup val of next seg slice
        seg.fill(false) if ki < k_max
    end
    # set next seg to all primes if in range
    # when sieve done, numerate largest twin
    # for ranges w/o twins set largest to 1
    hi_tp = (r_hi > end_num || sum == 0) ? 1 : hi_tp * modpg + r_hi
    {hi_tp.to_u64, sum.\overline{to_u64}}
end
def twinprimes_ssoz()
    end_num = {ARGV[0].to_u64, 3u64}.max
    start_num = ARGV.size > 1 ? {ARGV[1].to_u64, 3u64}.max : 3u64
    start_num, end_num = end_num, start_num if start_num > end_num
    start_num |= 1 # if start_num even increase by 1
    end_num = (end_num - 1) | 1 # if end_num even decrease by 1
    sta\overline{r}t_num = en\overline{d}num = 7 if end_num - start_num < 2
    puts "threads = #{System.cpu_count}"
    ts = Time.monotonic # start timing sieve setup execution
    # select Pn, set sieving params for inputs
    modpg, res_0, ks, kmin, kmax, krange,
        pairscnt, restwins, resinvrs = set_sieve_parameters(start_num, end_num)
    # create sieve primes <= sqrt(end_num), only use those whose multiples within inputs range
    primes = end_num < 49 ? [5] : sozpg(Math.isqrt(end_num), res_0, start_num, end_num)
    puts "each of #{pairscnt} threads has nextp[2 x #{primes.size}] array"
    lo_range = restwins[0] - 3 # lo_range = lo_tp - 1
    twinscnt = 0_u64 # determine count of 1st 4 twins if in range for used Pn
    twinscnt += [ 3, 5, 11, 17].select { |tp| start_num <= tp <= lo_range }.size unless end_num == 3
    te = (Time.monotonic - ts).total seconds.round(6)
    puts "setup time = #{te} secs" # display sieve setup time
    puts "perform twinprimes ssoz sieve"
    t1 = Time.monotonic
    # start timing ssoz sieve execution
    cnts = Array(UInt64).new(pairscnt, 0) # number of twinprimes found per thread
    lastwins = Array(UInt64).new(pairscnt, 0) # largest twinprime val for each thread
    done = Channel(Nil).new(pairscnt)
    threadscnt = Atomic.new(0) # count of finished threads
    restwins.each_with_index do |r_hi, i| # sieve twinpair restracks
        spawn do
        lastwins[i], cnts[i] = twins_sieve(r_hi, kmin, kmax, ks, start_num, end_num, modpg, primes,
                                    resinvrs)
```

```
            print "\r#{threadscnt.add(1)} of #{pairscnt} twinpairs done"
        done.send(nil)
    end end
    pairscnt.times { done.receive } # wait for all threads to finish
    print "\r#{pairscnt} of #{pairscnt} twinpairs done"
    last_twin = lastwins.max # find largest hi_tp twinprime in range
    twinscnt += cnts.sum # compute number of twinprimes in range
    last_twin = 5 if end_num == 5 && twinscnt == 1
    kn = krange % ks # set number of resgroups in last slice
    kn = ks if kn == 0 # if multiple of seg size set to seg size
    t2 = (Time.monotonic - t1).total_seconds # sieve execution time
    puts "\nsieve time = #{t2.round(6)} secs" # ssoz sieve time
    puts "total time = #{(t2 + te).round(6)} secs" # setup + sieve time
    puts "last segment = #{kn} resgroups; segment slices = #{(krange - 1)//ks + 1}"
    puts "total twins = #{twinscnt}; last twin = #{last_twin - 1}+/-1"
end
twinprimes_ssoz
```

Copyright: ©2023 Jabari Zakiya. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

