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1. Introduction
In 2014 I released The Segmented Sieve of Zakiya (SSoZ) [1]. 
It described a general method to find primes using an efficient 
prime sieve based on Prime Generators (PG). I expanded upon 
it, and in 2018 I released The Use of Prime Generators to Im-
plement Fast Twin Primes Sieve of Zakiya (SoZ), Applications 
to Number Theory, and Implications for the Riemann Hypoth-
eses [2]. The algorithm has been improved and is now also used 
to find Cousin Primes. This paper explains in detail the what, 
why, and how of the algorithm and shows its implementation in 
6 software languages, and performance data for these 6 languag-
es run on 2 different cpu systems with 8 and 16 threads.

2. General Description
The programs count the number of Twin|Cousin Primes between two 
numbers within a 64-bit range, i.e. 0 – 18,446,744,073,709,551,615 
(2**64 – 1), and also returns the largest twin|cousin value within 
it. The algorithm has no mathematical limits, but [hard|soft]ware 
does, so it is coded to run on commonly available 64-bit multi-core 
systems containing a reasonable amount of memory (the more the 
better). 

Below is a diagram and description of the major functional com-
ponents of the algorithm and software.
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Inputs Formatting

One or two values are entered (order doesn’t matter) 
specifying the numerical range. They’re converted to
odd values, and|or defaults, after conditional checks.

Pn Selection and Parameterization

The inputs numerical range is used to select the Pn

generator used to perform the residues sieve. Once 
determined, its generator parameters are created.

Sieve Primes Generation

The sieving primes ≤ sqrt(end_num) for the range
are generated, but only those with multiples within
the numerical range are used for the Pn generator.

Residues Sieves

In parallel for each twin|cousin residues pair for Pn, 
the sieve primes are used to create the nextp array of 
start locations for marking their multiples for each
segment size the input numerical range is split into.

Outputs Collection and Display

The prime pairs count and largest value is collected
for each residue pair thread, and their final greatest 
values displayed, along with timing data.
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2.1 Inputs Formatting
One or two values are entered (order doesn’t matter) specifying
the numerical range. They’re converted to odd values, and|or
defaults, after conditional checks.

2.2 Pn Selection and Parameterization 
The inputs numerical range is used to select the Pn generator used 
to perform the residues sieve. Once determined, its generator 
parameters are created.

2.3 Sieve Primes Generation
The sieving primes ≤ sqrt(end_num) for the range are generated,
but only those with multiples within the numerical range are 
used for the Pn generator.

2.4 Residues Sieves
In parallel for each twin|cousin residues pair for Pn, the sieve 
primes are used to create the nextp array of start locations for 
marking their multiples for each segment size the input numerical 
range is split into.

2.5 Outputs Collection and Display
The prime pairs count, and the largest pair value, are collected
for each residue pair thread, and their final greatest values 
displayed, along with timing data. 

3. Math Fundamentals
Prime numbers do not exist randomly! When we break the 
number line into even-sized groups of integers (the group 
numerical bandwidth and prime generator modulus value), 
the primes are evenly distributed along the residues in each 
group, i.e. the coprime values to the modulus (their greatest 
common divisor (gcd) with the modulus is 1). Thus, a modulus, 
and its associated residues, form a Prime Generator (PG), a 
mathematical expression and framework for generating and 
identifying every prime, not a modulus prime factor.

While a PG modulus can be any even number, the most efficient 
moduli are strictly prime primorials. These prime generators 
have the smallest ratios of (# of residues)/modulus and make 
the number space primes exist within the smallest possible for a 
given number of residues. As more primes are used to form the 
PG moduli they systematically squeeze the primes into smaller 
and smaller number spaces.

The S|SoZ algorithms are based on the structure and framework 
of Prime Generators, whose math and properties are formalized 
in Prime Generator Theory (PGT). For an extensive review read 
[1], [2], [3] and see the video – (Simplest) Proof of the Twin 
Primes and Polignac’s Conjectures. https://www.youtube.com/
watch?v=HCUiPknHtfY&t=940s [4].

Below is a list of the major properties of Prime Generators that 
comprise the mathematical foundation for the S|SoZ algorithms 
and code.

4. Major Properties of Prime Generators
• A prime generators has notational form: 
  Pn = modpn * k + {r0 … rn}
• The modulus for prime generator with last prime value pn 
   has primorial form: modpn = pn# 
• The number of residues are even, with counts: 
   rescntpn = (pn – 1)# = pn

-1#
• The residues occur as modular complement pairs (mcp)
   to its modulus: modpn = ri + rj
• The last two residues of a generator are constructed as: 
   (modpn - 1) (modpn + 1)
• The residues, by definition, will include all the 
   coprime primes < modpn
• The first residue r0 is the next prime > pn
• The residues from r0 to r0

2 are consecutive primes
• Each generator has a characteristic Prime Generator Sequence        
  (PGS) of even size residue gaps
• The last 3 sequence gaps have form: 
   (r0 - 1) 2 (r0 - 1)
• The gaps are distributed with a symmetric mirror image
   around a pivot gap size of 4
• The residue gaps sum from r0 to (r0 + modpn) equals the
   modulus: modpn = Σai·2i
• The coefficients ai values are the frequency each gap 
   of size 2i occurs in a PGS
• The sum of the coefficients ai values equal the number of
   residues: rescntpn = Σai
• Coefficients a1 = a2 are odd and equal values with form:
   a1= a2 = (pn – 2)# = pn

-2# 
• The coefficients ai are even values for i > 2
• The number of coefficients ai in a sequence for 
   Pn is of order pn-1

Residues have Canonical Form values (1...modpn-1), as 1 is 
always coprime to any modulus, but for coding|math efficiency 
their Functional Form values (r0…modpn+1) are used, with r0 
defined above, and modpn+1 ≡ 1 mod modpn is the permuted 
first congruent value for 1. Also, as the residues exist as modular 
complement pairs the code determines their first half values and 
their 2nd half values come for FREE. To find the residues for 
a Pn, a smaller generator’s PGS (in the code for P3) is used to 
reduce the larger moduli number space to identify the residue 
candidates (rc) that need to be gcd checked.
 
Shown here is the primes candidates (pcs) table for P5 up to 
the 100th prime 541. It shows the only possible pc values that 
can be prime for 30 integer groupings. Each of the k columns 
is a residue group (resgroup) of prime candidates. The colored 
pc values are nonprime composites and can be sieved out by the 
Sieve of Zakiya (SoZ), leaving only the prime values shown.
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Every PG represents a pcs table like this, which visually display 
all their properties. To identify all the Twin Primes we merely 
observe the residue pair values that differ by 2, (11, 13), (17, 19), 
(29, 31), and for Cousins those that differ by 4, (7, 11), (13, 17), 
(19, 23). These residue gaps form the basis for the Twins|Cousins 
SSoZ implementations, and other k-tuples of interest.

To find larger constellations of prime pairs, et al, we merely 
identify the residue pairs of the desired size. For Sexy Primes 
(p, p+6), we just use the pairs (7, 13), (11, 17), (13, 19), (17, 
23), (23, 29), (31, 37). Using them, we easily see and count there 
are 47 Sexy Primes (with [5:11]) within the first 100 primes. 
Larger generators have more residues and larger gaps and enable 
identifying more desired size k-tuples.

In my video [4], I define the residue gaps as the gaps between 
consecutive residues, and thus I refer to prime gaps as consecutive 
prime (2, n) tuples, with n any even number. Thus, in the video, 
I state there are 25 Sexy Primes in the table above, i.e. 25 pairs 
of consecutive primes that differ by 6. However, in the academic 
math world, Sexy and Cousin primes are defined as any (2, 6) 
and (2, 4) tuple, thus [7:13] is a Sexy Prime even though we see 
11 is between them. So [5:11] is defined as the first Sexy Prime 
and [3:7] the first Cousin, and [3:103] would be the first (2, 100) 
tuple, i.e. 2 primes that differ by 100.

However, if you want to know and understand the true 
distribution of primes, what you want to know is the distribution 
of the gaps between consecutive primes, which I’ll define 
as prime gap kpg-tuples. So, the actual first (2, 100) kpg-tuple 
is [396,733: 396,833], a very big difference. It’s from the kpg-
tuples that inform you where the prime deserts are (long number 
stretches without primes), and characterize the true average 
thinning (density) of primes as the integers grow larger. And 

as shown and explained in [3] and [4], there are an infinity of 
consecutive prime gaps of any even size.

Thus, the PGS for the Pn’s provide a deterministic floor 
(minimum) value of the number of kpg-tuples of any size, and 
their prime values, over any range of numbers, which we can 
(in theory) create an SSoZ residues sieve to identify and count.

Shown here are the PG parameters for the first 9 Pn generators 

P2 – P23 where modpn =

Here pn = pm is the prime value of the mth prime, thus: p2 = p1, 
p3 = p2, p5 = p3, p7 = p4, etc.
Pn’s modulus value modpn: (pn - 0)# = pn

-0# = Π (pn - 0) = (2 - 0) 
* (3 - 0) * (5 - 0) … * (pm - 0)
Number of residues rescnt: (pn - 1)# = pn

-1# = Π (pn - 1) = (2 - 1) 
* (3 - 1) * (5 - 1) … * (pm - 1)
# of twins|cousins pairscnt: (pn - 2)# = pn

-2# = Π (pn - 2) = (2 - 2) 
* (3 - 2) * (5 - 2) … * (pm - 2)

For P23 modulus: modp23 = 2 * 3 * 5 * 7 * 11 * 13 * 17 * 19 * 
23 = 223092870
For P23 residues: rescount = 1 * 2 * 4 * 6 * 10 * 12 * 16 * 18 * 
22 = 36495360
For P23 twins|cousin: pairs = 1 * 1 * 3 * 5 * 9 * 11 * 15 * 17 * 
21 = 7952175

The primes number space % is: (rescntpn/modpn) * 100 = 
(pn

-1# / pn#) * 100

The pairscnt number space % is: (pairscntpn*2/modpn) * 100 = 
(pn

-2# / pn#) * 200

Shown here are the PG parameters for the first 9 Pn generators P2 – P23 where modpn = 

Here pn =  is the prime value of the mth prime, thus: p2 = p1, p3 = p2, p5 = p3, p7 = p4,, etc.
Pn’s modulus value modpn: (pn - 0)# = pn

-0# = Π (pn - 0) = (2 - 0) * (3 - 0) * (5 - 0) … * (pm - 0)
Number of residues rescnt:  (pn - 1)# = pn

-1# = Π (pn - 1) = (2 - 1) * (3 - 1) * (5 - 1) … * (pm - 1)
# of twins|cousins pairscnt:  (pn - 2)# = pn

-2# = Π (pn - 2) = (2 - 2) * (3 - 2) * (5 - 2) … * (pm – 2)

For P23 modulus:  modp23 = 2 * 3 * 5 * 7 * 11 * 13 * 17 * 19 * 23 = 223092870
For P23 residues:  rescount = 1 * 2 * 4 * 6 * 10 * 12 * 16 * 18 * 22 = 36495360
For P23 twins|cousin: pairs = 1 * 1 * 3 * 5 *  9  * 11 * 15 * 17 * 21 = 7952175

The primes   number space % is: (rescntpn/modpn)        * 100 = (pn
-1# / pn#) * 100

The pairscnt number space % is: (pairscntpn*2/modpn) * 100 = (pn
-2# / pn#) * 200

Pn P2 P3 P5 P7 P11 P13 P17 P19 P23

modulus (modpg) 2 6 30 210 2310 30030 510510 9699690 223092870

residues count (rescnt) 1 2 8 48 480 5760 92160 1658880 36495360

twins|cousins pairscnt 0 1 3 15 135 1485 22275 378675 7952175

primes % number space 50.00 33.33 26.67 22.86 20.78 19.18 18.05 17.10 16.36

pairs % number space 50.00 33.33 20.00 14.29 11.69 9.89 8.73 7.81 7.13

Table 2.

As the Pn primorial primes pm increase, the number space containing primes and twins|cousins steadily 
decreases, and can be made an arbitrarily small value ε > 0 of the total number space as m→∞.

This graph shows the decreasing prime number space for Pn using the first 100 primes. Once past the 
knee of the curve, the differential change becomes smaller for each additional pm.  For many common 
use cases we can effectively limit usable Pn generators to the first 10 primes or so.  However, for prime
searches in large number values ranges, using the largest generator possible for a system is desirable, to
make the maximum searchable number space as small as possible.
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Table 1:  P5 = 30 * k + {7, 11, 13, 17, 19, 23, 29, 31}

Shown here is the primes candidates (pcs) table for P5 up to the 100th prime 541.  It shows the only 
possible pc values that can be primes for 30 integer groupings. Each of the k columns is a residue 
group (resgroup) of prime candidates. The colored pc values are nonprime composites, and can be 
sieved out by the Sieve of Zakiya (SoZ), leaving only the prime values shown.

P5 = 30 * k + {7, 11, 13, 17, 19, 23, 29, 31}

k 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

r0 7 37 67 97 127 157 187 217 247 277 307 337 367 397 427 457 487 517

r1 11 41 71 101 131 161 191 221 251 281 311 341 371 401 431 461 491 521

rt 13 43 73 103 133 163 193 223 253 283 313 343 373 403 433 463 493 523

r3 17 47 77 107 137 167 197 227 257 287 317 347 377 407 437 467 497 527

r4 19 49 79 109 139 169 199 229 259 289 319 349 379 409 439 469 499 529

r5 23 53 83 113 143 173 203 233 263 293 323 353 383 413 443 473 503 533

r6 29 59 89 119 149 179 209 239 269 299 329 359 389 419 449 479 509 539

r7 31 61 91 121 151 181 211 241 271 301 331 361 391 421 451 481 511 541

Table 1.

Every PG represents a pcs table like this, which visually display all their properties. To identify all the 
Twin Primes we merely observe the residue pair values that differ by 2, (11, 13), (17, 19), (29, 31), and 
for Cousins those that differ by 4, (7, 11), (13, 17), (19, 23).  These residues gaps form the basis for the
Twins|Cousins SSoZ implementations, and other k-tuples of interest.

To find larger constellations of prime pairs, et al, we merely identify the residue pairs of desired size.
For Sexy Primes (p, p+6), we just use the pairs (7, 13), (11, 17), (13, 19), (17, 23), (23, 29), (31, 37). 
Using them, we easily see and count there are 47 Sexy Primes (with [5:11]) within the first 100 primes.
Larger generators have more residues and larger gaps and enable identifying more desired size k-tuples.

In my video [4], I define the residue gaps as the gaps between consecutive residues, and thus I refer to 
prime gaps as consecutive prime (2, n) tuples, with n any even number. Thus in the video I state there 
are 25 Sexy Primes in the table above, i.e. 25 pairs of consecutive primes that differ by 6.  However in 
the academic math world, Sexy and Cousin primes are defined as any (2, 6) and (2, 4) tuple, thus [7:13]
is a Sexy Prime even though we see 11 is between them. So [5:11] is defined as the first Sexy Prime 
and [3:7] the first Cousin, and [3:103] would be the first (2, 100) tuple, i.e. 2 primes that differ by 100.

However, if you want to know and understand the true distribution of primes, what you want to know is
the distribution of the gaps between consecutive primes, which I’ll define as prime gap kpg-tuples. So
the actual first (2, 100) kpg-tuple is [396,733: 396,833], a very big difference. It’s from the kpg-tuples that
inform you where the prime deserts are (long number stretches without primes), and characterize the 
true average thinning (density) of primes as the integers grow larger.  And as shown and explained in 
[3] and [4], there are an infinity of consecutive prime gaps of any even size.

Thus the PGS for the Pn’s provide a deterministic floor (minimum) value of the number of kpg-tuples of
any size, and their prime values, over any range of numbers, which we can (in theory) create an SSoZ 
residues sieve to identify and count.
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Pn P2 P3 P5 P7 P11 P13 P17 P19 P23
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As the Pn primorial primes pm increase, the number space containing primes and twins|cousins steadily decreases, and can be made 
an arbitrarily small value ε > 0 of the total number spaces as m→∞.
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Here pn =  is the prime value of the mth prime, thus: p2 = p1, p3 = p2, p5 = p3, p7 = p4,, etc.
Pn’s modulus value modpn: (pn - 0)# = pn

-0# = Π (pn - 0) = (2 - 0) * (3 - 0) * (5 - 0) … * (pm - 0)
Number of residues rescnt:  (pn - 1)# = pn

-1# = Π (pn - 1) = (2 - 1) * (3 - 1) * (5 - 1) … * (pm - 1)
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-2# = Π (pn - 2) = (2 - 2) * (3 - 2) * (5 - 2) … * (pm – 2)
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As the Pn primorial primes pm increase, the number space containing primes and twins|cousins steadily 
decreases, and can be made an arbitrarily small value ε > 0 of the total number space as m→∞.

This graph shows the decreasing prime number space for Pn using the first 100 primes. Once past the 
knee of the curve, the differential change becomes smaller for each additional pm.  For many common 
use cases we can effectively limit usable Pn generators to the first 10 primes or so.  However, for prime
searches in large number values ranges, using the largest generator possible for a system is desirable, to
make the maximum searchable number space as small as possible.
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This graph shows the decreasing prime number space for Pn us-
ing the first 100 primes. Once past the knee of the curve, the 
differential change becomes smaller for each additional pm. For 
many common use cases, we can effectively limit usable Pn gen-
erators to the first 10 primes or so. However, for prime searches 
in large number value ranges, using the largest generator possi-
ble for a system is desirable, to make the maximum searchable 
number space as small as possible.
 
5. Generating Sieve Primes
The SSoZ uses the necessary sieving primes ≤                         (i.e. 
only those with multiples within the inputs range) to sieve out 
their nonprime multiples. An efficient coded P5 Sieve of Zakiya 
(SoZ) generates them at runtime (though other means can be 
used). Below is its algorithm.

5.1 SoZ Algorithm
To find all the primes ≤ N =
1. For Prime Generator P5, using its generator parameters
2. Determine kmax, the number of residue groups (resgroups) 
    up to N

3. Create byte array prms[kmax] to represent the value|residue  
     of each resgroup pc
4. Perform outer sieve loop:
       ● Starting from the first resgroup, determine where each pc  
         bit location is prime
       ● If bit location a prime, keep its residue value in prm_r; 
         numerate its prime value
       ● Exit loop when prime > sqrt(N)
5. Perform inner sieve loop with each residue ri:
           ● Create cross-product (prm_r * ri)
           ● Determine the resgroup kn it’s in, and its residue rn
           ● Compute first prime multiple resgroup kpm for the prime 
         with ri
           ● Mark in prms each primenth kpm resgroup bitn[rn] as 
         nonprime until its end
6. Repeat from 4 for next resgroup
7. When sieve ends, numerate|store from each prms resgroup  
     the needed sieving primes ≤ N

P5’s primes candidates (pcs) table up to 541 (the 100th prime) 
is shown below.
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To find all the primes ≤ N = 
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• starting from the first resgroup, determine where each pc bit location is prime
• if a bit location a prime, keep its residue value in prm_r; numerate its prime value 

• exit loop when prime > sqrt(N)

5. perform inner sieve loop with each residue ri:
• create cross-product (prm_r * ri)

• determine the resgroup kn it’s in, and its residue rn

• compute first prime multiple resgroup kpm for the prime with ri

• mark in prms each primenth kpm resgroup bitn[rn] as nonprime until its end

       6. repeat from 4 for next resgroup
       7. when sieve ends, numerate|store from each prms resgroup the needed sieving primes ≤ N

P5’s primes candidates (pcs) table up to 541 (the 100th prime) is shown below.

k 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

rt0 7 37 67 97 127 157 187 217 247 277 307 337 367 397 427 457 487 517

rt1 11 41 71 101 131 161 191 221 251 281 311 341 371 401 431 461 491 521

rt2 13 43 73 103 133 163 193 223 253 283 313 343 373 403 433 463 493 523

rt3 17 47 77 107 137 167 197 227 257 287 317 347 377 407 437 467 497 527

rt4 19 49 79 109 139 169 199 229 259 289 319 349 379 409 439 469 499 529

rt5 23 53 83 113 143 173 203 233 263 293 323 353 383 413 443 473 503 533

rt6 29 59 89 119 149 179 209 239 269 299 329 359 389 419 449 479 509 539

rt7 31 61 91 121 151 181 211 241 271 301 331 361 391 421 451 481 511 541

The function sozpg performs the P5 sieve exactly as shown. An array prms of kmax bytes is created to
represent each resgroup|column of 8 pc values|rows up to the resgroup that covers the input value. 

Each row represents a residue value|bit position|residue track. prms is initialized to ‘0’ to make all bit 

positions be prime. The sieve computes for each prime ≤  its first prime multiple resgroup 

kpm on each row, and starting from these, sets each primenth resgroup bit on each row to ‘1’, to mark 

its multiples (colors), to eliminate the nonprimes. The process is explained in greater detail as follows.
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• compute first prime multiple resgroup kpm for the prime with ri

• mark in prms each primenth kpm resgroup bitn[rn] as nonprime until its end
       6. repeat from 4 for next resgroup
       7. when sieve ends, numerate|store from each prms resgroup the needed sieving primes ≤ N

P5’s primes candidates (pcs) table up to 541 (the 100th prime) is shown below.

k 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

rt0 7 37 67 97 127 157 187 217 247 277 307 337 367 397 427 457 487 517

rt1 11 41 71 101 131 161 191 221 251 281 311 341 371 401 431 461 491 521

rt2 13 43 73 103 133 163 193 223 253 283 313 343 373 403 433 463 493 523

rt3 17 47 77 107 137 167 197 227 257 287 317 347 377 407 437 467 497 527

rt4 19 49 79 109 139 169 199 229 259 289 319 349 379 409 439 469 499 529

rt5 23 53 83 113 143 173 203 233 263 293 323 353 383 413 443 473 503 533

rt6 29 59 89 119 149 179 209 239 269 299 329 359 389 419 449 479 509 539

rt7 31 61 91 121 151 181 211 241 271 301 331 361 391 421 451 481 511 541

The function sozpg performs the P5 sieve exactly as shown. An array prms of kmax bytes is created to
represent each resgroup|column of 8 pc values|rows up to the resgroup that covers the input value. 

Each row represents a residue value|bit position|residue track. prms is initialized to ‘0’ to make all bit 

positions be prime. The sieve computes for each prime ≤  its first prime multiple resgroup 

kpm on each row, and starting from these, sets each primenth resgroup bit on each row to ‘1’, to mark 
its multiples (colors), to eliminate the nonprimes. The process is explained in greater detail as follows.
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The function sozpg performs the P5 sieve exactly as shown. 
An array prms of kmax bytes is created to represent each 
resgroup|column of 8 pc values|rows up to the resgroup that 
covers the input value.

Each row represents a residue value|bit position|residue track. 
prms is initialized to ‘0’ to make all bit positions be prime. The 
sieve computes for each prime ≤                     its first prime 
multiple resgroup kpm on each row, and starting from these, 
sets each primenth resgroup bit on each row to ‘1’, to mark its 
multiples (colors), to eliminate the nonprimes. The process is 
explained in greater detail as follows.

5.2 Performing Soz Sieve
To sieve the nonprimes from P5’s pcs table up to 541 we use the 
primes ≤ isqrt(541)=23. They are the first 6 primes|residues: 7, 
11, 13, 17, 19, 23, whose first unique multiples are shown with 6 
different colors. The value 541 resides in residue group k=17, so 
kmax=18 is the number of resgroups up to it.

Starting with the first prime in regroup k=0, 7 multiplies each pc 
in the resgroup, whose multiples are in blue: 7 * [7, 11, 13, 17, 
19, 23, 29, 31] = [49, 77, 91, 119, 133, 161, 203, 217]. Each 7th 
resgroup|col along each restrack|row from these start values are 
7’s multiples. Thus 7 * 7 = 49 in resgroup k=1, on rt4|r=19 is 
7’s first multiple. Every 7th regroup starting there (k=1, 8, 15) < 
kmax on rt4 is a multiple of 7 and set to ‘1’ to mark as nonprime. 
We repeat for 7’s other first multiples 77, 91, etc, on their rows.

We then use the next prime location in resgroup k=0 after 7, 
which is 11, and repeat the process with it. 11 * [7, 11, 13, 17, 
19, 23, 29, 31] = [77, 121, 143, 187, 209, 253, 319, 341], whose 
first unique multiples are red. Note, the first unique multiple for 
each prime is its square, which for 11 is 121. The first  multiples 
with smaller primes, e.g. 11* 7 = 77, are colored with those 
primes’ colors (here 7|blue). Also note, each prime must multiply 
each member in its resgroup, whether prime or not, to map its 
starting first prime multiple onto each distinct row in some kpm 
resgroup.

As shown, this process is very simple and fast, and we can 
perform the multiplications very efficiently. We can also perform 
the sieve and primes extraction process in parallel, making it 
even faster.

5.3 Extracting Sieve Primes
To extract the primes from prms in sequential order, we start at 
resgroup k=0 and iterate over each byte bit, then continue with 
each successive byte. A ‘0’ bit position represents a prime value 
in each byte, and if ‘1’ we skip to the next bit. The prime values 
are numerated as: prime = modpg * k + ri, with k the resgroup 
index, ri the residue for the bit position, and modpg = 30 for 
P5’s modulus.

Alternatively, we can reverse the order, and for each bit row, 
iterate over each resgroup byte and find the primes along them. 
This may provide certain software computational advantages, 
but the primes will no longer be extracted in sequential order 
(though if necessary they could be sorted afterward). For the 
purposes of the SSoZ algorithm, it’s not necessary the primes be 
used in sequential order.

To optimize the performance of the SSoZ, during the prime sieve 
extraction process, primes which don’t have multiples within 
the inputs range are filtered out. This significantly increases 
SSoZ performance for small input ranges between large input 
numbers, by reducing the work the residues sieves do.

The algorithm described here is generic to all Pn generators, 
where only their parameters change for each. Implementations 
may vary based on hardware|software particulars, but the work 
performed is the same. Larger generators systematically reduce 
the primes number space, by having larger modulus sizes and 
more residues, but we generally want to pick the smallest Pn 
generator that optimizes the system resources for given input 
values and ranges.

For the implementations provided, whose inputs range is 
constrained to 64-bits, using P5 to perform the SoZ to generate 
the sieve primes was the overall most efficient choice, as it’s 
straightforward to code, and as we’ll see, can also be done in 
parallel to increase its performance.
 
5.4 Efficient Residue Multiplications
To find the resgroup (column) for a pc value in the table we 
integer divide it by the PG modulus. To find its residue value, 
we find its integer remainder when dividing by the PG modulus. 
Thus, each pc regroup value has parameters: k = pc div modpg, 
with residue value: ri = pc mod modpg.

Generating Sieve Primes

The SSoZ uses the necessary sieving primes ≤  (i.e. only those with multiples within
the inputs range) to sieve out their nonprime multiples.  An efficient coded P5 Sieve of Zakiya 

(SoZ) generates them at runtime (though other means can be used).  Below is its algorithm.

SoZ Algorithm

To find all the primes ≤ N = 
1. for Prime Generator P5, using its generator parameters
2. determine kmax, the number of residue groups (resgroups) up to N
3. create byte array prms[kmax] to represent the value|residue of each resgroup pc
4. perform outer sieve loop: 

• starting from the first resgroup, determine where each pc bit location is prime
• if a bit location a prime, keep its residue value in prm_r; numerate its prime value 
• exit loop when prime > sqrt(N)

5. perform inner sieve loop with each residue ri:
• create cross-product (prm_r * ri)

• determine the resgroup kn it’s in, and its residue rn

• compute first prime multiple resgroup kpm for the prime with ri

• mark in prms each primenth kpm resgroup bitn[rn] as nonprime until its end
       6. repeat from 4 for next resgroup
       7. when sieve ends, numerate|store from each prms resgroup the needed sieving primes ≤ N

P5’s primes candidates (pcs) table up to 541 (the 100th prime) is shown below.

k 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

rt0 7 37 67 97 127 157 187 217 247 277 307 337 367 397 427 457 487 517

rt1 11 41 71 101 131 161 191 221 251 281 311 341 371 401 431 461 491 521

rt2 13 43 73 103 133 163 193 223 253 283 313 343 373 403 433 463 493 523

rt3 17 47 77 107 137 167 197 227 257 287 317 347 377 407 437 467 497 527

rt4 19 49 79 109 139 169 199 229 259 289 319 349 379 409 439 469 499 529

rt5 23 53 83 113 143 173 203 233 263 293 323 353 383 413 443 473 503 533

rt6 29 59 89 119 149 179 209 239 269 299 329 359 389 419 449 479 509 539

rt7 31 61 91 121 151 181 211 241 271 301 331 361 391 421 451 481 511 541

The function sozpg performs the P5 sieve exactly as shown. An array prms of kmax bytes is created to
represent each resgroup|column of 8 pc values|rows up to the resgroup that covers the input value. 

Each row represents a residue value|bit position|residue track. prms is initialized to ‘0’ to make all bit 

positions be prime. The sieve computes for each prime ≤  its first prime multiple resgroup 

kpm on each row, and starting from these, sets each primenth resgroup bit on each row to ‘1’, to mark 
its multiples (colors), to eliminate the nonprimes. The process is explained in greater detail as follows.
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The function sozpg performs the P5 sieve exactly as shown. An array prms of kmax bytes is created to

represent each resgroup|column of 8 pc values|rows up to the resgroup that covers the input value. 

Each row represents a residue value|bit position|residue track. prms is initialized to ‘0’ to make all bit 
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Multiplying two regroup pcs e.g. (17 * 19) = 323 gives: k, ri = 
(17 * 19). divmod 30 –> k = 10, ri = 23. From P5’s pc table, we 
see pc = 323 is in resgroup k=10 with residue 23 on restrack rt5.

Each prime can be parameterized by its residue r and resgroup 
k values e.g.: prime = modk + r, where modk = modpg * k for 
each resgroup, and each resgroup pc_i has form: pc_i = modk + 
ri. Thus, the multiplication – (prime * pc_i) – translates into the 
following parameterized form:

The original multiplication has now been transformed to the 
form: product = modpg * kk + rr
where kk = k * (prime + ri) and rr = r * ri, which also has the 
general form: pc = modpg * k + r.

The (r * ri) term represents the base residues (k = 0) cross 
products (which can be pre-computed). We extract from it its 
resgroup value: kn = (r * ri) / modpg, and residue: rn = (r * 
ri) % modpg, which maps to a restrack bit value as rt_n = 
residues.index(rn). Thus for P5, r = 7 is at residues[0], so that 
its rt_i row value is: i = residues.index(7) = 0, whose bit mask is: 
bit_r = 2i = (1 << i) in the code.

Thus, the product of two members in resgroup k maps to 
a higher resgroup: kp = kk + kn on rt_n, comprised of two 

components; kn (their cross-product resgroup), and kk (their k 
resgroup component).

To describe this verbally, to find the product resgroup kp of any 
two resgroup members, numerate one member (for us a prime), 
call its residue r, add the other’s residue ri to it, multiply their 
sum by the resgroup value k, then add it to their residues cross-
product resgroup. For (97 * 109) with k = 3 gives:

Ex: kp = (97 * 109) / 30 = 3 * (97 + 19) + (7 * 19) / 30
                                        = 3 * (109 + 7) + (19 * 7) / 30 
                                        = 352

For each Pn the last resgroup pc value is: (modpg + 1) ≡ 1 mod 
modpg, so for P5, its modpg*k + 31. To ensure pc / modpg = 
k always produces the correct k value, 2 is subtracted before the 
division.

Thus, the resultant residue value is 2 less than the correct one, 
so 2 is added back to get the true value. In sozpg: kn, rn = 
(prm * ri - 2).divmod md; kn is the correct resgroup and (rn 
+ 2) the correct residue. The code uses rn without the addition 
sometimes when doing memory addressing. (In the code, the 
posn array performs the mapping at address (r – 2) into restrack 
rtn indices (0 – 7).

Ex: (7 * 43) / 30 = 301 / 30 = 10, but 301 is the last pc in resgroup 
9, so (301 – 2) / 30 is correct value.

Also 301 % 30 = 1, but 299 % 30 = 29, and when 2 is added we 
get the correct residue 31 for pc 301.

Efficient residue multiplications

To find the resgroup (column) for a pc value in the table we integer divide it by the PG modulus. To 
find its residue value, we find its integer remainder when dividing by the PG modulus. Thus each pc 
regroup value has parameters:  k = pc div modpg, with residue value: ri =  pc mod modpg.

Multiplying two regroup pcs e.g. (17 * 19) = 323 gives: k, ri = (17 * 19).divmod 30 –> k = 10, ri = 23.
From P5’s pc table, we see pc = 323 is in resgroup k=10 with residue 23 on restrack rt5.

Each prime can be parameterized by its residue r and resgroup k values e.g.:  prime = modk + r,

where modk = modpg * k for each resgroup, and each resgroup pc_i has form:   pc_i = modk + ri. 
Thus the multiplication – (prime * pc_i) – translates into the following parameterized form:
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Thus, the product of two members in resgroup k maps to a higher resgroup:  kp = kk + kn on rt_n,

comprised of two components; kn (their cross-product resgroup), and kk (their k resgroup component).

To describe this verbally, to find the product resgroup kp of any two resgroup members, numerate one 

member (for us a prime), call its residue r, add the other’s residue ri to it, multiply their sum by the 

resgroup value k, then add it to their residues cross-product resgroup.  For (97 * 109) with k = 3 gives:

Ex:   kp = (97 * 109) / 30 = 3 * (97 + 19) + (7 * 19) / 30 = 3 * (109 + 7) + (19 * 7) / 30 = 352

For each Pn the last resgroup pc value is: (modpg + 1) ≡ 1 mod modpg, so for P5, its modpg*k + 31. 

To ensure pc / modpg = k  always produces the correct k value, 2 is subtracted before the division. 

Thus the resultant residue value is 2 less than the correct one, so 2 is added back to get the true value. 
In sozpg:  kn, rn = (prm * ri - 2).divmod md;  kn is the correct resgroup and (rn + 2) the 

correct residue.  The code uses rn without the addition sometimes when doing memory addressing.
(In the code, the posn array performs the mapping at address (r – 2) into restrack rtn indices 0 – 7).

Ex:   (7 * 43) / 30 = 301 / 30 = 10, but 301 is the last pc in resgroup 9, so (301 – 2) / 30 is correct value.
Also 301 % 30 = 1, but 299 % 30 = 29, and when 2 is added we get the correct residue 31 for pc 301.
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def sozpg(val, res_0, start_num, end_num)
  # Compute the primes r0..sqrt(input_num) and store in 'primes' array.
  # Any algorithm (fast|small) is usable. Here the SoZ for P5 is used.
  md, rscnt = 30u64, 8                   # P5's modulus and residues count
  res  = [7,11,13,17,19,23,29,31]        # P5's residues
  bitn = [0,0,0,0,0,1,0,0,0,2,0,4,0,0,0,8,0,16,0,0,0,32,0,0,0,0,0,64,0,128]

  kmax = (val - 2) // md + 1             # number of resgroups upto input value
  prms = Array(UInt8).new(kmax, 0)       # byte array of prime candidates, init '0'
  modk, r, k = 0, -1, 0                  # initialize residue parameters

  loop do                                # for r0..sqrtN primes mark their multiples
    if (r += 1) == rscnt; r = 0; modk += md; k += 1 end # resgroup parameters
    next if prms[k] & (1 << r) != 0      # skip pc if not prime
    prm_r = res[r]                       # if prime save its residue value
    prime = modk + prm_r                 # numerate the prime value
    break if prime > Math.isqrt(val)     # exit loop when it's > sqrtN
    res.each do |ri|                     # mark prime's multiples in prms
      kn,rn = (prm_r * ri - 2).divmod md # cross-product resgroup|residue
      bit_r = bitn[rn]                   # bit mask for prod's residue
      kpm = k * (prime + ri) + kn        # resgroup for 1st prime mult
      while kpm < kmax; prms[kpm] |= bit_r; kpm += prime end
  end end
  # prms now contains the nonprime positions for the prime candidates r0..N
  # extract only primes that are in inputs range into array 'primes'
  primes = [] of UInt64                  # create empty dynamic array for primes
  prms.each_with_index do |resgroup, k|  # for each kth residue group
    res.each_with_index do |r_i, i|      # check for each ith residue in resgroup         
      if resgroup & (1 << i) == 0        # if bit location a prime
        prime = md * k + r_i             # numerate its value, store if in range
        # check if prime has multiple in range, if so keep it, if not don't
        n, rem = start_num.divmod prime  # if rem 0 then start_num is multiple of prime
        primes << prime if (res_0 <= prime <= val) && (prime * n <= end_num - prime || rem == 0)
  end end end
  primes
end

Inputs:   Output:

val – integer value for   primes – array of sieving primes within inputs range

res_0 – first residue for selected SSoZ Pn

end_num – inputs high value

start_num – inputs low value

sozpg sieves the prime multiples ≤ val to create P5’s pcs table held in byte array prms, as described. 

To extract only the necessary primes for the SSoZ it uses inputs: res_0, start_num, end_num

res_0 is the first residue of the selected Pn for the SSoZ.  For P5 it’s 7, but when Pn is larger, e.g. P7, 

P11, P13 etc, their res_0 are greater, i.e. 11, 13, 17, etc, so only the primes ≥ res_0 are kept. The last 

byte prm[kmax-1] may also have bit positions for primes > val, which aren’t needed and are discarded.

We thus perform two checks for each found prime, the first being: (res_0 <= prime <= val)

This filters out from P5’s pcs table the primes outside the SSoZ inputs range for the selected Pn.

The second check filters out the primes without multiples within the SSoZ inputs range. For small input

ranges, primes > the range size can be discarded if they don’t have multiples within it.  This is done by 

the check: (prime * n <= end_num - prime || rem == 0) 
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sozpg sieves the prime multiples ≤ val to create P5’s pcs table 
held in byte array prms, as described. To extract only the 
necessary primes for the SSoZ it uses inputs: res_0, start_num, 
end_num.

res_0 is the first residue of the selected Pn for the SSoZ. For P5 
it’s 7, but when Pn is larger, e.g. P7, P11, P13 etc, their res_0 
are greater, i.e. 11, 13, 17, etc, so only the primes ≥ res_0 are 
kept. The last byte prm[kmax-1] may also have bit positions for 
primes > val, which aren’t needed and are discarded.

We thus perform two checks for each found prime, the first 
being: (res_0 <= prime <= val). This filters out from P5’s pcs 
table the primes outside the SSoZ inputs range for the selected 
Pn.

The second check filters out the primes without multiples within 
the SSoZ inputs range. For small input ranges, primes > the 
range size can be discarded if they don’t have multiples within 
it, by doing: (prime * n <= end_num - prime || rem == 0).

All the primes ≤  are used if their values are ≤ range = (  – ).  But if 

range = (  – ) <  some sieving primes may be discarded, i.e. when 

(  – ) <  some primes may not have multiples within the range.

Example:     = 4,000,000;  = 2,000

                              (  – ) < 

                         (4,000,000 – 2,000) < 

                                                        3,998,000 <  

 

If  ≤ 3,998,000; say 500,000; the input range is ≥ 1999, the largest prime less than 2000, and

all the primes <  will have at least one multiple in the range, and must be used.

If  > 3,998,000, say 3,999,300, the primes < 700 (the input range) will have multiples in the 

range; 122 for P5. But some of the 178 primes between 700 < p < 2,000 will not, and can be discarded. 

The second test finds 103 are needed. So for P5 only 75% (225 of 300) of the primes < 2000 are used.

Described below is the process to determine if a prime p has at least one multiple in the inputs range.

                                                                        | ––– p ––– |

                                                                        |rem |          | np+p

                                             1p…2p…3p…..np….|-------+-----------------------|

                                                                       start_num                           end_num

Here, n*p + rem = , where n is the number of prime’s multiples e.g. np ≤ .

If rem = 0 then  is a multiple of p, otherwise 0 < rem < p.  If p > ,  n = 0.

Thus  (n*p + p) = p*(n + 1)  is the next multiple of p whose value is > . 

If p*(n + 1) ≤  p is in range, if not, but rem = 0, then p*n = , and p is in range.

To code, for every prime we do:  n = start_num // prime; rem = start_num % prime

In Crystal, et al, we can just do:   n, rem = start_num.divmod prime        

Then we perform the above tests as:  prime * (n + 1) <= end_num || rem == 0

To avoid arithmetic overflow we do:  prime * n <= end_num - prime || rem == 0

Also, when performing:  kn, rn = (prm_r * ri - 2).divmod md, rn’s true value is reduced by 2, 

but we need to know its true residue bit position to mark the prime multiples for those bit positions.

Conceptually, given residue rn, its bit index is: posn[rn] = res.index(rn), for P5 a value from 0..7.

Because the rn values are 2 less than their real values, (rn – 2) is used as their addresses into the array 

posn used to map them, coded as: posn=[];(0..rscnt-1).each { |n| posn[res[n]-2] = n }

Then posn[7-2] = 0, posn[11-2] = 1, etc, and each rn bit value is: bit_r = 1 << posn[rn], which 

are OR’d into prms to mark the prime multiples as: prms[kpm] |= bit_r.  The shift values 2i can be 

converted to their bit position values directly using array bitn[] e.g. now: bit_r= bitn[rn]

 
posn =[0,0,0,0,0,0,0,0,0,1,0,2,0,0,0,3,0, 4,0,0,0, 5,0,0,0,0,0, 6,0,  7]
bitn =[0,0,0,0,0,1,0,0,0,2,0,4,0,0,0,8,0,16,0,0,0,32,0,0,0,0,0,64,0,128]

In both cases byte arrays can be used to store the values, as they all can be represented by just 8 bits.

This is an implementation detail to decide.
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All the primes ≤  are used if their values are ≤ range = (  – ).  But if 
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Here, n*p + rem = , where n is the number of prime’s multiples e.g. np ≤ .
If rem = 0 then  is a multiple of p, otherwise 0 < rem < p.  If p > ,  n = 0.
Thus  (n*p + p) = p*(n + 1)  is the next multiple of p whose value is > . 
If p*(n + 1) ≤  p is in range, if not, but rem = 0, then p*n = , and p is in range.

To code, for every prime we do:  n = start_num // prime; rem = start_num % prime
In Crystal, et al, we can just do:   n, rem = start_num.divmod prime        
Then we perform the above tests as:  prime * (n + 1) <= end_num || rem == 0
To avoid arithmetic overflow we do:  prime * n <= end_num - prime || rem == 0

Also, when performing:  kn, rn = (prm_r * ri - 2).divmod md, rn’s true value is reduced by 2, 
but we need to know its true residue bit position to mark the prime multiples for those bit positions.

Conceptually, given residue rn, its bit index is: posn[rn] = res.index(rn), for P5 a value from 0..7.
Because the rn values are 2 less than their real values, (rn – 2) is used as their addresses into the array 
posn used to map them, coded as: posn=[];(0..rscnt-1).each { |n| posn[res[n]-2] = n }
Then posn[7-2] = 0, posn[11-2] = 1, etc, and each rn bit value is: bit_r = 1 << posn[rn], which 
are OR’d into prms to mark the prime multiples as: prms[kpm] |= bit_r.  The shift values 2i can be 
converted to their bit position values directly using array bitn[] e.g. now: bit_r= bitn[rn]
 
posn =[0,0,0,0,0,0,0,0,0,1,0,2,0,0,0,3,0, 4,0,0,0, 5,0,0,0,0,0, 6,0,  7]
bitn =[0,0,0,0,0,1,0,0,0,2,0,4,0,0,0,8,0,16,0,0,0,32,0,0,0,0,0,64,0,128]

In both cases byte arrays can be used to store the values, as they all can be represented by just 8 bits.
This is an implementation detail to decide.
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                                                        3,998,000 <  
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Here the primes are extracted from each row in parallel using 8 
threads, thus not kept in sequential order. Reversing the loops, as 
in the Crystal code, will extract them in order but will be slower 
as the number of resgroups increase. Since sequential order isn’t 
necessary to do the SSoZ this is optimal.

For systems with more than 8 threads, using P7 with 48 residues 
may be faster, especially for large input values, if P7’s smaller 
number space can be processed faster with those threads than 
using P5.

We can see the performance gain that’s achieved between using 
all the sieving primes for end_num, to only using those with 
multiples within the input’s ranges, to then generating them in 
parallel in sozpg. The following examples using Rust show the 
three cases and the progressive performance increases.
 
This is the Rust output of the original unoptimized sozpg using 
these two 63-bit numbers as inputs. It shows (in nextp[2 x 
129900044]) 129,900,044 sieving primes were generated, which 
accounted for most of the setup time. The times shown are for 
the i7 6700HQ 4C|8T and AMD 5900HX 8C|16T cpus.

Because the processing of each row is independent from the others we can perform both the sieve and 

prime extraction processes in parallel.  Below shows Rust code using the Rayon crate to do this.

fn atomic_slice(slice: &mut [u8]) -> &[AtomicU8] {
    unsafe { &*(slice as *mut [u8] as *const [AtomicU8]) }
}

fn sozpg(val: usize, res_0: usize, start_num : usize, end_num : usize) -> Vec<usize> {
  // Compute the primes r0..sqrt(input_num) and store in 'primes' array.
  // Any algorithm (fast|small) is usable. Here the SoZ for P5 is used.
  let (md, rscnt) = (30, 8);              // P5's modulus and residues count
  static RES: [usize; 8] = [7,11,13,17,19,23,29,31];
  static BITN: [u8; 30] = [0,0,0,0,0,1,0,0,0,2,0,4,0,0,0,8,0,16,0,0,0,32,0,0,0,0,0,64,0,128];
  
  let kmax = (val - 2) / md + 1;          // number of resgroups upto input value
  let mut prms = vec![0u8; kmax];         // byte array of prime candidates, init '0'
  let sqrt_n = val.integer_sqrt();        // compute integer sqrt of val
  let (mut modk, mut r, mut k) = (0, 0, 0 );
  
  loop {                                  // for r0..sqrtN primes mark their multiples
    if r == rscnt { r = 0; modk += md; k += 1 }
    if (prms[k] & (1 << r)) != 0 { r += 1; continue } // skip pc if not prime
    let prm_r = RES[r];                   // if prime save its residue value
    let prime = modk + prm_r;             // numerate the prime value
    if  prime > sqrt_n { break }          // exit loop when it's > sqrtN
    let prms_atomic = atomic_slice(&mut prms); // share mutable prms among threads 
    RES.par_iter().for_each (|ri| {       // mark prime's multiples in prms in parallel
      let prod = prm_r * ri - 2;          // compute cross-product for prm_r|ri pair
      let bit_r = BITN[prod % md];        // bit mask for prod's residue
      let mut kpm = k * (prime + ri) + prod / md; // 1st resgroup for prime mult
      while kpm < kmax { prms_atomic[kpm].fetch_or(bit_r, Ordering::Relaxed); kpm += prime; };
    });
    r += 1;
  }
  // prms now contains the nonprime positions for the prime candidates r0..N
  // numerate the primes on each bit row in prms in parallel (won't be in sequential order)
  // return only the primes necessary to do SSoZ for given inputs in array 'primes'
  let primes = RES.par_iter().enumerate().flat_map_iter( |(i, ri)| {
    prms.iter().enumerate().filter_map(move |(k, resgroup)| {
      if resgroup & (1 << i) == 0 { 
        let prime = md * k + ri;   
        let (n, rem) = (start_num / prime, start_num % prime);
        if (prime >= res_0 && prime <= val) && (prime * n <= end_num - prime || rem == 0) {
          return Some(prime);
      } } None
  }) }).collect();
  primes
}

Here the primes are extracted from each row in parallel using 8 threads, thus not kept in sequential 
order. Reversing the loops, as in the Crystal code, will extract them in order but will be slower as the 

number of resgroups increase.  Since sequential order isn’t necessary to do the SSoZ this is optimal.

For systems with more than 8 threads, using P7 with 48 residues may be faster, especially for large 
input values, if P7’s smaller number space can be processed faster with those threads than using P5.

We can see the performance gain that’s achieved between using all the sieving primes for end_num, to  

only using those with multiples within the inputs ranges, to then generating them in parallel in sozpg.  

The following examples using Rust show the three cases and the progressive performance increases.
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This is the Rust output of the original unoptimized sozpg using these two 63-bit numbers as inputs. It 

shows (in nextp[2 x 129900044]) 129,900,044 sieving primes were generated, which accounted for 
most of the setup time. The times shown are for the i7 6700HQ 4C|8T and AMD 5900HX 8C|16T cpus.

$ echo 7200011140000000000 7200011139993250000 | ./twinprimes_ssoz157
threads = 8                        // 16
using Prime Generator parameters for P5
segment size = 65536 resgroups; seg array is [1 x 1024] 64-bits
twinprime candidates = 675003; resgroups = 225001
each of 3 threads has nextp[2 x 129900044] array
setup time = 13.098702568 secs     // 7.089318922 secs
perform twinprimes ssoz sieve
3 of 3 twinpairs done
sieve time = 9.731177018 secs      // 4.944145598 secs
total time = 22.829885781 secs     // 12.033471504 secs
last segment = 28393 resgroups; segment slices = 4
total twins = 4711; last twin = 7200011139999998808+/-1

These are the result from filtering out the unnecessary primes (no multiples in inputs range), using 49x 
fewer primes – 2,636,377.  Though there’s some setup time increases for 8 threads, there’s a massive 

decrease in the sieve time, as each thread now does significantly less work (and use less memory).

$ echo 7200011140000000000 7200011139993250000 | ./twinprimes_ssoz158
threads = 8                        // 16
using Prime Generator parameters for P5
segment size = 65536 resgroups; seg array is [1 x 1024] 64-bits
twinprime candidates = 675003; resgroups = 225001
each of 3 threads has nextp[2 x 2636377] array
setup time = 13.743127493 secs     // 6.987116498 secs
perform twinprimes ssoz sieve
3 of 3 twinpairs done
sieve time = 0.175270322 secs      // 0.107544045 secs
total time = 13.918427314 secs     // 7.094673324 secs
last segment = 28393 resgroups; segment slices = 4
total twins = 4711; last twin = 7200011139999998808+/-1

Finally, when sozpg performs the prime generation and filtering process in parallel the setup times 
drop from 13.7|6.9 to 5.3|4.7 secs, with a total time drop from 22.8|12.0 to ~5.5|4.9 secs.

$ echo 7200011140000000000 7200011139993250000 | ./twinprimes_ssoz159 
threads = 8                        // 16
using Prime Generator parameters for P5
segment size = 65536 resgroups; seg array is [1 x 1024] 64-bits
twinprime candidates = 675003; resgroups = 225001
each of 3 threads has nextp[2 x 2636377] array
setup time = 5.296482074 secs      // 4.74022821 secs
perform twinprimes ssoz sieve
3 of 3 twinpairs done
sieve time = 0.180924203 secs      // 0.116552963 secs
total time = 5.477426691 secs      // 4.856791579 secs
last segment = 28393 resgroups; segment slices = 4
total twins = 4711; last twin = 7200011139999998808+/-1
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twinprime candidates = 675003; resgroups = 225001
each of 3 threads has nextp[2 x 129900044] array
setup time = 13.098702568 secs     // 7.089318922 secs
perform twinprimes ssoz sieve
3 of 3 twinpairs done
sieve time = 9.731177018 secs      // 4.944145598 secs
total time = 22.829885781 secs     // 12.033471504 secs
last segment = 28393 resgroups; segment slices = 4
total twins = 4711; last twin = 7200011139999998808+/-1

These are the result from filtering out the unnecessary primes (no multiples in inputs range), using 49x 

fewer primes – 2,636,377.  Though there’s some setup time increases for 8 threads, there’s a massive 

decrease in the sieve time, as each thread now does significantly less work (and use less memory).

$ echo 7200011140000000000 7200011139993250000 | ./twinprimes_ssoz158
threads = 8                        // 16
using Prime Generator parameters for P5
segment size = 65536 resgroups; seg array is [1 x 1024] 64-bits
twinprime candidates = 675003; resgroups = 225001
each of 3 threads has nextp[2 x 2636377] array
setup time = 13.743127493 secs     // 6.987116498 secs
perform twinprimes ssoz sieve
3 of 3 twinpairs done
sieve time = 0.175270322 secs      // 0.107544045 secs
total time = 13.918427314 secs     // 7.094673324 secs
last segment = 28393 resgroups; segment slices = 4
total twins = 4711; last twin = 7200011139999998808+/-1

Finally, when sozpg performs the prime generation and filtering process in parallel the setup times 

drop from 13.7|6.9 to 5.3|4.7 secs, with a total time drop from 22.8|12.0 to ~5.5|4.9 secs.

$ echo 7200011140000000000 7200011139993250000 | ./twinprimes_ssoz159 
threads = 8                        // 16
using Prime Generator parameters for P5
segment size = 65536 resgroups; seg array is [1 x 1024] 64-bits
twinprime candidates = 675003; resgroups = 225001
each of 3 threads has nextp[2 x 2636377] array
setup time = 5.296482074 secs      // 4.74022821 secs
perform twinprimes ssoz sieve
3 of 3 twinpairs done
sieve time = 0.180924203 secs      // 0.116552963 secs
total time = 5.477426691 secs      // 4.856791579 secs
last segment = 28393 resgroups; segment slices = 4
total twins = 4711; last twin = 7200011139999998808+/-1
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6. Constructing nextp
nextp is a table of the resgroups for the first prime multiples for the sieving primes along each restrack. From P5’s pcs table we can 
look at each row and create Table 3 of their first prime multiples resgroups.

Constructing nextp

nextp is a table of the resgroups for the first prime multiples for the sieving primes along each restrack.
From P5’s pcs table we can look at each row and create Table 3 of their first prime multiples resgroups.

k 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

rt0 7 37 67 97 127 157 187 217 247 277 307 337 367 397 427 457 487 517

rt1 11 41 71 101 131 161 191 221 251 281 311 341 371 401 431 461 491 521

rt2 13 43 73 103 133 163 193 223 253 283 313 343 373 403 433 463 493 523

rt3 17 47 77 107 137 167 197 227 257 287 317 347 377 407 437 467 497 527

rt4 19 49 79 109 139 169 199 229 259 289 319 349 379 409 439 469 499 529

rt5 23 53 83 113 143 173 203 233 263 293 323 353 383 413 443 473 503 533

rt6 29 59 89 119 149 179 209 239 269 299 329 359 389 419 449 479 509 539

rt7 31 61 91 121 151 181 211 241 271 301 331 361 391 421 451 481 511 541

Table 3.

rt res
List of resgroup values for the first prime multiples –  prime * (modk + ri) – for the primes shown.

7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71 73

0 7 7 6 8 6 8 22 22 7 75 64 70 64 104 104 75 203 182 192

1 11 5 11 7 7 18 5 18 11 65 83 67 67 65 96 83 185 215 187

2 13 4 8 13 16 4 8 16 13 60 72 87 92 72 92 87 176 196 221

3 17 2 2 12 17 14 14 12 17 50 50 84 95 86 84 95 158 158 216

4 19 1 10 5 9 19 17 10 19 45 80 61 73 93 80 99 149 210 177

5 23 6 4 4 10 10 23 6 23 72 58 58 76 107 72 107 198 172 172

6 29 3 6 9 3 6 9 29 29 57 66 75 57 75 119 119 171 186 201

7 31 2 3 2 12 11 12 27 31 52 55 52 82 82 115 123 162 167 162

Note on each row, when two primes have the same resgroup table value they were multiplied. When  

only one value occurs, its either for a prime square, or a (prime * nonprime) value.  Also, for a prime in
any resgroup k, its first prime multiple resgroup value on its own row is just: prime * (k + 1) + k
For P5’s pcs table this is equivalent to:   k * (prime + 31) + ((prm_r * 31) - 2) / 30

(This is a property for every pc member in a resgroup for every Pn, for its first multiple on its row).

To construct Table 3, each prime in P5’s pcs table multiplies each regroup member, whose products are
other table values. Their row|col cell locations are entries into nextp.  Thus starting with first prime 7:  
           
                 7 * [7, 11, 13, 17, 19, 23, 27, 29, 31] = [49, 77, 91, 119, 133, 161, 203, 217]

We see in P5’s pcs table, 49 occurs in resgroup k=1 for residue value 19, which is residue track 4 (rt4). 
Similarly for the remaining multiples of 7, we see their placement in the table.  Repeating this process 

for each prime, we compute their first multiples, then determine their resgroup value for each restrack.

12
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rt res List of resgroup values for the first prime multiples – prime * (modk + ri) – for the primes shown.
7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71 73

0 7 7 6 8 6 8 22 22 7 75 64 70 64 104 104 75 203 182 192
1 11 5 11 7 7 18 5 18 11 65 83 67 67 65 96 83 185 215 187
2 13 4 8 13 16 4 8 16 13 60 72 87 92 72 92 87 176 196 221
3 17 2 2 12 17 14 14 12 17 50 50 84 95 86 84 95 158 158 216
4 19 1 10 5 9 19 17 10 19 45 80 61 73 93 80 99 149 210 177
5 23 6 4 4 10 10 23 6 23 72 58 58 76 107 72 107 198 172 172
6 29 3 6 9 3 6 9 29 29 57 66 75 57 75 119 119 171 186 201
7 31 2 3 2 12 11 12 27 31 52 55 52 82 82 115 123 162 167 162

Note on each row, when two primes have the same resgroup 
table value they were multiplied. When only one value occurs, 
its either for a prime square, or a (prime * nonprime) value. Also, 
for a prime in any resgroup k, its first prime multiple resgroup 
value on its own row is just: prime * (k + 1) + k. For P5’s pcs 
table this is equivalent to: 
k * (prime + 31) + ((prm_r * 31) - 2) / 30
(This is a property for every pc member in a resgroup for every 
Pn, for its first multiple on its row).

To construct Table 3, each prime in P5’s pcs table multiplies 
each regroup member, whose products are other table values. 
Their row|col cell locations are entries into nextp. Thus, starting 
with first prime 7: 7 * [7, 11, 13, 17, 19, 23, 29, 31] =
[49, 77, 91, 119, 133, 161, 203, 217]

We see in P5’s pcs table, 49 occurs in resgroup k=1 for residue 
value 19, which is residue track 4 (rt4). Similarly, for the 
remaining multiples of 7, we see their placement in the table. 
Repeating this process for each prime, we compute their first 
multiples, then determine their resgroup value for each restrack.
 
These first prime multiple locations in Table 3 are used to start 
marking off successive prime multiples along each restrack|row. 
The SoZ computes each prime’s multiples on the fly once and 
doesn’t need to store them for later use. The SSoZ computes an 
initial nextp for the inputs range first segment, which is updated 
at the end of each segment slice to set the first prime multiples 
for the next segment(s).

For each sieve prime we compute its first multiple resgroup k 
for the restracks of interest, e.g. for twin pair residues. We then 
determine its regroup k’≥ kmin, where kmin is the resgroup for 
the start_num, input value (kmin = 1 if one input given). Thus 
k’≥ 0 is the number of resgroups starting from kmin.

In the picture below, k is a prime’s 1st multiple resgroup on a 
row, and k’its projection relative to kmin. If k ≥ kmin, then k’= 
k - kmin. Thus if kmin = 3 and k = 7, k’=4 is its first resgroup 
inside the segment starting at kmin. If k = kmin then k’= 0, i.e. 
that first prime multiple starts at the segment’s beginning.

If k < kmin, we compute prime’s multiple closest to kmin, i.e. 
where k’= 0...prime-1 resgroups ≤ kmin:

k’ = (kmin - k) % prime –> value of rem in picture
k’ = prime - k’ if k’ > 0 –> translated k’ value > kmin

Ex: for prime 7 on rt0, let k = 7, kmin = 21: then k’ = (21 - 7) % 
7 = 0; to start from (multiple of 7). 

Ex: for prime 7 on rt0, let k = 7, kmin = 25: then k’ = (25 - 7) % 
7 = 4; k’ = 7 - 4 = 3; to start from.

In software, we can reassign the variable k to use for k’, so the 
(Crystal, et al) code just becomes:

k < kmin ? (k = (kmin - k) % prime; k = prime - k if k > 0) :
k -= kmin

It should be noted, while the sieve primes have at least 1 multiple 
within the inputs range, some may not have multiples on each 
restrack, especially for small ranges, and for them k > kmax. 
If this happens for both residue pairs, those primes could be 
discarded from the primes lists for those residues sieves. For 
general purposes though, it won’t happen enough to increase 
performance to justify the extra code.

To make the process|code simple, the k values for each sieve 
prime are generated and stored in nextp, without worry if they’re 
> kmax. If a prime’s k is larger than a segment size its skipped 
for it (not used to mark prime multiples) and reduced|updated 
by kn with smaller values for the next segment(s). When less 
than a segment size, it’s used in the residues sieve to mark prime 
multiples. Thus, in twins_sieve, only primes with multiples in a 
segment for each restrack are used to mark prime multiples, or 
skipped.

A unique nextp array is created for each residues pair in each 
thread for the sieving primes. Thus, for twin|cousin primes, 
nextp holds their first prime multiples resgroups values for each 
segment slice for both residue pairs restracks. Thus, its memory 
increases with inputs values (more sieving primes) and larger 
generators (more residue pairs), though active memory use will 
be determined by the number of parallel threads holding onto 
memory. How different languages manage memory affects the 
size and throughput they can achieve for various inputs and 
ranges, for a system’s memory sizes and profile.
 

These first prime multiple locations in Table 3 are used to start marking off successive prime multiples 

along each restrack|row. The SoZ computes each prime’s multiples on the fly once and doesn’t need to 

store them for later use. The SSoZ computes an initial nextp for the inputs range first segment, which 

is updated at the end of each segment slice to set the first prime multiples for the next segment(s).

For each sieve prime we compute its first multiple resgroup k for the restracks of interest, e.g. for twin 

pair residues. We then determine its regroup k’≥ kmin, where kmin is the resgroup for the start_num, 

input value (kmin = 1 if one input given).  Thus k’≥ 0 is the number of resgroups starting from kmin.

In the picture below, k is a prime’s 1st multiple resgroup on a row, and k’its projection relative to kmin.

If k ≥ kmin, then k’= k - kmin. Thus if kmin = 3 and k = 7, k’=4 is its first resgroup inside the segment

starting at kmin.  If k = kmin then k’= 0, i.e. that first prime multiple starts at the segment’s beginning.

                                                                       

                                                                        | ––– p ––– |

                                             k                         |rem |          k’

                                             |.…..…..……….|…...|--------|-----------------------

                                                                            kmin                       

If k < kmin, we compute prime’s multiple closest to kmin, i.e. where k’= 0...prime-1 resgroups ≤ kmin:

                            k’ = (kmin - k) % prime     –> value of rem in picture

                            k’ = prime - k’ if k’ > 0    –> translated k’ value > kmin

Ex: for prime 7 on rt0, let k = 7, kmin = 21: then k’ = (21 - 7) % 7 = 0;  to start from (multiple of 7).

Ex: for prime 7 on rt0, let k = 7, kmin = 25: then k’ = (25 - 7) % 7 = 4; k’ = 7 - 4 = 3; to start from.

In software, we can reassign the variable k to use for k’, so the (Crystal, et al) code just becomes:

    k < kmin ? (k = (kmin - k) % prime; k = prime - k if k > 0) : k -= kmin

It should be noted, while the sieve primes have at least 1 multiple within the inputs range, some may 

not have multiples on each restrack, especially for small ranges, and for them k > kmax. If this happens 

for both residue pairs, those primes could be discarded from the primes lists for those residues sieves. 

For general purposes though, it won’t happen enough to increase performance to justify the extra code.

To make the process|code simple, the k values for each sieve prime are generated and stored in nextp, 

without worry if they’re > kmax.  If a prime’s k is larger than a segment size its skipped for it (not used 

to mark prime multiples) and reduced|updated by kn with smaller values for the next segment(s). When

less than a segment size, it’s used in the residues sieve to mark prime multiples. Thus in twins_sieve, 

only primes with multiples in a segment for each restrack are used to mark prime multiples, or skipped.

A unique nextp array is created for each residues pair in each thread for the sieving primes. Thus for 

twin|cousin primes, nextp holds their first prime multiples resgroups values for each segment slice for 

both residue pairs restracks.  Thus its memory increases with inputs values (more sieving primes) and 

larger generators (more residue pairs), though active memory use will be determined by the number of 

parallel threads holding onto memory.  How different languages manage memory affects the size and 

throughput they can achieve for various inputs and ranges, for a system’s memory sizes and profile.
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6.1 Creating nextp for SSoZ
In the SoZ, a prime’s residue r multiplies each Pn residue ri and 
(r * ri) mod modpg maps to a unique restrack rt in some resgroup 
k, is the starting point to mark off that prime’s multiples for that 
ri. We now want to multiply r by the ri that makes (r * ri) be on 
a given restrack rt, for each sieving prime.

Thus, if for some ri, (r * ri) mod modpg = rt, to find the ri that 
maps each r to a specific rt we do:

Where for r-1, r_inv = modinv(r, modpg) in the code, with 
r being the residue for a sieve prime. (A property of prime 
generators is that every residue has an inverse, either itself or 
another residue.)

Now kn = (r * ri - 2) / modpg, and k = (prime - 2) / modpg,
so again: kpm = k * (prime + ri) + kn.

If r_inv is a prime’s residue inverse, and rt the desired restrack:
ri = (r_inv * rt - 2) mod modpg + 2.

For each residues pair, nextp_init creates the nextp array of 
the sieve primes first resgroup multiples relative to kmin, for 
the rt values r_lo and r_hi, the upper|lower residues pair. With 
no loss of generality, it can be used to construct nextp for any 
architecture for any number of specified restracks. 

Creating nextp for SSoZ

In the SoZ, a prime’s residue r multiplies each Pn residue ri and (r * ri) mod modpg maps to a unique 

restrack rt in some resgroup k, is the starting point to mark off that prime’s multiples for that ri.  We 

now want to multiply r by the ri that makes (r * ri) be on a given restrack rt, for each sieving prime.

Thus if for some ri, (r * ri) mod modpg = rt, to find the ri that maps each r to a specific rt we do:

           

          

      

Where for r-1, r_inv = modinv(r, modpg) in the code, with r being the residue for a sieve prime.
(A property of prime generators is that every residue has an inverse, either itself or another residue.)

Now kn = (r * ri - 2) / modpg, and k = (prime - 2) / modpg, so again:  kpm = k * (prime + ri) + kn

If r_inv is a prime’s residue inverse, and rt the desired restrack: ri = (r_inv * rt - 2) mod modpg + 2

For each residues pair, nextp_init creates the nextp array of the sieve primes first resgroup multiples 
relative to kmin, for the rt values r_lo and r_hi, the upper|lower residues pair.  With no loss of 
generality, it can be used to construct nextp for any architecture for any number of specified restracks.

nextp_init

def nextp_init(rhi, kmin, modpg, primes, resinvrs)
  # Initialize 'nextp' array for twinpair upper residue rhi in 'restwins'.
  # Compute 1st prime multiple resgroups for each prime r0..sqrt(N) and
  # store consecutively as lo_tp|hi_tp pairs for their restracks.
  nextp = Slice(UInt64).new(primes.size*2) # 1st mults array for twinpair
  r_hi, r_lo = rhi, rhi - 2              # upper|lower twinpair residue values
  primes.each_with_index do |prime, j|   # for each prime r0..sqrt(N)
    k = (prime - 2) // modpg             # find the resgroup it's in
    r = (prime - 2) %  modpg + 2         # and its residue value
    r_inv = resinvrs[r].to_u64           # and residue inverse
    rl = (r_inv * r_lo - 2) % modpg + 2  # compute r's ri for r_lo
    rh = (r_inv * r_hi - 2) % modpg + 2  # compute r's ri for r_hi
    kl = k * (prime + rl) + (r * rl - 2) // modpg # kl 1st mult resgroup
    kh = k * (prime + rh) + (r * rh - 2) // modpg # kh 1st mult resgroup
    kl < kmin ? (kl = (kmin - kl) % prime; kl = prime - kl if kl > 0) : (kl -= kmin)
    kh < kmin ? (kh = (kmin - kh) % prime; kh = prime - kh if kh > 0) : (kh -= kmin)
    nextp[j * 2] = kl.to_u64             # prime's 1st mult lo_tp resgroup val in range
    nextp[j * 2 | 1] = kh.to_u64         # prime's 1st mult hi_tp resgroup val in range
  end
  nextp
end

Inputs: Output:
rhi – hi residue value for this twinpair nextp – array of primes 1st mults for given residues

kmin – resgroup value for start_num
modpg – modulus value for chosen pg
primes – array of sieving primes

resinvrs – array of residues modular inverses
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6.2 Twins|Cousins SSoZ
Let’s now construct the process to find twin primes ≤ N with a segmented sieve, using our P5 example. Twin primes are consecutive 
odd integers that are prime, the first two being [3:5], and [5:7]. Thus, from our original P5 pcs table, we use just the consecutive 
pc residue tracks, whose residues table is below. A twin prime occurs when both twin pair pc values in a column are prime (not 
colored), e.g. [191:193].

Creating nextp for SSoZ

In the SoZ, a prime’s residue r multiplies each Pn residue ri and (r * ri) mod modpg maps to a unique 

restrack rt in some resgroup k, is the starting point to mark off that prime’s multiples for that ri.  We 

now want to multiply r by the ri that makes (r * ri) be on a given restrack rt, for each sieving prime.

Thus if for some ri, (r * ri) mod modpg = rt, to find the ri that maps each r to a specific rt we do:

           

          

      

Where for r-1, r_inv = modinv(r, modpg) in the code, with r being the residue for a sieve prime.
(A property of prime generators is that every residue has an inverse, either itself or another residue.)

Now kn = (r * ri - 2) / modpg, and k = (prime - 2) / modpg, so again:  kpm = k * (prime + ri) + kn

If r_inv is a prime’s residue inverse, and rt the desired restrack: ri = (r_inv * rt - 2) mod modpg + 2

For each residues pair, nextp_init creates the nextp array of the sieve primes first resgroup multiples 
relative to kmin, for the rt values r_lo and r_hi, the upper|lower residues pair.  With no loss of 
generality, it can be used to construct nextp for any architecture for any number of specified restracks.

nextp_init

def nextp_init(rhi, kmin, modpg, primes, resinvrs)
  # Initialize 'nextp' array for twinpair upper residue rhi in 'restwins'.
  # Compute 1st prime multiple resgroups for each prime r0..sqrt(N) and
  # store consecutively as lo_tp|hi_tp pairs for their restracks.
  nextp = Slice(UInt64).new(primes.size*2) # 1st mults array for twinpair
  r_hi, r_lo = rhi, rhi - 2              # upper|lower twinpair residue values
  primes.each_with_index do |prime, j|   # for each prime r0..sqrt(N)
    k = (prime - 2) // modpg             # find the resgroup it's in
    r = (prime - 2) %  modpg + 2         # and its residue value
    r_inv = resinvrs[r].to_u64           # and residue inverse
    rl = (r_inv * r_lo - 2) % modpg + 2  # compute r's ri for r_lo
    rh = (r_inv * r_hi - 2) % modpg + 2  # compute r's ri for r_hi
    kl = k * (prime + rl) + (r * rl - 2) // modpg # kl 1st mult resgroup
    kh = k * (prime + rh) + (r * rh - 2) // modpg # kh 1st mult resgroup
    kl < kmin ? (kl = (kmin - kl) % prime; kl = prime - kl if kl > 0) : (kl -= kmin)
    kh < kmin ? (kh = (kmin - kh) % prime; kh = prime - kh if kh > 0) : (kh -= kmin)
    nextp[j * 2] = kl.to_u64             # prime's 1st mult lo_tp resgroup val in range
    nextp[j * 2 | 1] = kh.to_u64         # prime's 1st mult hi_tp resgroup val in range
  end
  nextp
end

Inputs: Output:

rhi – hi residue value for this twinpair nextp – array of primes 1st mults for given residues
kmin – resgroup value for start_num
modpg – modulus value for chosen pg

primes – array of sieving primes

resinvrs – array of residues modular inverses
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Table 4: Twin Primes Residues Tracks Table for P5(541)

We see from the table the twin pair residue tracks for [11:13] has 
10 twin primes ≤ 541, [17:19] has 6, and [29:31] has 7. Thus, the 
total twin prime count ≤ 541 is 23 + [3:5] + [5:7] = 25, with the 
last being [521:523]. Twin primes are usually referenced to the 
mid (even) number between the upper and lower consecutive 
odd primes pair, so the last (largest) twin pair ≤ 541 for [521:523] 
is written as 522 ± 1.

As shown before, the number of twin|cousin residue pairs are 
equal to: (pn - 2)# = pn

-2# = Π (pn - 2).

Thus, P5 has 3 residue pairs for each. Below are the three Cousin 
Prime pairs taken from P5’s pcs table. 

Table 5: Cousin Primes Residues Tracks Table for P5(541)

The SSoZ algorithm is the same for both, with their coding only 
differing to deal with accounting for low input values ranges, as 
the first cousin prime is defined as [3:7] and first twins are [3:5], 
[5:7].

Up to 541, there are 25 twin and 27 cousin primes. Their ratio 
over increasingly larger input ranges remains close to unity (1), 
as their pairs count, and pair prime values, increase without end 
[3], [4].

 7. Residues Sieve Description
The Segmented Sieve of Zakiya (SSoZ) is a memory efficient 

way to find the primes using a given Pn. For an input range 
defined by a start_num and end_num, it divides the range into 
segments, which are efficiently sized to fit into usable memory 
for processing. This allows the reuse of the same memory to 
process long number ranges that otherwise would require more 
memory than a system has to use.

A standard segment slice is ks resgroups, with last one ks’ 
usually less. For a given Pn and range size
set_sieve_parameters determines its optimal memory size, 
which is set to be a multiple of 64 (bits).

Residues Sieve Description

The Segmented Sieve of Zakiya (SSoZ) is a memory efficient way to find the primes using a given Pn. 

For an input range defined by a start_num and end_num, it divides the range into segments, which are 

efficiently sized to fit into usable memory for processing. This allows the reuse of the same memory to 

process long number ranges that otherwise would require more memory than a system has to use.

A standard segment slice is ks resgroups, with last one ks’ usually less. For a given Pn and range size 

set_sieve_parameters determines its optimal memory size, which is set to be a multiple of 64 (bits).

                    |      ks      |      ks      |      ks       |      ks      |      ks      |      ks      |      ks      |    ks’   |

Fig. 1       kmin                                                                                                                           kmax

        |…………|…………|…………|…………|…….…..|…………|…………|……....|

             start_num                                                                                                                  end_num

Here start|end_num are the lo|hi values that define a number range of interest. They also define the 

absolute values for kmin and kmax for a given Pn generator, as these resgroups cover these input values.

When only one input is given it becomes end_num, whose resgroup determines kmax, and start_num is

set to 3 (low prime for first twin [3:5]), and kmin set to 1 (min number of resgroups). The residue sieve 

adjusts kmin|kmax for each residues pair when necessary, to ensure only their pc values within the 

inputs range are processed.

For example, if start_num = 342 and end_num = 540, we see below the valid in-range pc values. Here

kmin = 12 and kmax = 18. For twinpair [11:13], 341 < 342, so kmin for it is increased to 13. Then for 

[29:31], pc 541 > 540 is outside the range, so kmax for it is reduced to 17, and now all its resgroup 

values are in the range. For twinpair [17:19] no adjustment is needed (done).  We can simplify this by 

just looking at the residue values for start|end_num and check if they’re within the residue pairs range.

Thus for each residues pair, we check if r_lo is < (start_num - 2) % modpg + 2 (start_num’s residue)

and if so increment kmin, then if r_hi > (end_num - 2) % modpg + 2 (end_num’s residue), and 

decrement kmax if so. In twins_sieve the adjusted kmin|kmax are first determined then used in 

nextp_init to create the sieve primes first k resgroups to start marking their multiples in the first seg. 

 

Table 6. Twin Primes Residues Tracks Table for range 342 – 540.

k 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

rt1 11 41 71 101 131 161 191 221 251 281 311 341 371 401 431 461 491 521

rt2 13 43 73 103 133 163 193 223 253 283 313 343 373 403 433 463 493 523

rt3 17 47 77 107 137 167 197 227 257 287 317 347 377 407 437 467 497 527

rt4 19 49 79 109 139 169 199 229 259 289 319 349 379 409 439 469 499 529

rt6 29 59 89 119 149 179 209 239 269 299 329 359 389 419 449 479 509 539

rt7 31 61 91 121 151 181 211 241 271 301 331 361 391 421 451 481 511 541
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Here start|end_num are the lo|hi values that define a number 
range of interest. They also define the absolute values for kmin 
and kmax for a given Pn generator, as these resgroups cover 
these input values.

When only one input is given it becomes end_num, whose 
resgroup determines kmax, and start_num is set to 3 (low prime 
for first twin [3:5]), and kmin set to 1 (min number of resgroups). 
The residue sieve adjusts kmin|kmax for each residues pair when 

Twins|Cousins SSoZ

Let’s now construct the process to find twin primes ≤ N with a segmented sieve, using our P5 example.
Twin primes are consecutive odd integers that are prime, the first two being [3:5], and [5:7]. Thus from 
our original P5 pcs table, we use just the consecutive pc residue tracks, whose residues table is below. 
A twin prime occurs when both twin pair pc values in a column are prime (not colored), e.g. [191:193].

Table 4. Twin Primes Residues Tracks Table for P5(541).

k 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

rt1 11 41 71 101 131 161 191 221 251 281 311 341 371 401 431 461 491 521

rt2 13 43 73 103 133 163 193 223 253 283 313 343 373 403 433 463 493 523

rt3 17 47 77 107 137 167 197 227 257 287 317 347 377 407 437 467 497 527

rt4 19 49 79 109 139 169 199 229 259 289 319 349 379 409 439 469 499 529

rt6 29 59 89 119 149 179 209 239 269 299 329 359 389 419 449 479 509 539

rt7 31 61 91 121 151 181 211 241 271 301 331 361 391 421 451 481 511 541

We see from the table the twin pair residue tracks for [11:13] has 10 twin primes ≤ 541, [17:19]  has 6, 
and [29:31] has 7.  Thus, the total twin prime count ≤ 541 is 23 + [3:5] + [5:7] = 25, with the last being 
[521:523].  Twin primes are usually referenced to the mid (even) number between the upper and lower 
consecutive odd primes pair, so the last (largest) twin pair ≤ 541 for [521:523] is written as 522 ± 1.

As shown before, the number of twin|cousin residue pairs are equal to: (pn - 2)# = pn
-2# = Π (pn – 2)

Thus P5 has 3 residue pairs for each. Below are the three Cousin Prime pairs taken from P5’s pcs table.

Table 5. Cousin Primes Residues Tracks Table for P5(541).

k 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

rt0 7 37 67 97 127 157 187 217 247 277 307 337 367 397 427 457 487 517

rt1 11 41 71 101 131 161 191 221 251 281 311 341 371 401 431 461 491 521

rt2 13 43 73 103 133 163 193 223 253 283 313 343 373 403 433 463 493 523

rt3 17 47 77 107 137 167 197 227 257 287 317 347 377 407 437 467 497 527

rt4 19 49 79 109 139 169 199 229 259 289 319 349 379 409 439 469 499 529

rt5 23 53 83 113 143 173 203 233 263 293 323 353 383 413 443 473 503 533

The SSoZ algorithm is the same for both, with their coding only differing to deal with accounting for 
low input values ranges, as the first cousin prime is defined as [3:7] and first twins are [3:5], [5:7].

Up to 541, there are 25 twin and 27 cousin primes. Their ratio over increasingly larger input ranges 
remains close to unity (1), as their pairs count, and pair prime values, increase without end [3], [4].
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remains close to unity (1), as their pairs count, and pair prime values, increase without end [3], [4].

15

Figure 1



 Volume 2 | Issue 2 | 131J Curr Trends Comp Sci Res, 2023

necessary, to ensure only their pc values within the inputs range 
are processed.

For example, if start_num = 342 and end_num = 540, we see 
below the valid in-range pc values. Here kmin = 12 and kmax = 
18. For twinpair [11:13], 341 < 342, so kmin for it is increased 
to 13. Then for [29:31], pc 541 > 540 is outside the range, so 
kmax for it is reduced to 17, and now all its resgroup values 
are in the range. For twinpair [17:19] no adjustment is needed 
(done). We can simplify this by just looking at the residue values 

for start|end_num and check if they’re within the residue pairs 
range.

Thus, for each residues pair, we check if r_lo is < (start_num 
- 2) % modpg + 2 (start_num’s residue) and if so increment 
kmin, then if r_hi > (end_num - 2) % modpg + 2 (end_num’s 
residue), and decrement kmax if so. In twins_sieve the adjusted 
kmin|kmax are first determined then used in nextp_init to create 
the sieve primes first k resgroups to start marking their multiples 
in the first seg.

Table 6: Twin Primes Residues Tracks Table for range 342 – 540

In twins_sieve segment array seg, its resgroups size ks is a multiple of 64-bit mem elements, where each bit represents a residues 
pair resgroup. Thus a resgroup k maps to bit: (k mod 64) in mem elem seg [k / 64], where (k mod 64) masks k’s lower 6 bits: (k & 
0x3F), and (k / 64) right shifts k by 6 bits. This is coded as: seg [(kn - 1) >> 6], bit value: 1 << ((kn - 1) & 63), (>>|<< are right|left 
bit-shift opts).

Ex: for ks = 131072 resgroups, seg size is 2048 64-bit mem elements
for resgroup k = 89257, it maps to seg [1394], bit 240, mem value = 1 << 40 = 1099511627776

In twins_sieve segment array seg, its resgroups size ks is a multiple of 64-bit mem elements, where 
each bit represents a residues pair resgroup.  Thus a resgroup k maps to bit: (k mod 64) in mem elem 
seg[k / 64], where (k mod 64) masks k’s lower 6 bits: (k & 0x3F), and (k / 64) right shifts k by 6 bits.
This is coded as: seg[(kn - 1) >> 6], bit value: 1 << ((kn - 1) & 63), (>>|<< are right|left bit-shift opts).

Ex: for ks = 131072 resgroups, seg size is 2048 64-bit mem elements 
      for resgroup k = 89257, it maps to seg[1394], bit 240, mem value = 1 << 40 = 1099511627776

|……………………. ks …………………...|
Fig. 2                                    ki      ki+kn

|….…|……|……|……|…~~~…|……|…….|
      seg[0]                               seg[kn-1]                             

ki is the absolute resgroup value to start each segment slice (in Fig. 1) initialized to kmin-1 (0 indexed 
arrays). kn is the resgroups size for each segment slice. It’s initialized to ks, but if the last segment slice

ks’ < ks resgroups it’s set to its slice size.

To sieve for twin primes, etc, each instance of twins_sieve processes a unique twinpair for the entire 
inputs range split into ks resgroup size segments. It first determines the adjusted kmin|kmax values for 
the twinpair residues, then creates their initial nextp array of first resgroup sieve prime multiples k 
values. Using them, it iterates over the sieve primes, computes|updates their prime multiples k values, 
and sets them to ‘1’ in seg for each residues pair, until k > kn, the k value past the end of the current 

segment. When k > kn it updates it to:  k = k – kn, which is the first k multiple value into the next 
segment, and stores it back into nextp for that prime to update it to use for the next segment(s).

This is the Crystal code to mark a prime’s resgroup multiples in seg to ‘1’. This is done for the lo|hi 
residues pair, and if either resgroup member is a prime’s multiple that resgroup isn’t a twinprime.

k = nextp.to_unsafe[j * 2]          # starting from this resgroup in seg
      while k < kn                        # mark primenth resgroup bits prime mults
          seg[k >> s] |= 1_u64 << (k & bmask)
          k += prime  end                   # set resgroup for prime's next multiple
      nextp.to_unsafe[j * 2] = k - kn     # save 1st resgroup in next eligible seg

When the residues sieve finishes seg contains the resgroup bit positions for the twin primes.  Because 
seg is set to all ‘0’s to start each segment, we need to set to ‘1’ any unused hi bits in its last mem elem 
ks’ is in when it’s not a multiple of 64. Algorithmically this only needs to be done for the last segment.

However, doing it after every segment is faster in software, as it eliminates the branching code to check
for the last segment, and is more efficient to compile|run.  Below is the Crystal code to perform this.

seg.to_unsafe[(kn - 1) >> s] |= ~1u64 << ((kn - 1) & bmask)

If kn = 89257 for the last segment, only the first 1395 64-bit seg mem elems are used, up to the 41st bit

in the last elem, so we need to set to ‘1’ its bit values 241..263, because (89257-1 & 63) = 40, for bit 240. 
Thus we invert 1 to be: 11111111..1110 and left-shift it 40 bits, which is ORed with the last mem elem. 
If kn is a multiple of 64, (kn – 1) & bmask = 63, shifts the bits to be all 0s, and thus when ORed doesn’t
change seg’s last mem value. Thus left shifts of n = 0..62 bits mask all the upper bit values: 263... 2n+1. 
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ki is the absolute resgroup value to start each segment slice 
(in Fig. 1) initialized to kmin-1 (0 indexed arrays). kn is the 
resgroups size for each segment slice. It’s initialized to ks, but if 
the last segment slice ks’ < ks resgroups it’s set to its slice size.

To sieve for twin primes, etc, each instance of twins_sieve 
processes a unique twinpair for the entire inputs range split 
into ks resgroup size segments. It first determines the adjusted 
kmin|kmax values for the twinpair residues, then creates their 
initial nextp array of first resgroup sieve prime multiples k values. 
Using them, it iterates over the sieve primes, computes|updates 

their prime multiples k values, and sets them to ‘1’ in seg for 
each residues pair, until k > kn, the k value past the end of the 
current segment. When k > kn it updates it to: k = k – kn, which 
is the first k multiple value into the next segment, and stores it 
back into nextp for that prime to update it to use for the next 
segment(s).

This is the Crystal code to mark a prime’s resgroup multiples in 
seg to ‘1’. This is done for the lo|hi residues pair, and if either 
resgroup member is a prime’s multiple that resgroup isn’t a 
twinprime.

Residues Sieve Description

The Segmented Sieve of Zakiya (SSoZ) is a memory efficient way to find the primes using a given Pn. 

For an input range defined by a start_num and end_num, it divides the range into segments, which are 

efficiently sized to fit into usable memory for processing. This allows the reuse of the same memory to 

process long number ranges that otherwise would require more memory than a system has to use.

A standard segment slice is ks resgroups, with last one ks’ usually less. For a given Pn and range size 

set_sieve_parameters determines its optimal memory size, which is set to be a multiple of 64 (bits).

                    |      ks      |      ks      |      ks       |      ks      |      ks      |      ks      |      ks      |    ks’   |
Fig. 1       kmin                                                                                                                           kmax

        |…………|…………|…………|…………|…….…..|…………|…………|……....|
             start_num                                                                                                                  end_num

Here start|end_num are the lo|hi values that define a number range of interest. They also define the 
absolute values for kmin and kmax for a given Pn generator, as these resgroups cover these input values.

When only one input is given it becomes end_num, whose resgroup determines kmax, and start_num is
set to 3 (low prime for first twin [3:5]), and kmin set to 1 (min number of resgroups). The residue sieve 
adjusts kmin|kmax for each residues pair when necessary, to ensure only their pc values within the 
inputs range are processed.

For example, if start_num = 342 and end_num = 540, we see below the valid in-range pc values. Here
kmin = 12 and kmax = 18. For twinpair [11:13], 341 < 342, so kmin for it is increased to 13. Then for 
[29:31], pc 541 > 540 is outside the range, so kmax for it is reduced to 17, and now all its resgroup 
values are in the range. For twinpair [17:19] no adjustment is needed (done).  We can simplify this by 
just looking at the residue values for start|end_num and check if they’re within the residue pairs range.

Thus for each residues pair, we check if r_lo is < (start_num - 2) % modpg + 2 (start_num’s residue)
and if so increment kmin, then if r_hi > (end_num - 2) % modpg + 2 (end_num’s residue), and 
decrement kmax if so. In twins_sieve the adjusted kmin|kmax are first determined then used in 

nextp_init to create the sieve primes first k resgroups to start marking their multiples in the first seg. 
 
Table 6. Twin Primes Residues Tracks Table for range 342 – 540.

k 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

rt1 11 41 71 101 131 161 191 221 251 281 311 341 371 401 431 461 491 521
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rt7 31 61 91 121 151 181 211 241 271 301 331 361 391 421 451 481 511 541
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In twins_sieve segment array seg, its resgroups size ks is a multiple of 64-bit mem elements, where 
each bit represents a residues pair resgroup.  Thus a resgroup k maps to bit: (k mod 64) in mem elem 
seg[k / 64], where (k mod 64) masks k’s lower 6 bits: (k & 0x3F), and (k / 64) right shifts k by 6 bits.
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seg is set to all ‘0’s to start each segment, we need to set to ‘1’ any unused hi bits in its last mem elem 
ks’ is in when it’s not a multiple of 64. Algorithmically this only needs to be done for the last segment.

However, doing it after every segment is faster in software, as it eliminates the branching code to check
for the last segment, and is more efficient to compile|run.  Below is the Crystal code to perform this.

seg.to_unsafe[(kn - 1) >> s] |= ~1u64 << ((kn - 1) & bmask)

If kn = 89257 for the last segment, only the first 1395 64-bit seg mem elems are used, up to the 41st bit

in the last elem, so we need to set to ‘1’ its bit values 241..263, because (89257-1 & 63) = 40, for bit 240. 
Thus we invert 1 to be: 11111111..1110 and left-shift it 40 bits, which is ORed with the last mem elem. 
If kn is a multiple of 64, (kn – 1) & bmask = 63, shifts the bits to be all 0s, and thus when ORed doesn’t
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When the residues sieve finishes seg contains the resgroup bit 
positions for the twin primes. Because seg is set to all ‘0’s to 
start each segment, we need to set to ‘1’ any unused hi bits 
in its last mem elem ks’ is in when it’s not a multiple of 64. 

Algorithmically this only needs to be done for the last segment. 
However, doing it after every segment is faster in software, as 
it eliminates the branching code to check for the last segment, 
and is more efficient to compile|run. Below is the Crystal code 
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Once all the nonprime bits are set we can count|numerate the primes. We read each seg[0..kn-1] and 

invert the bits, and use popcount to count the ‘1’s (as primes) for each seg[i] (the Rust code counts 

the ‘0’s directly), and sum their segment count in variable cnt.

If cnt > 0 we find the largest prime resgroup in the segment.  We first update the total pairs count with 

sum += cnt.  Then upk is set to the last resgroup value in the segment, then loops backward checking 

for the first bit that’s prime (‘0’), and then upk holds the largest|last prime pair resgroup in the segment.

Its absolute resgroup value in the inputs range is then: hi_tp = ki + upk.  For each segment slice its 

value is updated to a larger value, and at the end holds the largest absolute resgroup for these residues 

pair in the inputs range.  The r_hi prime value is numerated and returned as: hi_tp * modpg + r_hi,

along with the total prime pairs count in the range, in variable sum.

    seg.to_unsafe[(kn - 1) >> s] |= ~1u64 << ((kn - 1) & bmask)
    cnt = 0                   # count the twinprimes in the segment
    seg[0..(kn - 1) >> s].each { |m| cnt += (~m).popcount }
    if cnt > 0                # if segment has twinprimes
        sum += cnt              # add segment count to total range count
        upk = kn - 1            # from end of seg count back to largest tp
        while seg[upk >> s] & (1_u64 << (upk & bmask)) != 0; upk -= 1 end
        hi_tp = ki + upk        # set its full range resgroup value
    end

twins_sieve can be modified for different purposes. The code to find the largest prime pair can be 

removed if all you want is their count. I also originally had code to print out the r_hi primes in each 

segment as a validity check (only for small ranges).  However, if you really wanted to see|record the 

twins, a better way may be to return ki|seg for each segment and externally store|process them later 

for any desired range of interest. (This, of course, would be very memory intensive.)

Twin Primes Example

Using our example to find the twin primes ≤ 541 with P5, let’s see how to processes the first twin pair 

residues [11:13] with kmax = 18. twin_sieve can perform the sieve for each pair in a separate thread.

set_sieve_parameters sets the segment size, but here I’ll set it to ks = 6.  Thus, the seg array will 

represent 6 resgroups.  Below is the twin pair table for [11:13] separated it into 3 segment slices of 6 

resgroups each.  Underneath it is what each seg array will look like after processing for each slice.

(seg conceptually is a bitarray, so each seg[i] is just 1 bit.  I later show an implementation using a 

bitarray, which makes the code simpler|shorter, and faster, depending on a language’s implementation.) 

Table 7.

k 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

rt11 11 41 71 101 131 161 191 221 251 281 311 341 371 401 431 461 491 521

rt13 13 43 73 103 133 163 193 223 253 283 313 343 373 403 433 463 493 523

k 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5

seg 0 0 0 0 1 1 0 1 1 0 0 1 1 1 0 0 1 0

nextp_init initializes netxp for the sieve primes [7, 11, 13, 17, 19, 23] for residues 11 and 13, taking 

the values shown in Table 3. For each lo|hi residue, their k values are stored as consecutive pairs in 

nextp and seg is created and initialized to all primes (‘0’).
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Table 7
nextp_init initializes netxp for the sieve primes [7, 11, 13, 17, 19, 23] for residues 11 and 13, taking the values shown in Table 3. 
For each lo|hi residue, their k values are stored as consecutive pairs in nextp and seg is created and initialized to all primes (‘0’).

to perform this.

seg.to_unsafe[(kn - 1) >> s] |= ~1u64 << ((kn - 1) & bmask)

If kn = 89257 for the last segment, only the first 1395 64-bit seg 
mem elems are used, up to the 41st bit in the last elem, so we 
need to set to ‘1’ its bit values 241..263, because (89257-1 & 63) = 
40, for bit 240. Thus we invert 1 to be: 11111111..1110 and left-
shift it 40 bits, which is ORed with the last mem elem. If kn is 
a multiple of 64, (kn – 1) & bmask = 63, shifts the bits to be all 
0s, and thus when ORed doesn’t change seg’s last mem value. 
Thus left shifts of n = 0..62 bits mask all the upper bit values: 
263... 2n+1.
 
Once all the nonprime bits are set we can count|numerate the 
primes. We read each seg[0..kn-1] and invert the bits, and use 

popcount to count the ‘1’s (as primes) for each seg[i] (the Rust 
code counts the ‘0’s directly), and sum their segment count in 
variable cnt.

If cnt > 0 we find the largest prime resgroup in the segment. We 
first update the total pairs count with sum += cnt. Then upk is 
set to the last resgroup value in the segment, then loops backward 
checking for the first bit that’s prime (‘0’), and then upk holds 
the largest|last prime pair resgroup in the segment. Its absolute 
resgroup value in the inputs range is then: hi_tp = ki + upk. For 
each segment slice its value is updated to a larger value, and at 
the end holds the largest absolute resgroup for these residues 
pair in the inputs range. The r_hi prime value is numerated and 
returned as: hi_tp * modpg + r_hi, along with the total prime 
pairs count in the range, in variable sum.

twins_sieve can be modified for different purposes. The code 
to find the largest prime pair can be removed if all you want is 
their count. I also originally had code to print out the r_hi primes 
in each segment as a validity check (only for small ranges). 
However, if you really wanted to see|record the twins, a better 
way may be to return ki|seg for each segment and externally 
store|process them later for any desired range of interest. (This, 
of course, would be very memory intensive.)

8. Twin Primes Example
Using our example to find the twin primes ≤ 541 with P5, let’s 
see how to process the first twin pair residues [11:13] with  

kmax = 18. twin_sieve can perform the sieve for each pair in a 
separate thread.

set_sieve_parameters sets the segment size, but here I’ll set it 
to ks = 6. Thus, the seg array will represent 6 resgroups. Below is 
the twin pair table for [11:13] separated into 3 segment slices of 
6 resgroups each. Underneath it is what each seg array will look 
like after processing for each slice. (seg conceptually is a bitarray, 
so each seg[i] is just 1 bit. I later show an implementation using 
a bitarray, which makes the code simpler|shorter, and faster, 
depending on a language’s implementation.)

Once all the nonprime bits are set we can count|numerate the primes. We read each seg[0..kn-1] and 

invert the bits, and use popcount to count the ‘1’s (as primes) for each seg[i] (the Rust code counts 

the ‘0’s directly), and sum their segment count in variable cnt.

If cnt > 0 we find the largest prime resgroup in the segment.  We first update the total pairs count with 

sum += cnt.  Then upk is set to the last resgroup value in the segment, then loops backward checking 

for the first bit that’s prime (‘0’), and then upk holds the largest|last prime pair resgroup in the segment.

Its absolute resgroup value in the inputs range is then: hi_tp = ki + upk.  For each segment slice its 

value is updated to a larger value, and at the end holds the largest absolute resgroup for these residues 

pair in the inputs range.  The r_hi prime value is numerated and returned as: hi_tp * modpg + r_hi,

along with the total prime pairs count in the range, in variable sum.

    seg.to_unsafe[(kn - 1) >> s] |= ~1u64 << ((kn - 1) & bmask)
    cnt = 0                   # count the twinprimes in the segment
    seg[0..(kn - 1) >> s].each { |m| cnt += (~m).popcount }
    if cnt > 0                # if segment has twinprimes
        sum += cnt              # add segment count to total range count
        upk = kn - 1            # from end of seg count back to largest tp
        while seg[upk >> s] & (1_u64 << (upk & bmask)) != 0; upk -= 1 end
        hi_tp = ki + upk        # set its full range resgroup value
    end

twins_sieve can be modified for different purposes. The code to find the largest prime pair can be 
removed if all you want is their count. I also originally had code to print out the r_hi primes in each 

segment as a validity check (only for small ranges).  However, if you really wanted to see|record the 

twins, a better way may be to return ki|seg for each segment and externally store|process them later 
for any desired range of interest. (This, of course, would be very memory intensive.)

Twin Primes Example

Using our example to find the twin primes ≤ 541 with P5, let’s see how to processes the first twin pair 
residues [11:13] with kmax = 18. twin_sieve can perform the sieve for each pair in a separate thread.

set_sieve_parameters sets the segment size, but here I’ll set it to ks = 6.  Thus, the seg array will 

represent 6 resgroups.  Below is the twin pair table for [11:13] separated it into 3 segment slices of 6 

resgroups each.  Underneath it is what each seg array will look like after processing for each slice.
(seg conceptually is a bitarray, so each seg[i] is just 1 bit.  I later show an implementation using a 

bitarray, which makes the code simpler|shorter, and faster, depending on a language’s implementation.) 

Table 7.

k 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

rt11 11 41 71 101 131 161 191 221 251 281 311 341 371 401 431 461 491 521

rt13 13 43 73 103 133 163 193 223 253 283 313 343 373 403 433 463 493 523

k 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5

seg 0 0 0 0 1 1 0 1 1 0 0 1 1 1 0 0 1 0

nextp_init initializes netxp for the sieve primes [7, 11, 13, 17, 19, 23] for residues 11 and 13, taking 

the values shown in Table 3. For each lo|hi residue, their k values are stored as consecutive pairs in 

nextp and seg is created and initialized to all primes (‘0’).
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j 0 1 2 3 4 5

primes 7 11 13 17 19 23

Initial nextp[11:13]

2j 0 2 4 6 8 10

2j+1 1 3 5 7 9 11

rt_11 5 11 7 7 18 5

rt_13 4 8 13 16 4 8

k 0 1 2 3 4 5

seg 0 0 0 0 0 0

For each prime j in primes, nextp[2j|2j+1] give the pairs k’s to start marking off prime’s multiples (by 

incrementing k by prime’s value). When k > kn, (here kn is always 6), it’s reduced by it: k = k - 6, 

and updates nextp with the new k values for the next segment. Below shows the changes to nextp and 

seg in twins_sieve. (It’s coincidental here the index size for primes and nextp are the segment size.)
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For each prime j in primes, nextp[2j|2j+1] give the pairs k’s to start marking off prime’s multiples (by incrementing k by prime’s 
value). When k > kn, (here kn is always 6), it’s reduced by it: k = k - 6, and updates nextp with the new k values for the next 
segment. Below show’s the changes to nextp and seg in twins_sieve. (It’s coincidental here the index size for primes and nextp 
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Below is the Crystal code to perform the residues sieve (here for twins) for a given residues pair.
Below is the Crystal code to perform the residues sieve (here for twins) for a given residues pair.

twins_sieve

def twins_sieve(r_hi, kmin, kmax, ks, start_num, end_num, modpg, primes, resinvrs)
  # Perform in thread the ssoz for given twinpair residues for kmax resgroups.
  # First create|init 'nextp' array of 1st prime mults for given twinpair,
  # stored consequtively in 'nextp', and init seg array for ks resgroups.
  # For sieve, mark resgroup bits to '1' if either twinpair restrack is nonprime
  # for primes mults resgroups, and update 'nextp' restrack slices acccordingly.
  # Return the last twinprime|sum for the range for this twinpair residues.
  s = 6                                                # shift value for 64 bits
  bmask = (1 << s) - 1                                 # bitmask val for 64 bits
  sum, ki, kn  = 0_u64, kmin-1, ks                     # init these parameters
  hi_tp, k_max = 0_u64, kmax                           # max twinprime|resgroup
  seg = Slice(UInt64).new(((ks - 1) >> s) + 1)         # seg array of ks resgroups
  ki    += 1 if r_hi - 2 < (start_num - 2) % modpg + 2 # ensure lo tp in range
  k_max -= 1 if r_hi > (end_num - 2) % modpg + 2       # ensure hi tp in range
  nextp = nextp_init(r_hi, ki, modpg, primes,resinvrs) # init nextp array
  while ki < k_max                       # for ks size slices upto kmax
    kn = k_max - ki if ks > (k_max - ki) # adjust kn size for last seg
    primes.each_with_index do |prime, j| # for each prime r0..sqrt(N)
                                         # for lower twinpair residue track
      k = nextp.to_unsafe[j * 2]         # starting from this resgroup in seg
      while k < kn                       # mark primenth resgroup bits prime mults
        seg.to_unsafe[k >> s] |= 1_u64 << (k & bmask)
        k += prime  end                  # set resgroup for prime's next multiple
      nextp.to_unsafe[j * 2] = k - kn    # save 1st resgroup in next eligible seg
                                         # for upper twinpair residue track
      k = nextp.to_unsafe[j * 2 | 1]     # starting from this resgroup in seg
      while k < kn                       # mark primenth resgroup bits prime mults
        seg.to_unsafe[k >> s] |= 1_u64 << (k & bmask)
        k += prime  end                  # set resgroup for prime's next multiple
      nextp.to_unsafe[j * 2 | 1]= k - kn # save 1st resgroup in next eligible seg
    end                                  # set as nonprime unused bits in last seg[n]
                                         # so fast, do for every seg[i]
    seg.to_unsafe[(kn - 1) >> s] |= ~1u64 << ((kn - 1) & bmask)
    cnt = 0                              # count the twinprimes in the segment
    seg[0..(kn - 1) >> s].each { |m| cnt += (~m).popcount } # invert to count ‘1’s
    if cnt > 0                           # if segment has twinprimes
      sum += cnt                         # add segment count to total range count
      upk = kn - 1                       # from end of seg, count back to largest tp
      while seg.to_unsafe[upk >> s] & (1_u64 << (upk & bmask)) != 0; upk -= 1 end
      hi_tp = ki + upk                   # set its full range resgroup value
    end
    ki += ks                             # set 1st resgroup val of next seg slice
    seg.fill(0) if ki < k_max            # set next seg to all primes if in range
  end                                    # when sieve done, numerate largest twin
                                         # for ranges w/o twins set largest to 1
  hi_tp = (r_hi > end_num || sum == 0) ? 1 : hi_tp * modpg + r_hi
  {hi_tp.to_u64, sum.to_u64}             # return largest twinprime|twins count
end

Inputs: Outputs:
ks – resgroups segment size sum – count of twinpairs for input range

rhi – hi residue value for this twinpair              hi_tp – hi prime for largest twinprime in range
modpg – modulus value for chosen pg 

kmin – total number resgroups upto for start_num 
kmax – total number resgroups upto for end_num 

primes – array of sieving primes
resinvrs – array of modular inverses for residues

end_num – inputs high value
start_num – inputs low value
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Below is the Crystal code to perform the residues sieve (here for twins) for a given residues pair.

twins_sieve

def twins_sieve(r_hi, kmin, kmax, ks, start_num, end_num, modpg, primes, resinvrs)
  # Perform in thread the ssoz for given twinpair residues for kmax resgroups.
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  # stored consequtively in 'nextp', and init seg array for ks resgroups.
  # For sieve, mark resgroup bits to '1' if either twinpair restrack is nonprime
  # for primes mults resgroups, and update 'nextp' restrack slices acccordingly.
  # Return the last twinprime|sum for the range for this twinpair residues.
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  sum, ki, kn  = 0_u64, kmin-1, ks                     # init these parameters
  hi_tp, k_max = 0_u64, kmax                           # max twinprime|resgroup
  seg = Slice(UInt64).new(((ks - 1) >> s) + 1)         # seg array of ks resgroups
  ki    += 1 if r_hi - 2 < (start_num - 2) % modpg + 2 # ensure lo tp in range
  k_max -= 1 if r_hi > (end_num - 2) % modpg + 2       # ensure hi tp in range
  nextp = nextp_init(r_hi, ki, modpg, primes,resinvrs) # init nextp array
  while ki < k_max                       # for ks size slices upto kmax
    kn = k_max - ki if ks > (k_max - ki) # adjust kn size for last seg
    primes.each_with_index do |prime, j| # for each prime r0..sqrt(N)
                                         # for lower twinpair residue track
      k = nextp.to_unsafe[j * 2]         # starting from this resgroup in seg
      while k < kn                       # mark primenth resgroup bits prime mults
        seg.to_unsafe[k >> s] |= 1_u64 << (k & bmask)
        k += prime  end                  # set resgroup for prime's next multiple
      nextp.to_unsafe[j * 2] = k - kn    # save 1st resgroup in next eligible seg
                                         # for upper twinpair residue track
      k = nextp.to_unsafe[j * 2 | 1]     # starting from this resgroup in seg
      while k < kn                       # mark primenth resgroup bits prime mults
        seg.to_unsafe[k >> s] |= 1_u64 << (k & bmask)
        k += prime  end                  # set resgroup for prime's next multiple
      nextp.to_unsafe[j * 2 | 1]= k - kn # save 1st resgroup in next eligible seg
    end                                  # set as nonprime unused bits in last seg[n]
                                         # so fast, do for every seg[i]
    seg.to_unsafe[(kn - 1) >> s] |= ~1u64 << ((kn - 1) & bmask)
    cnt = 0                              # count the twinprimes in the segment
    seg[0..(kn - 1) >> s].each { |m| cnt += (~m).popcount } # invert to count ‘1’s
    if cnt > 0                           # if segment has twinprimes
      sum += cnt                         # add segment count to total range count
      upk = kn - 1                       # from end of seg, count back to largest tp
      while seg.to_unsafe[upk >> s] & (1_u64 << (upk & bmask)) != 0; upk -= 1 end
      hi_tp = ki + upk                   # set its full range resgroup value
    end
    ki += ks                             # set 1st resgroup val of next seg slice
    seg.fill(0) if ki < k_max            # set next seg to all primes if in range
  end                                    # when sieve done, numerate largest twin
                                         # for ranges w/o twins set largest to 1
  hi_tp = (r_hi > end_num || sum == 0) ? 1 : hi_tp * modpg + r_hi
  {hi_tp.to_u64, sum.to_u64}             # return largest twinprime|twins count
end

Inputs: Outputs:
ks – resgroups segment size sum – count of twinpairs for input range

rhi – hi residue value for this twinpair              hi_tp – hi prime for largest twinprime in range
modpg – modulus value for chosen pg 

kmin – total number resgroups upto for start_num 
kmax – total number resgroups upto for end_num 

primes – array of sieving primes
resinvrs – array of modular inverses for residues

end_num – inputs high value
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Starting with Crystal 1.4.0 (April 7, 2022) its bitarray implementation was highly optimized, making it faster than the 64-bit mem 
array for seg on the AMD 5900HX, while making the code substantially simpler to read|write and shorter. Below is the Crystal 
version using a bitarray for the seg array.

Starting with Crystal 1.4.0 (April 7, 2022) its bitarray implementation was highly optimized, making 
it faster than the 64-bit mem array for seg on the AMD 5900HX, while making the code substantially 
simpler to read|write and shorter.  Below is the Crystal version using a bitarray for the seg array.

def twins_sieve(r_hi, kmin, kmax, ks, start_num, end_num, modpg, primes, resinvrs)
  # Perform in thread the ssoz for given twinpair residues for kmax resgroups.
  # First create|init 'nextp' array of 1st prime mults for given twinpair,
  # stored consequtively in 'nextp', and init seg array for ks resgroups.
  # For sieve, mark resgroup bits to '1' if either twinpair restrack is nonprime
  # for primes mults resgroups, and update 'nextp' restrack slices acccordingly.
  # Return the last twinprime|sum for the range for this twinpair residues.
  sum, ki, kn  = 0_u64, kmin-1, ks                     # init these parameters
  hi_tp, k_max = 0_u64, kmax                           # max twinprime|resgroup
  seg = BitArray.new(ks)                               # seg array of ks resgroups
  ki    += 1 if r_hi - 2 < (start_num - 2) % modpg + 2 # ensure lo tp in range
  k_max -= 1 if r_hi > (end_num - 2) % modpg + 2       # ensure hi tp in range
  nextp = nextp_init(r_hi, ki, modpg, primes,resinvrs) # init nextp array
  while ki < k_max                       # for ks size slices upto kmax
    kn = k_max - ki if ks > (k_max - ki) # adjust kn size for last seg
    primes.each_with_index do |prime, j| # for each prime r0..sqrt(N)
                                         # for lower twinpair residue track
      k = nextp.to_unsafe[j * 2]         # starting from this resgroup in seg
      while k < kn                       # until end of seg
        seg.unsafe_put(k, true)          # mark primenth resgroup bits prime mults
        k += prime  end                  # set resgroup for prime's next multiple
      nextp.to_unsafe[j * 2] = k - kn    # save 1st resgroup in next eligible seg
                                         # for upper twinpair residue track
      k = nextp.to_unsafe[j * 2 | 1]     # starting from this resgroup in seg
      while k < kn                       # until end of seg
        seg.unsafe_put(k, true)          # mark primenth resgroup bits prime mults
        k += prime  end                  # set resgroup for prime's next multiple
      nextp.to_unsafe[j * 2 | 1]= k - kn # save 1st resgroup in next eligible seg
    end                                   
    cnt = seg[...kn].count(false)        # count|store twinprimes in segment
    if cnt > 0                           # if segment has twinprimes
      sum += cnt                         # add segment count to total range count
      upk = kn - 1                       # from end of seg, count back to largest tp
      while seg.unsafe_fetch(upk); upk -= 1 end
      hi_tp = ki + upk                   # set its full range resgroup value
    end
    ki += ks                             # set 1st resgroup val of next seg slice
    seg.fill(false) if ki < k_max        # set next seg to all primes if in range
  end                                    # when sieve done, numerate largest twin 
                                         # for ranges w/o twins set largest to 1
  hi_tp = (r_hi > end_num || sum == 0) ? 1 : hi_tp * modpg + r_hi
  {hi_tp.to_u64, sum.to_u64}             # return largest twinprime|twins count
end

The code to find the largest twinprime in the range comes for FREE, and removing it has no detectable 
increase in speed, and for Crystal may even be a wee tad bit slower.

    sum += seg[...kn].count(false)       # count|store twinprimes in segment
    ki += ks                             # set 1st resgroup val of next seg slice
    seg.fill(false) if ki < k_max        # set next seg to all primes if in range
  end
  sum.to_u64                             # return twinprimes count in range
end

In general, a bitarray’s performance depends on the language’s implementation (test to determine), 

but should make the code simpler|shorter to read|write, while the memory array model should be more 
ubiquitous, and implementable for languages without (native or external) bitarrays.
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      nextp.to_unsafe[j * 2] = k - kn    # save 1st resgroup in next eligible seg
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      k = nextp.to_unsafe[j * 2 | 1]     # starting from this resgroup in seg
      while k < kn                       # until end of seg
        seg.unsafe_put(k, true)          # mark primenth resgroup bits prime mults
        k += prime  end                  # set resgroup for prime's next multiple
      nextp.to_unsafe[j * 2 | 1]= k - kn # save 1st resgroup in next eligible seg
    end                                   
    cnt = seg[...kn].count(false)        # count|store twinprimes in segment
    if cnt > 0                           # if segment has twinprimes
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                                         # for lower twinpair residue track
      k = nextp.to_unsafe[j * 2]         # starting from this resgroup in seg
      while k < kn                       # until end of seg
        seg.unsafe_put(k, true)          # mark primenth resgroup bits prime mults
        k += prime  end                  # set resgroup for prime's next multiple
      nextp.to_unsafe[j * 2] = k - kn    # save 1st resgroup in next eligible seg
                                         # for upper twinpair residue track
      k = nextp.to_unsafe[j * 2 | 1]     # starting from this resgroup in seg
      while k < kn                       # until end of seg
        seg.unsafe_put(k, true)          # mark primenth resgroup bits prime mults
        k += prime  end                  # set resgroup for prime's next multiple
      nextp.to_unsafe[j * 2 | 1]= k - kn # save 1st resgroup in next eligible seg
    end                                   
    cnt = seg[...kn].count(false)        # count|store twinprimes in segment
    if cnt > 0                           # if segment has twinprimes
      sum += cnt                         # add segment count to total range count
      upk = kn - 1                       # from end of seg, count back to largest tp
      while seg.unsafe_fetch(upk); upk -= 1 end
      hi_tp = ki + upk                   # set its full range resgroup value
    end
    ki += ks                             # set 1st resgroup val of next seg slice
    seg.fill(false) if ki < k_max        # set next seg to all primes if in range
  end                                    # when sieve done, numerate largest twin 
                                         # for ranges w/o twins set largest to 1
  hi_tp = (r_hi > end_num || sum == 0) ? 1 : hi_tp * modpg + r_hi
  {hi_tp.to_u64, sum.to_u64}             # return largest twinprime|twins count
end

The code to find the largest twinprime in the range comes for FREE, and removing it has no detectable 
increase in speed, and for Crystal may even be a wee tad bit slower.

    sum += seg[...kn].count(false)       # count|store twinprimes in segment
    ki += ks                             # set 1st resgroup val of next seg slice
    seg.fill(false) if ki < k_max        # set next seg to all primes if in range
  end
  sum.to_u64                             # return twinprimes count in range
end

In general, a bitarray’s performance depends on the language’s implementation (test to determine), 
but should make the code simpler|shorter to read|write, while the memory array model should be more 
ubiquitous, and implementable for languages without (native or external) bitarrays.
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The code to find the largest twinprime in the range comes for FREE, and removing it has no detectable increase in speed, and for 
Crystal may even be a wee tad bit slower.

In general, a bitarray’s performance depends on the language’s implementation (test to determine), but should make the code 
simpler|shorter to read|write, while the memory array model should be more ubiquitous, and implementable for languages without 
(native or external) bitarrays.

gcd

def gcd(m, n)
  while m|1 != 1; t = m; m = n % m; n = t end
  m
end

Inputs:                                                             Output:
n – even pg modulus value                             m – gcd of inputs; (m, n) are coprime if 1
m – an odd pc value < pg modulus n

This is a customized gcd (greatest common divisor) function that uses residue properties to shorten the 
time of the Euclidean gcd algorithm (https://en.wikipedia.org/wiki/Euclidean_algorithm). Here m is an 
odd residue candidate < n, the even modulus value. Some of the language implementations just use the 
gcd function provided with them.

modinv

def modinv(a0, m0)                    def modinv1(r, m)
  return 1 if m0 == 1                   r = inv = r.to_u64
  a, m = a0, m0                         while (r * inv) % m != 1
  x0, inv = 0, 1                          inv = (inv % m) * r
  while a > 1                           end
    inv -= (a // m) * x0                inv % m
    a, m = m, a % m                   end
    x0, inv = inv, x0
  end
  inv += m0 if inv < 0
  inv.to_u64
end

Inputs:                                                            Output:
a0 – odd pc value < modulus m0                    inv – inverse of, a0 mod m0, e.g.  a0*inv ≡ 1 mod m0
m0 – even pg modulus value

The function on the left is the standard modular inverse function (taken from Rosetta Code).

The code on the right uses the residue property that – ri * ri
n ≡ 1 mod modpg – for some n ≥ 1, i.e. the 

modular inverse of residue ri is itself raised to some power n.  This is faster for generators P3 and P5, 
with small number of residues, but becomes comparatively slower for generators with more residues. 

For P5’s residues: [7, 11, 13, 17, 19, 23, 29, 31]
It’s inverses are:   [13, 11, 7, 23, 19, 17, 29, 1]
Inverse power n:  [  3,  1,  3,  3,   1,   3,   1,  1]

22

gcd

def gcd(m, n)
  while m|1 != 1; t = m; m = n % m; n = t end
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This is a customized gcd (greatest common divisor) function that uses residue properties to shorten the time of the Euclidean gcd 
algorithm (https://en.wikipedia.org/wiki/Euclidean_algorithm). Here m is an odd residue candidate < n, the even modulus value. 
Some of the language implementations just use the gcd function provided with them.

The function on the left is the standard modular inverse function (taken from Rosetta Code).

The code on the right uses the residue property that – ri * ri
n ≡ 1 mod modpg – for some n ≥ 1, i.e. the modular inverse of residue ri 

is itself raised to some power n. This is faster for generators P3 and P5, with small number of residues, but becomes comparatively 
slower for generators with more residues.

gcd

def gcd(m, n)
  while m|1 != 1; t = m; m = n % m; n = t end
  m
end

Inputs:                                                             Output:

n – even pg modulus value                             m – gcd of inputs; (m, n) are coprime if 1
m – an odd pc value < pg modulus n

This is a customized gcd (greatest common divisor) function that uses residue properties to shorten the 

time of the Euclidean gcd algorithm (https://en.wikipedia.org/wiki/Euclidean_algorithm). Here m is an 

odd residue candidate < n, the even modulus value. Some of the language implementations just use the 

gcd function provided with them.

modinv

def modinv(a0, m0)                    def modinv1(r, m)
  return 1 if m0 == 1                   r = inv = r.to_u64
  a, m = a0, m0                         while (r * inv) % m != 1
  x0, inv = 0, 1                          inv = (inv % m) * r
  while a > 1                           end
    inv -= (a // m) * x0                inv % m
    a, m = m, a % m                   end
    x0, inv = inv, x0
  end
  inv += m0 if inv < 0
  inv.to_u64
end

Inputs:                                                            Output:

a0 – odd pc value < modulus m0                    inv – inverse of, a0 mod m0, e.g.  a0*inv ≡ 1 mod m0
m0 – even pg modulus value

The function on the left is the standard modular inverse function (taken from Rosetta Code).

The code on the right uses the residue property that – ri * ri
n ≡ 1 mod modpg – for some n ≥ 1, i.e. the 

modular inverse of residue ri is itself raised to some power n.  This is faster for generators P3 and P5, 

with small number of residues, but becomes comparatively slower for generators with more residues. 

For P5’s residues: [7, 11, 13, 17, 19, 23, 29, 31]

It’s inverses are:   [13, 11, 7, 23, 19, 17, 29, 1]

Inverse power n:  [  3,  1,  3,  3,   1,   3,   1,  1]
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For a chosen Pn generator, gen_pg_parameters produces its parameters used to perform the SSoZ. It uses gcd to determine the 
residues and modinv to compute their inverses.

For a chosen Pn generator, gen_pg_parameters produces its parameters used to perform the SSoZ. It 

uses gcd to determine the residues and modinv to compute their inverses.

gen_pg_parameters

def gen_pg_parameters(prime)
  # Create prime generator parameters for given Pn
  puts "using Prime Generator parameters for P#{prime}"
  primes = [2, 3, 5, 7, 11, 13, 17, 19, 23]
  modpg, res_0 = 1, 0                    # compute Pn's modulus and res_0 value
  primes.each { |prm| res_0 = prm; break if prm > prime; modpg *= prm }

  restwins = [] of Int32                 # save upper twinpair residues here
  inverses = Array.new(modpg + 2, 0)     # save Pn's residues inverses here
  pc, inc, res = 5, 2, 0                 # use P3's PGS to generate pcs
  while pc < (modpg >> 1)                # find PG's 1st half residues
    if gcd(pc, modpg) == 1               # if pc a residue
      mc = modpg - pc                    # create its modular complement
      inverses[pc] = modinv(pc, modpg)   # save pc and mc inverses
      inverses[mc] = modinv(mc, modpg)   # if in twinpair save both hi residues
      restwins << pc << mc + 2 if res + 2 == pc
      res = pc                           # save current found residue
    end
    pc += inc; inc ^= 0b110              # create next P3 seq pc: 5 7 11 13 17...
  end
  restwins.sort!; restwins <<(modpg + 1) # last residue is last hi_tp
  inverses[modpg+1] = 1; inverses[modpg-1] = modpg - 1 # last 2 are self inverses
  {modpg, res_0, restwins.size, restwins, inverses}
end

Inputs: Outputs:

prime – Pn prime value 5, 7… 17      res_0 – first residue of selected Pn (next prime > Pn prime)

modpg – modulus for generator Pn; value = (prime)#

inverses – array of the pg residue inverses, size = (prime-1)#

restwins – ordered array of the hi pg twinpair (tp) values

restwins.size –  the number of pg twinpairs = (prime-2)#

For a given prime number, it generates its primorial value for modpg, and keeps its r0 value in res_0.

It then generates all the residues. It uses P3’s PGS to generate Pn’s first half rcs.  It checks if they’re 

coprime to modpg to identify the residues. For each residue it creates its modular complement (mc) and 

stores both inverses at their address values. It then determines if the residue is part of a twin (cousin) 

pair, and if so, then so is its complement, and stores both hi pair values in restwins. 

Upon generating all the residues, and storing their inverses and twin (cousin) pairs hi residues, the 

restwins array is sorted to put them in sequential order, then the last hi residue for the last twin pair 

modgp±1 are included as the last ones. (For cousin primes, we include the hi residue for the pivot pair 

(modpg/2 + 2)and then sort the array).

Finally, the inverses for the last two residues modgp±1 are added at their address locations, and the 

outputs are returned for use in set_sieve_parameters.
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For a given prime number, it generates its primorial value for 
modpg, and keeps its r0 value in res_0. It then generates all 
the residues. It uses P3’s PGS to generate Pn’s first half rcs. It 
checks if they’re coprime to modpg to identify the residues. For 
each residue it creates its modular complement (mc) and stores 
both inverses at their address values. It then determines if the 
residue is part of a twin (cousin) pair, and if so, then so is its 
complement, and stores both hi pair values in restwins.

Upon generating all the residues, and storing their inverses and 
twin (cousin) pairs hi residues, the restwins array is sorted to put 
them in sequential order, then the last hi residue for the last twin 
pair modgp±1 are included as the last ones. (For cousin primes, 
we include the hi residue for the pivot pair (modpg/2 + 2) and 
then sort the array).

Finally, the inverses for the last two residues modgp±1 are 
added at their address locations, and the outputs are returned for 
use in set_sieve_parameters.
 
Given the input values, set_sieve_parameters determine 
which prime generator to use, generates its parameters, then 
determines the range parameters and segment size to use. Here I 
use a rudimentary tree algorithm to determine for my laptops the 
switch points for using different generators. This can be made 
much more sophisticated and adaptable by also accounting for 
the number of system threads and cache and ram memory size, 
to pick better segment size values and generators for a given 
inputs range.
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Given the input values, set_sieve_parameters determines which prime generator to use, generates 
its parameters, then determines the range parameters and segment size to use.  Here I use a rudimentary
tree algorithm to determine for my laptops the switch points for using different generators. This can be 
made much more sophisticated and adaptable by also accounting for the number of system threads and 
cache and ram memory size, to pick better segment size values and generators for a given inputs range.

set_sieve_parameters

def set_sieve_parameters(start_num, end_num)
  # Select at runtime best PG and segment size parameters for input values.
  # These are good estimates derived from PG data profiling. Can be improved.
  nrange = end_num - start_num
  bn, pg = 0, 3
  if end_num < 49
    bn = 1; pg = 3
  elsif nrange < 77_000_000
    bn = 16; pg = 5
  elsif nrange <  1_100_000_000
    bn = 32; pg = 7
  elsif nrange < 35_500_000_000
    bn = 64; pg = 11
  elsif nrange < 14_000_000_000_000
    pg = 13
    if    nrange > 7_000_000_000_000; bn = 384
    elsif nrange > 2_500_000_000_000; bn = 320
    elsif nrange >   250_000_000_000; bn = 196
    else  bn = 128
    end
  else
    bn = 384; pg = 17
  end
  modpg, res_0, pairscnt, restwins, resinvrs = gen_pg_parameters(pg)
  kmin = (start_num-2) // modpg + 1      # number of resgroups to start_num
  kmax = (end_num - 2) // modpg + 1      # number of resgroups to end_num
  krange = kmax - kmin + 1               # number of resgroups in range, at least 1
  n = krange < 37_500_000_000_000 ? 4 : (krange < 975_000_000_000_000 ? 6 : 8)
  b = bn * 1024 * n                      # set seg size to optimize for selected PG
  ks = krange < b ? krange : b           # segments resgroups size

  puts "segment size = #{ks} resgroups; seg array is [1 x #{((ks-1) >> 6) + 1}] 64-bits"
  maxpairs = krange * pairscnt           # maximum number of twinprime pcs
  puts "twinprime candidates = #{maxpairs}; resgroups = #{krange}"
  {modpg, res_0, ks, kmin, kmax, krange, pairscnt, restwins, resinvrs}
end

Inputs: Outputs:
end_num ––– high input value (min of 3) ks – number of residue groups set for segment size
start_num – low input value (min of 3) res_0 – first residue of selected Pn (next prime > Pn prime)

modpg – modulus value for chosen pg
kmin – number resgroups to start_num
kmax – number resgroups to end_num
krange – number of resgroups for inputs range (at least 1)
pairscnt – number of twinpairs for selected pg
resinvrs – modular inverses array for the residues
restwins – hi residue values array for each twinpair
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Finally, this is the Crystal version of the main routine twinprimes_ssoz. It accepts the input values, performs the residues sieve, 
times the different parts of the process, and generates the program outputs.Finally, this is the Crystal version of the main routine twinprimes_ssoz.  It accepts the input values, 

performs the residues sieve, times the different parts of the process, and generates the program outputs.

twinprimes_ssoz

def twinprimes_ssoz() 
  end_num   = {ARGV[0].to_u64, 3u64}.max 
  start_num = ARGV.size > 1 ? {ARGV[1].to_u64, 3u64}.max : 3u64
  start_num, end_num = end_num, start_num if start_num > end_num
  start_num |= 1                         # if start_num even increase by 1
  end_num = (end_num - 1) | 1            # if end_num even decrease by 1
  start_num = end_num = 7 if end_num - start_num < 2

  puts "threads = #{System.cpu_count}"
  ts = Time.monotonic                    # start timing sieve setup execution
                                         # select Pn, set sieving params for inputs
  modpg, res_0, ks, kmin, kmax, krange,
    pairscnt, restwins, resinvrs = set_sieve_parameters(start_num, end_num)

  # create sieve primes <= sqrt(end_num), only use those whose multiples within inputs range
  primes = end_num < 49 ? [5] : sozpg(Math.isqrt(end_num), res_0, start_num, end_num)

  puts "each of #{pairscnt} threads has nextp[2 x #{primes.size}] array"

  lo_range = restwins[0] - 3             # lo_range = lo_tp - 1
  twinscnt = 0_u64                       # determine count of 1st 4 twins if in range for used Pn
  twinscnt += [3, 5, 11, 17].select { |tp| start_num <= tp <= lo_range }.size unless end_num == 3

  te = (Time.monotonic - ts).total_seconds.round(6)
  puts "setup time = #{te} secs"         # display sieve setup time
  puts "perform twinprimes ssoz sieve"
  t1 = Time.monotonic                    # start timing ssoz sieve execution

  cnts = Array(UInt64).new(pairscnt, 0)  # number of twinprimes found per thread
  lastwins = Array(UInt64).new(pairscnt, 0) # largest twinprime val for each thread
  done = Channel(Nil).new(pairscnt)
  
  threadscnt = Atomic.new(0)             # count of finished threads
  restwins.each_with_index do |r_hi, i|  # sieve twinpair restracks
    spawn do
      lastwins[i], cnts[i] = twins_sieve(r_hi, kmin, kmax, ks, start_num, end_num, modpg, primes,
                                         resinvrs)
      print "\r#{threadscnt.add(1)} of #{pairscnt} twinpairs done"
      done.send(nil)
  end end
  pairscnt.times { done.receive }        # wait for all threads to finish
  print "\r#{pairscnt} of #{pairscnt} twinpairs done"

  last_twin = lastwins.max               # find largest hi_tp twinprime in range
  twinscnt += cnts.sum                   # compute number of twinprimes in range
  last_twin = 5 if end_num == 5 && twinscnt == 1
  kn = krange % ks                       # set number of resgroups in last slice
  kn = ks if kn == 0                     # if multiple of seg size set to seg size
  t2 = (Time.monotonic - t1).total_seconds       # sieve execution time

  puts "\nsieve time = #{t2.round(6)} secs"      # ssoz sieve time
  puts "total time = #{(t2 + te).round(6)} secs" # setup + sieve time
  puts "last segment = #{kn} resgroups; segment slices = #{(krange - 1)//ks + 1}"
  puts "total twins = #{twinscnt}; last twin = #{last_twin - 1}+/-1"
end

twinprimes_ssoz
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Finally, this is the Crystal version of the main routine twinprimes_ssoz.  It accepts the input values, 
performs the residues sieve, times the different parts of the process, and generates the program outputs.

twinprimes_ssoz

def twinprimes_ssoz() 
  end_num   = {ARGV[0].to_u64, 3u64}.max 
  start_num = ARGV.size > 1 ? {ARGV[1].to_u64, 3u64}.max : 3u64
  start_num, end_num = end_num, start_num if start_num > end_num
  start_num |= 1                         # if start_num even increase by 1
  end_num = (end_num - 1) | 1            # if end_num even decrease by 1
  start_num = end_num = 7 if end_num - start_num < 2

  puts "threads = #{System.cpu_count}"
  ts = Time.monotonic                    # start timing sieve setup execution
                                         # select Pn, set sieving params for inputs
  modpg, res_0, ks, kmin, kmax, krange,
    pairscnt, restwins, resinvrs = set_sieve_parameters(start_num, end_num)

  # create sieve primes <= sqrt(end_num), only use those whose multiples within inputs range
  primes = end_num < 49 ? [5] : sozpg(Math.isqrt(end_num), res_0, start_num, end_num)

  puts "each of #{pairscnt} threads has nextp[2 x #{primes.size}] array"

  lo_range = restwins[0] - 3             # lo_range = lo_tp - 1
  twinscnt = 0_u64                       # determine count of 1st 4 twins if in range for used Pn
  twinscnt += [3, 5, 11, 17].select { |tp| start_num <= tp <= lo_range }.size unless end_num == 3

  te = (Time.monotonic - ts).total_seconds.round(6)
  puts "setup time = #{te} secs"         # display sieve setup time
  puts "perform twinprimes ssoz sieve"
  t1 = Time.monotonic                    # start timing ssoz sieve execution

  cnts = Array(UInt64).new(pairscnt, 0)  # number of twinprimes found per thread
  lastwins = Array(UInt64).new(pairscnt, 0) # largest twinprime val for each thread
  done = Channel(Nil).new(pairscnt)
  
  threadscnt = Atomic.new(0)             # count of finished threads
  restwins.each_with_index do |r_hi, i|  # sieve twinpair restracks
    spawn do
      lastwins[i], cnts[i] = twins_sieve(r_hi, kmin, kmax, ks, start_num, end_num, modpg, primes,
                                         resinvrs)
      print "\r#{threadscnt.add(1)} of #{pairscnt} twinpairs done"
      done.send(nil)
  end end
  pairscnt.times { done.receive }        # wait for all threads to finish
  print "\r#{pairscnt} of #{pairscnt} twinpairs done"

  last_twin = lastwins.max               # find largest hi_tp twinprime in range
  twinscnt += cnts.sum                   # compute number of twinprimes in range
  last_twin = 5 if end_num == 5 && twinscnt == 1
  kn = krange % ks                       # set number of resgroups in last slice
  kn = ks if kn == 0                     # if multiple of seg size set to seg size
  t2 = (Time.monotonic - t1).total_seconds       # sieve execution time

  puts "\nsieve time = #{t2.round(6)} secs"      # ssoz sieve time
  puts "total time = #{(t2 + te).round(6)} secs" # setup + sieve time
  puts "last segment = #{kn} resgroups; segment slices = #{(krange - 1)//ks + 1}"
  puts "total twins = #{twinscnt}; last twin = #{last_twin - 1}+/-1"
end

twinprimes_ssoz
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8.2.1 Program Output
Below is typical program output, shown here for Rust, for single and two input values (order doesn’t matter), run on an Intel i7-
6700HQ Linux based laptop. The programs is run in a terminal with the command-line interface (cli) shown, and display the output 
shown.

Program Output

Below is typical program output, shown here for Rust, for single and two input values (order doesn’t 

matter), run on an Intel i7-6700HQ Linux based laptop.  The programs is run in a terminal with the  
command-line interface (cli) shown, and display the output shown.

$ echo 5000000000 | ./twinprimes_ssoz 
threads = 8 
using Prime Generator parameters for P11 
segment size = 262144 resgroups; seg array is [1 x 4096] 64-bits 
twinprime candidates = 292207905; resgroups = 2164503 
each of 135 threads has nextp[2 x 6999] array 
setup time = 0.000796737 secs 
perform twinprimes ssoz sieve 
135 of 135 twinpairs done 
sieve time = 0.184892352 secs 
total time = 0.185704753 secs 
last segment = 67351 resgroups; segment slices = 9 
total twins = 14618166; last twin = 4999999860+/-1

$ echo 100000000000 200000000000 | ./twinprimes_ssoz 
threads = 8 
using Prime Generator parameters for P13 
segment size = 524288 resgroups; seg array is [1 x 8192] 64-bits 
twinprime candidates = 4945055940; resgroups = 3330004 
each of 1485 threads has nextp[2 x 37493] array 
setup time = 0.003883411 secs 
perform twinprimes ssoz sieve 
1485 of 1485 twinpairs done 
sieve time = 3.819838338 secs 
total time = 3.823732178 secs 
last segment = 184276 resgroups; segment slices = 7 
total twins = 199708605; last twin = 199999999890+/-1

The program output is described as follows:

Line 0 is the cli input command. When 2 inputs are given their hi|lo order doesn’t matter.
Line 1 shows the number of available system threads,.
Line 2 shows the Pn generator selected based on the inputs.

Line 3 shows the selected resgroup segment size ks, and number of 64-bit memory elements (ks / 64) 
for the segment array.
Line 4 shows the number of twinprime candidates for the number of resgroups spanning the inputs 

range. In the second example, (kmax – kmin + 1) = 3,330,004 resgroups x 1485 (number of P13 
twinpairs) = 4,945,055,940 twinprime candidates.
Line 5 shows the number of twinpairs for the selected PG (here 1485 for P13) and the size of the nextp 

array, which shows the number of sieving primes used (6999 and 37493 for theses examples.
Line 6 shows the time to select and generate Pn’s parameters and the sieve primes.

Line 7 announces when the residues sieve process starts.
Line 8 is a dynamic display showing in realtime how many twinpair threads are done, until finished.

Line 9 shows the runtime for the residues sieve.

Line 10 shows the combined setup and residues sieve times.
Line 11 shows how many resgroups were in the last segment slice and the number of segment slices.
Line 12 shows the number of twinprimes for the inputs range, and the value of the largest one.
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Program Output

Below is typical program output, shown here for Rust, for single and two input values (order doesn’t 
matter), run on an Intel i7-6700HQ Linux based laptop.  The programs is run in a terminal with the  
command-line interface (cli) shown, and display the output shown.

$ echo 5000000000 | ./twinprimes_ssoz 
threads = 8 
using Prime Generator parameters for P11 
segment size = 262144 resgroups; seg array is [1 x 4096] 64-bits 
twinprime candidates = 292207905; resgroups = 2164503 
each of 135 threads has nextp[2 x 6999] array 
setup time = 0.000796737 secs 
perform twinprimes ssoz sieve 
135 of 135 twinpairs done 
sieve time = 0.184892352 secs 
total time = 0.185704753 secs 
last segment = 67351 resgroups; segment slices = 9 
total twins = 14618166; last twin = 4999999860+/-1

$ echo 100000000000 200000000000 | ./twinprimes_ssoz 
threads = 8 
using Prime Generator parameters for P13 
segment size = 524288 resgroups; seg array is [1 x 8192] 64-bits 
twinprime candidates = 4945055940; resgroups = 3330004 
each of 1485 threads has nextp[2 x 37493] array 
setup time = 0.003883411 secs 
perform twinprimes ssoz sieve 
1485 of 1485 twinpairs done 
sieve time = 3.819838338 secs 
total time = 3.823732178 secs 
last segment = 184276 resgroups; segment slices = 7 
total twins = 199708605; last twin = 199999999890+/-1

The program output is described as follows:

Line 0 is the cli input command. When 2 inputs are given their hi|lo order doesn’t matter.
Line 1 shows the number of available system threads,.
Line 2 shows the Pn generator selected based on the inputs.
Line 3 shows the selected resgroup segment size ks, and number of 64-bit memory elements (ks / 64) 
for the segment array.
Line 4 shows the number of twinprime candidates for the number of resgroups spanning the inputs 
range. In the second example, (kmax – kmin + 1) = 3,330,004 resgroups x 1485 (number of P13 
twinpairs) = 4,945,055,940 twinprime candidates.
Line 5 shows the number of twinpairs for the selected PG (here 1485 for P13) and the size of the nextp 
array, which shows the number of sieving primes used (6999 and 37493 for theses examples.
Line 6 shows the time to select and generate Pn’s parameters and the sieve primes.
Line 7 announces when the residues sieve process starts.
Line 8 is a dynamic display showing in realtime how many twinpair threads are done, until finished.
Line 9 shows the runtime for the residues sieve.
Line 10 shows the combined setup and residues sieve times.
Line 11 shows how many resgroups were in the last segment slice and the number of segment slices.
Line 12 shows the number of twinprimes for the inputs range, and the value of the largest one.
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The program output is described as follows:

Line 0 is the cli input command. When 2 inputs are given their 
hi|lo order doesn’t matter. 
Line 1 shows the number of available system threads,.
Line 2 shows the Pn generator selected based on the inputs.
Line 3 shows the selected resgroup segment size ks, and number 
of 64-bit memory elements (ks / 64) for the segment array.
Line 4 shows the number of twinprime candidates for the number 
of resgroups spanning the inputs range. In the second example, 
(kmax – kmin + 1) = 3,330,004 resgroups x 1485 (number of 
P13 twinpairs) = 4,945,055,940 twinprime candidates.
Line 5 shows the number of twinpairs for the selected PG (here 
1485 for P13) and the size of the nextp array, which shows the 
number of sieving primes used (6999 and 37493 for theses 
examples.
Line 6 shows the time to select and generate Pn’s parameters and 
the sieve primes. 
Line 7 announces when the residues sieve process starts.
Line 8 is a dynamic display showing in realtime how many 
twinpair threads are done, until finished. 
Line 9 shows the runtime for the residues sieve.
Line 10 shows the combined setup and residues sieve times.
Line 11 shows how many resgroups were in the last segment 
slice and the number of segment slices.

Line 12 shows the number of twinprimes for the inputs range, 
and the value of the largest one.
 
9. Performance
The SSoZ performs optimally on multi-core systems with 
parallel operating threads. The more available threads the higher 
the possible performance. To show this, I provide data from two 
systems.

System 1: Intel i7-6700HQ, 2.6 – 3.5 GHz, 4C|8T, 16 GB, 
System76 Gazelle (2016) laptop.
System 2: AMD 5900HX, 3.3 – 4.6 GHz, 8C|16T, 40 GB, 
Lenovo Legion Slim 7 (2022) laptop.

For a reference I used Primesieve 7.4 [5] – https://github.com/
kimwalisch/primesieve – described as “a command-line program 
and C/C++ library for quickly generating prime numbers...using 
the segmented sieve of Eratosthenes with wheel factorization.” 
It’s a well-maintained open source project of highly optimized 
C/C++ code libraries, which also takes inputs over the 64-bit 
range (but doesn’t produce results for cousin primes). Below 
are sample outputs for the Rust version of twinprimes_ssoz and 
Primesieve performed on both systems.

Performance

The SSoZ performs optimally on multi-core systems with parallel operating threads.  The more 

available threads the higher the possible performance. To show this, I provide data from two systems.

System 1: Intel i7-6700HQ, 2.6 – 3.5 GHz, 4C|8T, 16 MB, System76 Gazelle (2016) laptop.

System 2: AMD 5900HX,  3.3 – 4.6 GHz, 8C|16T, 16 MB, Lenovo Legion slim 7 (2022) laptop.

 

For a reference I used Primesieve 7.4 [5] – https://github.com/kimwalisch/primesieve – described as 

“a command-line program and C/C++ library for quickly generating prime numbers...using the 

segmented sieve of Eratosthenes with wheel factorization.” It’s a well maintained open source project 

of highly optimized C/C++ code libraries, which also takes inputs over the 64-bit range (but doesn’t 

produce results for cousin primes). Below are sample outputs for the Rust version of twinprimes_ssoz

and Primesieve performed on both systems.

$ echo 378043979 1429172500581 | ./twinprimes_ssoz         $ ./primesieve -c2 378043979 1429172500581
threads = 8                      // 16                     Sieve size = 128 KiB     // 256 KiB
using Prime Generator parameters for P13                   Threads = 8              // 16
segment size = 802816 resgroups; seg array is [1 x 12544]  100%
twinprime candidates = 70654672440; resgroups = 47578904   Seconds: 101.873         // 33.781
each of 1485 threads has nextp[2 x 92610] array            Twin primes: 2601278756
setup time = 0.006171322 secs    // 0.005839409 secs
perform twinprimes ssoz sieve
1485 of 1485 twinpairs done
sieve time = 55.836745969 secs   // 18.062863872 secs
total time = 55.842928445 secs   // 18.068715224 secs
last segment = 212760 resgroups; segment slices = 60
total twins = 2601278756; last twin = 1429172500572+/-1

$ echo 378043979 14291725005819 | ./twinprimes_ssoz         $ ./primesieve -c2 378043979 14291725005819
threads = 8                       // 16                     Sieve size = 128 KiB    // 256 KiB
using Prime Generator parameters for P17                    Threads = 8             // 16
segment size = 1572864 resgroups; seg array is [1 x 24576]  100%
twinprime candidates = 623572052400; resgroups = 27994256   Seconds: 1218.502       // 471.776
each of 22275 threads has nextp[2 x 268695] array           Twin primes: 22078408103
setup time = 0.036543755 secs     // 0.025222812 secs
perform twinprimes ssoz sieve     
22275 of 22275 twinpairs done
sieve time = 675.667368646 secs   // 235,003460103 secs
total time = 675.703922948 secs   // 235.027696883 secs
last segment = 1255568 resgroups; segment slices = 18
total twins = 22078408103; last twin = 14291725004982+/-1

I implemented both the twins|cousins ssoz in the 6 programming languages listed here. Again, these are
reference implementations, and are not necessarily optimum for each language. The Rust versions are 

the most optimized, and generally the fastest, as they performs the SoZ algorithm in parallel. The code 
for each is < 300 ploc (programming lines of code), which highlights the simplicity of the algorithm.

The next page shows tables of benchmark results for the 6 languages implementations, and Primesieve.

They are the best times for both systems from multiple runs under different operating conditions. Their 
code was developed on System 1, and those binaries also run on System 2.  Their source code was then 
compiled on System 2 to compare performance differences, and those were used for the benchmarks. 
The 6 languages, and their development environments and versions are:  C++, Nim 1.6.4 (gcc 11.3.0), 

D (ldc2 1.28.0, LLVM 12.0.1), Crystal 1.4.1 (LLVM 10.0.0), Rust 1.60, and Go 1.18.  They most likely
can be improved, and I hope others will create more versions, especially for other compiled languages.
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Twin Prime Benchmark Comparisons – Intel i7 6700HQ
N Rust C++ D Nim Crystal Go Prmsv Twins Count Largest in Range

1x10^10 0.35 0.45 0.46 0.53 0.48 0.61 0.51 27,412,679 9,999,999,703|-2
5x10^10 1.67 2.14 2.19 2.27 2.40 2.76 2.81 118,903,682 49,999,999,591|-2
1x10^11 3.41 4.24 4.31 4.34 4.69 5.51 5.91 224,376,048 99,999,999,763|-2
5x10^11 18.15 21.42 21.37 21.69 23.81 28.11 32.76 986,222,314 499,999,999,063|-2
1x10^12 37.67 44.48 44.25 44.71 49.05 58.08 69.25 1,870,585,220 999,999,999,961|-2
5x10^12 219.67 253.62 256.30 253.69 279.49 319.84 395.16 8,312,493,003 4,999,999,999,879|-2
1x10^13 482.51 543.74 542.23 541.35 602.63 678.61 825.71 15,834,664,872 9,999,999,998,491|-2

Cousin Prime Benchmark Comparisons – Intel i7 6700HQ
N Rust C++ D Nim Crystal Go Cousins Count Largest in Range

1x10^10 0.36 0.45 0.46 0.53 0.48 0.62 27,409,998 9,999,999,707|-4
5x10^10 1.69 2.11 2.18 2.26 2.41 2.81 118,908,265 49,999,999,961|-4
1x10^11 3.35 4.20 4.46 4.32 4.64 5.52 224,373,159 99,999,999,947|-4
5x10^11 18.08 21.34 21.35 21.76 23.36 28.21 986,220,867 499,999,999,901|-4
1x10^12 37.17 44.57 44.44 44.51 49.14 58.25 1,870,585,457 999,999,998,867|-4
5x10^12 220.05 250.63 251.86 252.18 278.76 320.15 8,312,532,286 4,999,999,999,877|-4
1x10^13 478.96 534.17 541.85 540.81 597.89 678.48 15,834,656,001 9,999,999,999,083|-4

Twin Prime Benchmark Comparisons – AMD Ryzen 9 5900HX
N Rust C++ D Nim Crystal Go Prmsv Twins Count Largest in Range

1x10^10 0.12 0.12 0.12 0.19 0.13 0.15 0.16 27,412,679 9,999,999,703|-2
5x10^10 0.54 0.49 0.58 0.59 0.66 0.67 0.92 118,903,682 49,999,999,591|-2
1x10^11 1.12 0.97 1.13 1.08 1.23 1.32 1.95 224,376,048 99,999,999,763|-2
5x10^11 5.85 4.88 5.75 5.22 6.22 6.92 11.17 986,222,314 499,999,999,063|-2
1x10^12 12.14 10.03 12.01 11.12 13.06 14.61 23.71 1,870,585,220 999,999,999,961|-2
5x10^12 68.04 65.41 69.24 73.54 74.29 81.23 132.99 8,312,493,003 4,999,999,999,879|-2
1x10^13 145.01 155.45 156.57 172.68 170.77 185.25 307.78 15,834,664,872 9,999,999,998,491|-2

I implemented both the twins|cousins ssoz in the 6 programming 
languages listed here. Again, these are reference implementations, 
and are not necessarily optimum for each language. The Rust 
versions are the most optimized, and generally the fastest, as 
they perform the SoZ algorithm in parallel. The code for each 
is < 300 ploc (programming lines of code), which highlights the 
simplicity of the algorithm.

The next page shows tables of benchmark results for the 6 
languages implementations, and Primesieve. They are the 

best times for both systems from multiple runs under different 
operating conditions. Their code was developed on System 1, 
and those binaries also run on System 2. Their source code was 
then compiled on System 2 to compare performance differences, 
and those were used for the benchmarks. The 6 languages, and 
their development environments and versions are: C++, Nim 
1.6.4 (gcc 11.3.0), D (ldc2 1.28.0, LLVM 12.0.1), Crystal 1.4.1 
(LLVM 10.0.0), Rust 1.60, and Go 1.18. They most likely can be 
improved, and I hope others will create more versions, especially 
for other compiled languages.

Cousin Prime Benchmark Comparisons – AMD Ryzen 9 5900HX
N Rust C++ D Nim Crystal Go Cousins Count Largest in Range

1x10^10 0.12 0.11 0.13 0.19 0.13 0.15 27,409,998 9,999,999,707|-4
5x10^10 0.55 0.49 0.57 0.59 0.63 0.66 118,908,265 49,999,999,961|-4
1x10^11 1.12 0.96 1.13 1.07 1.22 1.32 224,373,159 99,999,999,947|-4
5x10^11 5.87 4.89 5.78 5.25 6.18 6.92 986,220,867 499,999,999,901|-4
1x10^12 12.25 10.14 12.14 11.06 12.56 14.67 1,870,585,457 999,999,998,867|-4
5x10^12 67.69 68.51 68.74 74.68 74.86 80.29 8,312,532,286 4,999,999,999,877|-4
1x10^13 145.02 157.68 156.01 173.16 170.06 179.07 15,834,656,001 9,999,999,999,083|-4
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9.1 Enhanced Configurations
The software provided is designed to work on readily available 
64-bit systems, and serve as reference implementations, to 
demonstrate how Prime Generators can be used to efficiently 
identify and count primes. They can be enhanced to take 
advantage of more hardware resources when available.

Ideally, we want to use as many system threads as possible. So 
for P5, which has 3 twin|cousin residue pairs, instead of using 3 
threads over an input range it may be faster to divide the range 
into 2 equal parts and use 6 threads (3 for each half). Even if 
a system has only 4 threads, this may be faster as the range 
increases, but should definitely be faster (for sufficiently large 
ranges) if a system has 6 or more threads. In fact, if a system 
has at least 16 threads, using P7 (15 residue pairs) as the default 
generator for small ranges may be more efficient than P5, as they 
all can run in 1 parallel threads time (ptt).

Thus, a more sophisticated algorithm can be devised for set_
sieve_parameters to use threads count, and also cache|memory 
sizes, to pick the best generator and segment size for given input 
ranges. For best performance this would require the profiling of 
targeted hardware system(s), to optimize the differences between 
cpus and systems capabilities and resources. However, I think 
the algorithm would still be fairly simple to code, to dynamically 
compute these parameters to achieve higher performance.

9.2 Eliminating Sieving Primes
As the value for end_num becomes larger more|bigger sieve 
primes must be generated, and filtered out or kept. Generating 
them takes increasing time with increasing input values. This 
also affects the time to perform the residue sieve, by increasing 
the time (and memory) to create the nextp array, and use it. 
While it’s possible to use stored lists of primes to eliminate 
dynamically generating them, this doesn’t get around creating 
nextp with them, with the associated memory issues for it in 
each thread.

One simple way around this is to use a fast primality test 
algorithm to check each residue pair pc value in each resgroup 
in the threads. If one value isn’t prime the other doesn’t have to 
be checked. By using sufficiently large generators for a given 
input range, the number of resgroups over a range can be made 

arbitrarily small to reduce the number of primality tests to 
perform.

For example, for P47, modp47 = 614,889,782,588,491,410 is 
the largest primorial value that can fit into (unsigned) 64-bits. Its 
15,681,106,801,985,625 residue pairs use 5.1% of the number 
space to hold the twin|cousin primes > 47. Eliminating using 
sieving primes greatly reduces the work of the algorithm.

Realizable machines to perform this would use as many parallel 
compute engines as possible, but each would now be much 
simpler, eliminating sozpg and nextp_init. Now gen_pg_
parameters just identifies the residue pair values (and no longer 
their inverses), needing only a (fast) gcd function.

This could be done with massive arrays of graphic processing 
units (GPUs), or better, Simple Super Computers (SSCs).

To search for yet undiscovered million-digit primes, a distributed 
network can be constructed, similar to that for the Grand Internet 
Mersenne Prime Search (GIMPS) [7] and Twin Primes Search 
[8]. A benefit of creating this network, is that with all the 
available (free) compute power in the world, groups of residue 
pairs can be dedicated to machine clusters and run full time, and 
deterministically identify new twins|cousins (thus two primes 
for the price of one) forever, as there is an infinity of each [3], 
[4].
 
9.3 The Ultimate Primes Search Machine
Using just a few basic properties of Prime Generator Theory 
(PGT) we can construct a conceptually simpler and more 
efficient machine to find as many primes as physical reality and 
time will allow.

Because for any Pn, modpn = pm# (primorial of first m primes), 
r0 = pm+1, and the residues from r0 to r0

2 are consecutive primes, 
we don’t have to do primality tests for them, but merely gcd 
tests to determine which values are coprime to modpn. Thus, we 
can arbitrarily use any prime as r0 of a Pn whose modpn is the 
primorial of all the primes < r0, to directly find the consecutive 
primes in [r0, r0

2). After finding the new additional primes, we 
can them create a larger Pn modulus with them, and repeat the 
process, to continually find more primes.
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are consecutive primes, we don’t have to do primality tests for them, but merely gcd tests to determine 

which values are coprime to modpn.  Thus we can arbitrarily use any prime as r0 of a Pn whose modpn 
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This graph shows the number of consecutive primes in the regions [r0, r0
2) for generator moduli made 

with the first 100 primes. Thus for the last data point for p100 = 541, from r0 = 547 to r0
2 = 299,209 there

are 25,836 primes|residues, and we now know the first 25,936 primes, with 299,197 the largest prime.

Using this approach we no longer have to even identify the residue pairs, but just maintain and use the 

growing modulus values to perform the gcd operations with.  The key here is to do the gcd operations 

on chunks of partial primorial values as we identify more primes and not one humongous pm# value. 

Thus as we identify new primes, we make partial primorial chunks with them.  To check if a value is a 

residue we perform repeated gcd tests with all the partial primorial chunks. If any partial gcd chunk is 

not 1 (coprime) then that rc value isn’t a residue and we can stop testing it. Only rc values that pass all 

the partial chunks tests (done in parallel) are residues to the full modpn value, and thus are new primes.

The main job for this machine would be to control the creation, distribution, and storage of the gcd 

operations, and their results, performed by a distributed network of compute engines.  For each range 

[r0, r0
2) it would use the PGS for some smaller Pn, (e.g. P3’s PGS in the code to reduce the residues 

candidates search space to 1/3 of the range values) and distribute the rcs for testing. After creating a list

of new consecutive primes, it can be processed to identify new primes or k-tuples of any type.
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This graph shows the number of consecutive primes in the 
regions [r0, r0

2) for generator moduli made with the first 100 
primes. Thus, for the last data point for p100 = 541, from r

0
 = 547 

to r0
2 = 299,209 there are 25,836 primes|residues, and we now 

know the first 25,936 primes, with 299,197 the largest prime.

Using this approach, we no longer have to even identify the 
residue pairs, but just maintain and use the growing modulus 
values to perform the gcd operations with. The key here is to do 
the gcd operations on chunks of partial primorial values as we 
identify more primes and not one humongous pm# value. Thus, 
as we identify new primes, we make partial primorial chunks 
with them. To check if a value is a residue we perform repeated 
gcd tests with all the partial primorial chunks. If any partial gcd 
chunk is not 1 (coprime) then that rc value isn’t a residue and we 
can stop testing it. Only rc values that pass all the partial chunks 
tests (done in parallel) are residues to the full modpn value, and 
thus are new primes.

The main job for this machine would be to control the creation, 
distribution, and storage of the gcd operations, and their results, 
performed by a distributed network of compute engines. For 
each range [r0, r0

2) it would use the PGS for some smaller Pn, 
(e.g. P3’s PGS in the code to reduce the residues candidates 
search space to 1/3 of the range values) and distribute the rcs for 
testing. After creating a list of new consecutive primes, it can be 
processed to identify new primes or k-tuples of any type.
 
10. Source Code
The SSoZ is a good algorithm to assess hardware and software 
multi-threading capabilities. It’s very simple mathematically, 
needing only basic computational functions most languages have, 
but are easy to implement if they don’t. The implementations I 
provide should be considered as references and not necessarily 
optimum for each language. They should be considered as 
starting points to improve upon, as they, most importantly, 
produce correct results that other implementations can check 
results against.

The code source files can be found here [6]: https://gist.github.
com/jzakiya, and individually below.

10.1 twinprimes_ssoz
Crystal – https://gist.github.com/jzakiya/
2b65b609f091dcbb6f792f16c63a8ac4
Rust – https://gist.github.com/jzakiya/
b96b0b70cf377dfd8feb3f35eb437225
Nim – https://gist.github.com/jzakiya/
6c7e1868bd749a6b1add62e3e3b2341e
C++ – https://gist.github.com/jzakiya/
fa76c664c9072ddb51599983be175a3f
Go – https://gist.github.com/jzakiya/
fbc77b8fdd12b0581a0ff7c2476373d9
D – https://gist.github.com/jzakiya/
ae93bfa03dbc8b25ccc7f97ff8ad0f61

10.2 cousinprimes_ssoz
Crystal – https://gist.github.com/jzakiya/
0d6987ee00f3708d6cfd6daee9920bd7
Rust – https://gist.github.com/jzakiya/

8879c0f4dfda543eaf92a3186de554d7
Nim – https://gist.github.com/jzakiya/
e2fa7211b52a4aa34a4de932010eac69
C++ – https://gist.github.com/jzakiya/
3799bd8604bdcba34df5c79aae6e55ac
Go – https://gist.github.com/jzakiya/
0ea756a8f6fd09f56cd9374d0dcf4197
D – https://gist.github.com/jzakiya/
147747d391b5b0432c7967dd17dae124

11. Conclusion
Prime Generators allow for the creation of efficient, simple, 
and resource sparse generic algorithms that can be performed 
with any Pn generator. Generators can dynamically be chosen 
to optimize speed and memory use for given number ranges, to 
best use the hardware and software resources available.

The SSoZ algorithms are inherently implementable in parallel, 
and can be performed on any hardware or distributed system that 
provides multiple cores or compute engines. As shown, the more 
cores and threads that are available to use the higher the inherent 
performance will be for a given number range.

While the code to generate Twin and Cousin primes was shown 
here, the basic math and principles explaining the process for 
them can be applied similarly to find other k-tuples, and other 
specific prime types, such as Mersenne Primes [2].

It is hoped this detailed explanation of how the SSoZ works and 
performs will encourage its use in applied applications, and its 
inclusion in software libraries, et al, that are used in the study of 
primes.
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8. Twins Primes Search 

 

https://primes.utm.edu/bios/page.php?id=949

 

https://www.mersenne.org/
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# This Crystal source file is a multiple threaded implementation to perform an
# extremely fast Segmented Sieve of Zakiya (SSoZ) to find Twin Primes <= N.

# Inputs are single values N, or ranges N1 and N2, of 64-bits, 0 -- 2^64 - 1.
# Output is the number of twin primes <= N, or in range N1 to N2; the last
# twin prime value for the range; and the total time of execution.

# This code was developed on a System76 laptop with an Intel I7 6700HQ cpu,
# 2.6-3.5 GHz clock, with 8 threads, and 16GB of memory. Parameter tuning
# probably needed to optimize for other hardware systems (ARM, PowerPC, etc).

# Compile as: $ crystal build twinprimes_ssozgist.cr -Dpreview_mt --release
# To reduce binary size do: $ strip twinprimes_ssoz
# Thread workers default to 4, set to system max for optimum performance.
# Single val: $ CRYSTAL_WORKERS=8 ./twinprimes_ssoz val1
# Range vals: $ CRYSTAL_WORKERS=8 ./twinprimes_ssoz val1 val2

# Mathematical and technical basis for implementation are explained here:
# https://www.academia.edu/37952623/The_Use_of_Prime_Generators_to_Implement_Fast_
# Twin_Primes_Sieve_of_Zakiya_SoZ_Applications_to_Number_Theory_and_Implications_
# for_the_Riemann_Hypotheses
# https://www.academia.edu/7583194/The_Segmented_Sieve_of_Zakiya_SSoZ_
# https://www.academia.edu/19786419/PRIMES-UTILS_HANDBOOK

# This source code, and its updates, can be found here:
# https://gist.github.com/jzakiya/2b65b609f091dcbb6f792f16c63a8ac4

# This code is provided free and subject to copyright and terms of the
# GNU General Public License Version 3, GPLv3, or greater.
# License copy/terms are here: http://www.gnu.org/licenses/

# Copyright (c) 2017-2022; Jabari Zakiya -- jzakiya at gmail dot com
# Last update: 2022/06/28

require "bit_array"

# Customized gcd for prime generators; n > m; m odd
def gcd(m, n)
  while m|1 != 1; t = m; m = n % m; n = t end
  m
end

# Compute modular inverse a^-1 to base m, e.g. a*(a^-1) mod m = 1
def modinv(a0, m0)
  return 1 if m0 == 1
  a, m = a0, m0
  x0, inv = 0, 1
  while a > 1
    inv -= (a // m) * x0
    a, m = m, a % m
    x0, inv = inv, x0
  end
  inv += m0 if inv < 0
  inv
end

def gen_pg_parameters(prime)
  # Create prime generator parameters for given Pn
  puts "using Prime Generator parameters for P#{prime}"
  primes = [2, 3, 5, 7, 11, 13, 17, 19, 23]
  modpg, res_0 = 1, 0                    # compute Pn's modulus and res_0 value
  primes.each { |prm| res_0 = prm; break if prm > prime; modpg *= prm }

  restwins = [] of Int32                 # save upper twinpair residues here
  inverses = Array.new(modpg + 2, 0)     # save Pn's residues inverses here
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  pc, inc, res = 5, 2, 0                 # use P3's PGS to generate pcs
  while pc < (modpg >> 1)                # find PG's 1st half residues
    if gcd(pc, modpg) == 1               # if pc a residue
      mc = modpg - pc                    # create its modular complement
      inverses[pc] = modinv(pc, modpg)   # save pc and mc inverses
      inverses[mc] = modinv(mc, modpg)   # if in twinpair save both hi residues
      restwins << pc << mc + 2 if res + 2 == pc
      res = pc                           # save current found residue
    end
    pc += inc; inc ^= 0b110              # create next P3 sequence pc: 5 7 11 13 17 19 ...
  end
  restwins.sort!;          restwins << (modpg + 1)         # last residue is last hi_tp
  inverses[modpg + 1] = 1; inverses[modpg - 1] = modpg - 1 # last 2 residues are self inverses
  {modpg, res_0, restwins.size, restwins, inverses}
end

def set_sieve_parameters(start_num, end_num)
  # Select at runtime best PG and segment size parameters for input values.
  # These are good estimates derived from PG data profiling. Can be improved.
  nrange = end_num - start_num
  bn, pg = 0, 3
  if end_num < 49
    bn = 1; pg = 3
  elsif nrange < 77_000_000
    bn = 16; pg = 5
  elsif nrange <  1_100_000_000
    bn = 32; pg = 7
  elsif nrange < 35_500_000_000
    bn = 64; pg = 11
  elsif nrange < 14_000_000_000_000
    pg = 13
    if    nrange > 7_000_000_000_000; bn = 384
    elsif nrange > 2_500_000_000_000; bn = 320
    elsif nrange >   250_000_000_000; bn = 196
    else  bn = 128
    end
  else
    bn = 384; pg = 17
  end
  modpg, res_0, pairscnt, restwins, resinvrs = gen_pg_parameters(pg)
  kmin = (start_num-2) // modpg + 1      # number of resgroups to start_num
  kmax = (end_num - 2) // modpg + 1      # number of resgroups to end_num
  krange = kmax - kmin + 1               # number of resgroups in range, at least 1
  n = krange < 37_500_000_000_000 ? 4 : (krange < 975_000_000_000_000 ? 6 : 8)
  b = bn * 1024 * n                      # set seg size to optimize for selected PG
  ks = krange < b ? krange : b           # segments resgroups size

  puts "segment size = #{ks} resgroups for seg bitarray"
  maxpairs = krange * pairscnt           # maximum number of twinprime pcs
  puts "twinprime candidates = #{maxpairs}; resgroups = #{krange}"
  {modpg, res_0, ks, kmin, kmax, krange, pairscnt, restwins, resinvrs}
end

def sozpg(val, res_0, start_num, end_num)
  # Compute the primes r0..sqrt(input_num) and store in 'primes' array.
  # Any algorithm (fast|small) is usable. Here the SoZ for P5 is used.
  md, rscnt = 30u64, 8                   # P5's modulus and residues count
  res  = [7,11,13,17,19,23,29,31]        # P5's residues
  bitn = [0,0,0,0,0,1,0,0,0,2,0,4,0,0,0,8,0,16,0,0,0,32,0,0,0,0,0,64,0,128]

  kmax = (val - 2) // md + 1             # number of resgroups upto input value
  prms = Array(UInt8).new(kmax, 0)       # byte array of prime candidates, init '0'
  modk, r, k = 0, -1, 0                  # initialize residue parameters
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def gen_pg_parameters(prime)
  # Create prime generator parameters for given Pn
  puts "using Prime Generator parameters for P#{prime}"
  primes = [2, 3, 5, 7, 11, 13, 17, 19, 23]
  modpg, res_0 = 1, 0 # compute Pn's modulus and res_0 value
  primes.each { |prm| res_0 = prm; break if prm > prime; modpg *= prm }

  restwins = [] of Int32 # save upper twinpair residues here
  inverses = Array.new(modpg + 2, 0)     # save Pn's residues inverses here
  pc, inc, res = 5, 2, 0 # use P3's PGS to generate pcs

  while pc < (modpg >> 1) # find PG's 1st half residues
    if gcd(pc, modpg) == 1 # if pc a residue

mc = modpg - pc # create its modular complement
inverses[pc] = modinv(pc, modpg)   # save pc and mc inverses
inverses[mc] = modinv(mc, modpg)   # if in twinpair save both hi residues
restwins << pc << mc + 2 if res + 2 == pc
res = pc # save current found residue

    end
    pc += inc; inc ^= 0b110 # create next P3 sequence pc: 5 7 11 13 17...
  end
  restwins.sort!;          restwins << (modpg + 1)         # last residue is last hi_tp
  inverses[modpg + 1] = 1; inverses[modpg - 1] = modpg - 1 # last 2 residues are self inverses
  {modpg, res_0, restwins.size, restwins, inverses}
end
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  loop do                                # for r0..sqrtN primes mark their multiples
    if (r += 1) == rscnt; r = 0; modk += md; k += 1 end # resgroup parameters
    next if prms[k] & (1 << r) != 0      # skip pc if not prime
    prm_r = res[r]                       # if prime save its residue value
    prime = modk + prm_r                 # numerate the prime value
    break if prime > Math.isqrt(val)     # exit loop when it's > sqrtN
    res.each do |ri|                     # mark prime's multiples in prms
      kn,rn = (prm_r * ri - 2).divmod md # cross-product resgroup|residue
      bit_r = bitn[rn]                   # bit mask for prod's residue
      kpm = k * (prime + ri) + kn        # resgroup for 1st prime mult
      while kpm < kmax; prms[kpm] |= bit_r; kpm += prime end
  end end
  # prms now contains the nonprime positions for the prime candidates r0..N
  # extract only primes that are in inputs range into array 'primes'
  primes = [] of UInt64                  # create empty dynamic array for primes
  prms.each_with_index do |resgroup, k|  # for each kth residue group
    res.each_with_index do |r_i, i|      # check for each ith residue in resgroup         
      if resgroup & (1 << i) == 0        # if bit location a prime
        prime = md * k + r_i             # numerate its value, store if in range
        # check if prime has multiple in range, if so keep it, if not don't
        n, rem = start_num.divmod prime  # if rem 0 then start_num is multiple of prime
        primes << prime if (res_0 <= prime <= val) && (prime * n <= end_num - prime || rem == 0)
  end end end
  primes
end

def nextp_init(rhi, kmin, modpg, primes, resinvrs)
  # Initialize 'nextp' array for twinpair upper residue rhi in 'restwins'.
  # Compute 1st prime multiple resgroups for each prime r0..sqrt(N) and
  # store consecutively as lo_tp|hi_tp pairs for their restracks.
  nextp = Slice(UInt64).new(primes.size*2) # 1st mults array for twinpair
  r_hi, r_lo = rhi, rhi - 2              # upper|lower twinpair residue values
  primes.each_with_index do |prime, j|   # for each prime r0..sqrt(N)
    k = (prime - 2) // modpg             # find the resgroup it's in
    r = (prime - 2) %  modpg + 2         # and its residue value
    r_inv = resinvrs[r].to_u64           # and residue inverse
    rl = (r_inv * r_lo - 2) % modpg + 2  # compute r's ri for r_lo
    rh = (r_inv * r_hi - 2) % modpg + 2  # compute r's ri for r_hi
    kl = k * (prime + rl) + (r * rl - 2) // modpg # kl 1st mult resgroup
    kh = k * (prime + rh) + (r * rh - 2) // modpg # kh 1st mult resgroup
    kl < kmin ? (kl = (kmin - kl) % prime; kl = prime - kl if kl > 0) : (kl -= kmin)
    kh < kmin ? (kh = (kmin - kh) % prime; kh = prime - kh if kh > 0) : (kh -= kmin)
    nextp[j * 2] = kl.to_u64             # prime's 1st mult lo_tp resgroup val in range 
    nextp[j * 2 | 1] = kh.to_u64         # prime's 1st mult hi_tp resgroup val in range
  end
  nextp
end

def twins_sieve(r_hi, kmin, kmax, ks, start_num, end_num, modpg, primes, resinvrs)
  # Perform in thread the ssoz for given twinpair residues for kmax resgroups.
  # First create|init 'nextp' array of 1st prime mults for given twinpair,
  # stored consequtively in 'nextp', and init seg array for ks resgroups.
  # For sieve, mark resgroup bits to '1' if either twinpair restrack is nonprime
  # for primes mults resgroups, and update 'nextp' restrack slices acccordingly.
  # Return the last twinprime|sum for the range for this twinpair residues.
  sum, ki, kn  = 0_u64, kmin-1, ks                     # init these parameters
  hi_tp, k_max = 0_u64, kmax                           # max twinprime|resgroup
  seg = BitArray.new(ks)                               # seg array of ks resgroups
  ki    += 1 if r_hi - 2 < (start_num - 2) % modpg + 2 # ensure lo tp in range
  k_max -= 1 if r_hi > (end_num - 2) % modpg + 2       # ensure hi tp in range
  nextp = nextp_init(r_hi, ki, modpg, primes,resinvrs) # init nextp array
  while ki < k_max                       # for ks size slices upto kmax
    kn = k_max - ki if ks > (k_max - ki) # adjust kn size for last seg
    primes.each_with_index do |prime, j| # for each prime r0..sqrt(N)
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  pc, inc, res = 5, 2, 0                 # use P3's PGS to generate pcs
  while pc < (modpg >> 1)                # find PG's 1st half residues
    if gcd(pc, modpg) == 1               # if pc a residue
      mc = modpg - pc                    # create its modular complement
      inverses[pc] = modinv(pc, modpg)   # save pc and mc inverses
      inverses[mc] = modinv(mc, modpg)   # if in twinpair save both hi residues
      restwins << pc << mc + 2 if res + 2 == pc
      res = pc                           # save current found residue
    end
    pc += inc; inc ^= 0b110              # create next P3 sequence pc: 5 7 11 13 17 19 ...
  end
  restwins.sort!;          restwins << (modpg + 1)         # last residue is last hi_tp
  inverses[modpg + 1] = 1; inverses[modpg - 1] = modpg - 1 # last 2 residues are self inverses
  {modpg, res_0, restwins.size, restwins, inverses}
end

def set_sieve_parameters(start_num, end_num)
  # Select at runtime best PG and segment size parameters for input values.
  # These are good estimates derived from PG data profiling. Can be improved.
  nrange = end_num - start_num
  bn, pg = 0, 3
  if end_num < 49
    bn = 1; pg = 3
  elsif nrange < 77_000_000
    bn = 16; pg = 5
  elsif nrange <  1_100_000_000
    bn = 32; pg = 7
  elsif nrange < 35_500_000_000
    bn = 64; pg = 11
  elsif nrange < 14_000_000_000_000
    pg = 13
    if    nrange > 7_000_000_000_000; bn = 384
    elsif nrange > 2_500_000_000_000; bn = 320
    elsif nrange >   250_000_000_000; bn = 196
    else  bn = 128
    end
  else
    bn = 384; pg = 17
  end
  modpg, res_0, pairscnt, restwins, resinvrs = gen_pg_parameters(pg)
  kmin = (start_num-2) // modpg + 1      # number of resgroups to start_num
  kmax = (end_num - 2) // modpg + 1      # number of resgroups to end_num
  krange = kmax - kmin + 1               # number of resgroups in range, at least 1
  n = krange < 37_500_000_000_000 ? 4 : (krange < 975_000_000_000_000 ? 6 : 8)
  b = bn * 1024 * n                      # set seg size to optimize for selected PG
  ks = krange < b ? krange : b           # segments resgroups size

  puts "segment size = #{ks} resgroups for seg bitarray"
  maxpairs = krange * pairscnt           # maximum number of twinprime pcs
  puts "twinprime candidates = #{maxpairs}; resgroups = #{krange}"
  {modpg, res_0, ks, kmin, kmax, krange, pairscnt, restwins, resinvrs}
end

def sozpg(val, res_0, start_num, end_num)
  # Compute the primes r0..sqrt(input_num) and store in 'primes' array.
  # Any algorithm (fast|small) is usable. Here the SoZ for P5 is used.
  md, rscnt = 30u64, 8                   # P5's modulus and residues count
  res  = [7,11,13,17,19,23,29,31]        # P5's residues
  bitn = [0,0,0,0,0,1,0,0,0,2,0,4,0,0,0,8,0,16,0,0,0,32,0,0,0,0,0,64,0,128]

  kmax = (val - 2) // md + 1             # number of resgroups upto input value
  prms = Array(UInt8).new(kmax, 0)       # byte array of prime candidates, init '0'
  modk, r, k = 0, -1, 0                  # initialize residue parameters
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  pc, inc, res = 5, 2, 0                 # use P3's PGS to generate pcs
  while pc < (modpg >> 1)                # find PG's 1st half residues
    if gcd(pc, modpg) == 1               # if pc a residue
      mc = modpg - pc                    # create its modular complement
      inverses[pc] = modinv(pc, modpg)   # save pc and mc inverses
      inverses[mc] = modinv(mc, modpg)   # if in twinpair save both hi residues
      restwins << pc << mc + 2 if res + 2 == pc
      res = pc                           # save current found residue
    end
    pc += inc; inc ^= 0b110              # create next P3 sequence pc: 5 7 11 13 17 19 ...
  end
  restwins.sort!;          restwins << (modpg + 1)         # last residue is last hi_tp
  inverses[modpg + 1] = 1; inverses[modpg - 1] = modpg - 1 # last 2 residues are self inverses
  {modpg, res_0, restwins.size, restwins, inverses}
end

def set_sieve_parameters(start_num, end_num)
  # Select at runtime best PG and segment size parameters for input values.
  # These are good estimates derived from PG data profiling. Can be improved.
  nrange = end_num - start_num
  bn, pg = 0, 3
  if end_num < 49
    bn = 1; pg = 3
  elsif nrange < 77_000_000
    bn = 16; pg = 5
  elsif nrange <  1_100_000_000
    bn = 32; pg = 7
  elsif nrange < 35_500_000_000
    bn = 64; pg = 11
  elsif nrange < 14_000_000_000_000
    pg = 13
    if    nrange > 7_000_000_000_000; bn = 384
    elsif nrange > 2_500_000_000_000; bn = 320
    elsif nrange >   250_000_000_000; bn = 196
    else  bn = 128
    end
  else
    bn = 384; pg = 17
  end
  modpg, res_0, pairscnt, restwins, resinvrs = gen_pg_parameters(pg)
  kmin = (start_num-2) // modpg + 1      # number of resgroups to start_num
  kmax = (end_num - 2) // modpg + 1      # number of resgroups to end_num
  krange = kmax - kmin + 1               # number of resgroups in range, at least 1
  n = krange < 37_500_000_000_000 ? 4 : (krange < 975_000_000_000_000 ? 6 : 8)
  b = bn * 1024 * n                      # set seg size to optimize for selected PG
  ks = krange < b ? krange : b           # segments resgroups size

  puts "segment size = #{ks} resgroups for seg bitarray"
  maxpairs = krange * pairscnt           # maximum number of twinprime pcs
  puts "twinprime candidates = #{maxpairs}; resgroups = #{krange}"
  {modpg, res_0, ks, kmin, kmax, krange, pairscnt, restwins, resinvrs}
end

def sozpg(val, res_0, start_num, end_num)
  # Compute the primes r0..sqrt(input_num) and store in 'primes' array.
  # Any algorithm (fast|small) is usable. Here the SoZ for P5 is used.
  md, rscnt = 30u64, 8                   # P5's modulus and residues count
  res  = [7,11,13,17,19,23,29,31]        # P5's residues
  bitn = [0,0,0,0,0,1,0,0,0,2,0,4,0,0,0,8,0,16,0,0,0,32,0,0,0,0,0,64,0,128]

  kmax = (val - 2) // md + 1             # number of resgroups upto input value
  prms = Array(UInt8).new(kmax, 0)       # byte array of prime candidates, init '0'
  modk, r, k = 0, -1, 0                  # initialize residue parameters
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  pc, inc, res = 5, 2, 0                 # use P3's PGS to generate pcs
  while pc < (modpg >> 1)                # find PG's 1st half residues
    if gcd(pc, modpg) == 1               # if pc a residue
      mc = modpg - pc                    # create its modular complement
      inverses[pc] = modinv(pc, modpg)   # save pc and mc inverses
      inverses[mc] = modinv(mc, modpg)   # if in twinpair save both hi residues
      restwins << pc << mc + 2 if res + 2 == pc
      res = pc                           # save current found residue
    end
    pc += inc; inc ^= 0b110              # create next P3 sequence pc: 5 7 11 13 17 19 ...
  end
  restwins.sort!;          restwins << (modpg + 1)         # last residue is last hi_tp
  inverses[modpg + 1] = 1; inverses[modpg - 1] = modpg - 1 # last 2 residues are self inverses
  {modpg, res_0, restwins.size, restwins, inverses}
end

def set_sieve_parameters(start_num, end_num)
  # Select at runtime best PG and segment size parameters for input values.
  # These are good estimates derived from PG data profiling. Can be improved.
  nrange = end_num - start_num
  bn, pg = 0, 3
  if end_num < 49
    bn = 1; pg = 3
  elsif nrange < 77_000_000
    bn = 16; pg = 5
  elsif nrange <  1_100_000_000
    bn = 32; pg = 7
  elsif nrange < 35_500_000_000
    bn = 64; pg = 11
  elsif nrange < 14_000_000_000_000
    pg = 13
    if    nrange > 7_000_000_000_000; bn = 384
    elsif nrange > 2_500_000_000_000; bn = 320
    elsif nrange >   250_000_000_000; bn = 196
    else  bn = 128
    end
  else
    bn = 384; pg = 17
  end
  modpg, res_0, pairscnt, restwins, resinvrs = gen_pg_parameters(pg)
  kmin = (start_num-2) // modpg + 1      # number of resgroups to start_num
  kmax = (end_num - 2) // modpg + 1      # number of resgroups to end_num
  krange = kmax - kmin + 1               # number of resgroups in range, at least 1
  n = krange < 37_500_000_000_000 ? 4 : (krange < 975_000_000_000_000 ? 6 : 8)
  b = bn * 1024 * n                      # set seg size to optimize for selected PG
  ks = krange < b ? krange : b           # segments resgroups size

  puts "segment size = #{ks} resgroups for seg bitarray"
  maxpairs = krange * pairscnt           # maximum number of twinprime pcs
  puts "twinprime candidates = #{maxpairs}; resgroups = #{krange}"
  {modpg, res_0, ks, kmin, kmax, krange, pairscnt, restwins, resinvrs}
end

def sozpg(val, res_0, start_num, end_num)
  # Compute the primes r0..sqrt(input_num) and store in 'primes' array.
  # Any algorithm (fast|small) is usable. Here the SoZ for P5 is used.
  md, rscnt = 30u64, 8                   # P5's modulus and residues count
  res  = [7,11,13,17,19,23,29,31]        # P5's residues
  bitn = [0,0,0,0,0,1,0,0,0,2,0,4,0,0,0,8,0,16,0,0,0,32,0,0,0,0,0,64,0,128]

  kmax = (val - 2) // md + 1             # number of resgroups upto input value
  prms = Array(UInt8).new(kmax, 0)       # byte array of prime candidates, init '0'
  modk, r, k = 0, -1, 0                  # initialize residue parameters
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                                         # for lower twinpair residue track
      k = nextp.to_unsafe[j * 2]         # starting from this resgroup in seg
      while k < kn                       # until end of seg
        seg.unsafe_put(k, true)          # mark primenth resgroup bits prime mults
        k += prime  end                  # set resgroup for prime's next multiple
      nextp.to_unsafe[j * 2] = k - kn    # save 1st resgroup in next eligible seg
                                         # for upper twinpair residue track
      k = nextp.to_unsafe[j * 2 | 1]     # starting from this resgroup in seg
      while k < kn                       # until end of seg
        seg.unsafe_put(k, true)          # mark primenth resgroup bits prime mults
        k += prime  end                  # set resgroup for prime's next multiple
      nextp.to_unsafe[j * 2 | 1]= k - kn # save 1st resgroup in next eligible seg
    end                                   
    cnt = seg[...kn].count(false)        # count|store twinprimes in segment
    if cnt > 0                           # if segment has twinprimes
      sum += cnt                         # add segment count to total range count
      upk = kn - 1                       # from end of seg, count back to largest tp
      while seg.unsafe_fetch(upk); upk -= 1 end
      hi_tp = ki + upk                   # set its full range resgroup value
    end
    ki += ks                             # set 1st resgroup val of next seg slice
    seg.fill(false) if ki < k_max        # set next seg to all primes if in range
  end                                    # when sieve done, numerate largest twin 
                                         # for ranges w/o twins set largest to 1
  hi_tp = (r_hi > end_num || sum == 0) ? 1 : hi_tp * modpg + r_hi
  {hi_tp.to_u64, sum.to_u64}             # return largest twinprime|twins count
end 

def twinprimes_ssoz() 
  end_num   = {ARGV[0].to_u64, 3u64}.max 
  start_num = ARGV.size > 1 ? {ARGV[1].to_u64, 3u64}.max : 3u64
  start_num, end_num = end_num, start_num if start_num > end_num
  start_num |= 1                         # if start_num even increase by 1
  end_num = (end_num - 1) | 1            # if end_num even decrease by 1
  start_num = end_num = 7 if end_num - start_num < 2

  puts "threads = #{System.cpu_count}"
  ts = Time.monotonic                    # start timing sieve setup execution
                                         # select Pn, set sieving params for inputs
  modpg, res_0, ks, kmin, kmax, krange,
    pairscnt, restwins, resinvrs = set_sieve_parameters(start_num, end_num)

  # create sieve primes <= sqrt(end_num), only use those whose multiples within inputs range
  primes = end_num < 49 ? [5] : sozpg(Math.isqrt(end_num), res_0, start_num, end_num)

  puts "each of #{pairscnt} threads has nextp[2 x #{primes.size}] array"

  lo_range = restwins[0] - 3             # lo_range = lo_tp - 1
  twinscnt = 0_u64                       # determine count of 1st 4 twins if in range for used Pn
  twinscnt += [3, 5, 11, 17].select { |tp| start_num <= tp <= lo_range }.size unless end_num == 3

  te = (Time.monotonic - ts).total_seconds.round(6)
  puts "setup time = #{te} secs"         # display sieve setup time
  puts "perform twinprimes ssoz sieve"
  t1 = Time.monotonic                    # start timing ssoz sieve execution

  cnts = Array(UInt64).new(pairscnt, 0)  # number of twinprimes found per thread
  lastwins = Array(UInt64).new(pairscnt, 0) # largest twinprime val for each thread
  done = Channel(Nil).new(pairscnt)
  
  threadscnt = Atomic.new(0)             # count of finished threads
  restwins.each_with_index do |r_hi, i|  # sieve twinpair restracks
    spawn do
      lastwins[i], cnts[i] = twins_sieve(r_hi, kmin, kmax, ks, start_num, end_num, modpg, primes,
                                         resinvrs)
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      print "\r#{threadscnt.add(1)} of #{pairscnt} twinpairs done"
      done.send(nil)
  end end
  pairscnt.times { done.receive }        # wait for all threads to finish
  print "\r#{pairscnt} of #{pairscnt} twinpairs done"

  last_twin = lastwins.max               # find largest hi_tp twinprime in range
  twinscnt += cnts.sum                   # compute number of twinprimes in range
  last_twin = 5 if end_num == 5 && twinscnt == 1
  kn = krange % ks                       # set number of resgroups in last slice
  kn = ks if kn == 0                     # if multiple of seg size set to seg size
  t2 = (Time.monotonic - t1).total_seconds       # sieve execution time

  puts "\nsieve time = #{t2.round(6)} secs"      # ssoz sieve time
  puts "total time = #{(t2 + te).round(6)} secs" # setup + sieve time
  puts "last segment = #{kn} resgroups; segment slices = #{(krange - 1)//ks + 1}"
  puts "total twins = #{twinscnt}; last twin = #{last_twin - 1}+/-1"
end

twinprimes_ssoz
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