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Introduction
The nonlinear governing equation representing heat transfer 
through extended surfaces illustrates conservation of energy. 
Its complex characteristics defy tidy analytical solutions and as 
such it is only amenable to approximate analytical or numerical 
solutions. These include Taylor transformation methods [1-3], 
Adomian decomposition methods and power series methods [4-
7]. Other methods based on spatial/temporal discrete techniques 
comprise finite element/finite difference methods [8, 9]. Very few 
exact solutions exist for the one-dimensional fin problem. These 
are only possible for constant heat transfer coefficient and thermal 
conductivity. However with some considerable effort Moitsheki 
et al. were able to arrive at exact solutions for a fin problemwith a 
given nonlinear thermal conductivity and heat transfer coefficient. 
In a later work, Mhlongo and Moitsheki [10, 11], extended the 
analysis to account for temperature distributions for fins of different 
profiles. Although a good number of works on fins is based on steady 
state analysis, there exist situations where knowledge of transient 
response is necessary. This is true of fans incorporating moving fins, 
electronic cooling components, heat exchanger nuclear reactors etc.  

One of the earliest works on fins involving transient computation 
was carried out by Chapman [12]. He developed equations that 
yielded information for transient temperature response of fins 
for cases involving dissipation of heat to the surroundings and 
the relationship between temperature distribution and base heat. 
Donaldson and Shouman later developed equations for fin transient 
temperature distribution for two cases involving step changes in base 
heat flow rate and base temperature distribution [13]. We hasten to 
comment that most of the work done on fins at this stage, relied 
heavily on analytical and graphical techniques. Very much along 
these lines are contributions from Aziz and Kraus who adopted a 
separation of variables approach to determine temperature profiles 
for a convecting straight fin with a step change and Suryanarayana 
who solved a similar problem but instead of using the same approach 
adopted by employed the Laplace transform technique [14, 15]. The 
Laplace transform method was also applied by Mao and Rooke to 
investigate temperature profiles involving step changes for different 
fin configurations [16].

However a slightly different picture arises for real world situations 
encountered in engineering practice namely for the case of (i) a solid 
protrusion with temperature dependent thermal conductivity and/
or variable specific heat exposed to an ambient fluid and attached 
to a heat source and whose transient temperature profile is dictated 
by physically realistic boundary conditions (ii) a solid protrusion 
with nonlinear thermo-physical properties and subjected to internal 
heat generation. Application of the above mentioned techniques 
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Abstract
Numerical calculations and scalar transport analyses are carried out for transient heat transfer in a heat generating 
fin with a temperature-dependent heat transfer and conduction coefficients. The highly nonlinear governing equation, 
satisfies  the Dirichlet and Neumann boundary conditions at both ends of the problem domain.Integral representation of 
the governing equation over the discretized problem domain is achieved  via the Green’s second identity together with 
the so called free- space Green function . This element-driven approach togetherwith the finite difference approximation 
of the temporal derivative result in discrete equations which are recursive in nature. At the boundaries of any of the 
adjacent elements, compatibility conditions and/or boundary conditions are enforced to guarantee scalar continuity.  
After the resulting system of discrete equations are numerically solved and assembled, they yield the transient history of 
the scalar variables at any particular point in time. Several numerical tests are carried out to ensure the convergence 
and accuracy of the formulation by comparing numerical results with those found in literature.
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for this class of problems comes with certain limitations especially 
those that arise from nonlinearities and certain boundary condition 
specifications. It therefore comes as a little or no surprise that in 
the majority of such cases recourse has to be made to numerical 
techniques.

Mosayebidorcheh et al. implemented a transient thermal analysis 
of longitudinal fins with internal heat generation and nonlinear 
temperature dependent properties. They adopted a hybrid numerical 
technique based on differential  transform method(DTM) and finite 
difference method (FDM) to study the effects of such fin parameters 
as thermal conductivity, shape profile, convection heat transfer 
coefficient and internal heat generation on the overall temperature 
distribution.In another related work, Onur, Azizand Torabi carried 
out a transient numerical  analysis of   heat transfer characteristics 
of a fin with temperature dependent heat transfer coefficient. One of 
the earliest contributions to the numerical study of fins with circular 
geometry was made by Campo [17-20]. He considered a circular fin 
with coupled convection and radiation heat transfer. He analyzed 
the problem setup for two cases namely, for the first type, the fin at 
ambient temperature was exposed to a harmonic oscillation at its 
base for zero time while for the second, and the fin was exposed 
to a non-uniform temperature initially except at the base, where 
the temperature variation is periodic. The resulting governing 
partial differential equation was finally reduced to a system of 
first order ordinary differential equations and solved numerically 
to yield the temperature field and the accompanying heat flux. 
Later work on transient numerical computations for fins considered 
different geometries. Moitsheki and Harley worked on transient heat 
transfer in longitudinal fins of various profiles with temperature 
dependent thermal conductivity and heat transfer coefficient [21]. 
They originally applied a classical Lie point symmetry approach 
involving some reductions in the governing differential equations. 
However they found out that  for certain interesting cases,  the initial 
and boundary conditions were not invariantunder the admitted Lie 
point symmetries  and  the governing differential equation was 
therefore solved numerically to handle this challenge. This was a 
sequel to the work earlier done by Moitsheki whereby he applied 
some rudiments of  Lie group techniques to an unsteady nonlinear 
diffusion problem to model thermal energy storage in a medium 
with temperature-dependent power law thermal conductivity [22].   

Further work on transient temperature distribution was carried out by 
Campo in his study of heat transfer in a convicting slab with variable 
thermo-physical properties. He solved the resulting energy equation 
directly by reducing it to a pair of related equations via transformation 
schemes in order to alleviate the inherent nonlinearities. Campo 
and Salazar also employed a computational scheme known as the 
Transversal Method of Lines (TMOL) to explore the relationship 
between transient conduction in a planar slab for a short period of 
time and the steady state conduction of a straight fin of uniform 
cross-section [23, 24]. The result of their study was very useful 
for providing short-time scalar distributions for a fin subjected to 
Dirichlet or Robin-type boundary conditions for which the heat 
transfer coefficient is very large and the nonlinear heat conduction 
relatively small. Malekzadeh et al. applied the differential quadrature 
method (DQEM) to solve a fin problem involving nonlinear boundary 
conditions.  This method, involved a finite element method (FEM) 
–type domain and temporal discretization with no restrictions for 
time steps and grid spacing [25]. Their results provided accurate 
solutions for fin problems involving convective-radiative heat 

transfer conditions. Convergence, stability and reliability of the 
scheme were confirmed for various test cases involving complex 
geometries for various levels of nonlinearity. 

Sobamowo produced one of the few attempts involving the use of 
numerical integral techniques for fin study. His used the Galerkin 
method of weighted residual to analyze the effects of thermo-
geometric parameters, coefficient of heat transfer, and nonlinear 
thermal conductivity parameters on the temperature field.  His 
numerical effort not only showed the dependence of the scalar field 
on the fin’s thermo-geometric properties but in addition determined 
the limiting values of the fin’s parameters outside of which the fin 
can no longer operate optimally. The same numerical approach was 
adopted by Sobamowo et al. to study the thermal performance of a 
natural convection porous fin with temperature-dependent thermal 
conductivity and internal heat generation [26, 27].

The preceding literature review has brought into focus the 
preponderance of approximate analytic techniques for the solution 
of the nonlinear fin problem and the paucity of integro-numerical 
techniques especially of the boundary element variety to accomplish 
the same task. The reason is not far-fetched. Boundary element 
method (BEM)-based techniques automatically loses one of its most 
cherished advantage i.e. dimensionality-reduction if applied to a 
one-dimensional problem no matter how challenging the problem 
is. Instead the route to one-dimensional application is through a 
similar two-dimensional problem accompanied by an application 
of the no-flux condition at the top and bottom boundaries [28-30]. 
Apart from introducing unnecessary complications into the problem 
formulation often times the physics of the problem is compromised.  

The work reported herein adopts a completely different approach 
and aims at a straightforward way of solving a relatively 
complicated problem by providing a comprehensive numerical 
method for resolving   a nonlinear transient heat transfer process in 
a fin accompanied by internal heat generation. A hybrid domain-
discretized numerical procedure is applied in the spatial domain, 
while classical methods such as the finite difference are used to 
resolve the time dimension. Flexibility of this approach permits the 
variation of the thermal parameters in both space and time.  The 
problem domain is discretized into elements, and their corresponding 
equations are derived while the boundary conditions as well as the 
compatibility conditions at the interface of the elements are enforced. 
This is followed by a finite-element-type assembly of the element 
equations andeventual solution to yield the scalar variables at the 
nodes of each element. Convergence and accuracy of the numerical 
results are confirmed by a series of test cases with various levels of 
rigor and loading. Details of the development of this technique and 
its application can be found in Onyejekwe [27]. 

Problem Formulation
We consider a longitudinal one-dimensional fin described by a 
constant cross-sectional area Ac, a temperature –dependent thermal 
conductivity k(T) and heat transfer coefficient h(T), thickness δ, and 
length L. The spatial and the temporal coordinates are given by x 
and t respectively. The perimeter of the fin is denoted by P and it 
is attached to a fixed body of temperature Tb. It extends into a fluid 
of ambient temperature T∞. In addition there exists a temperature-
dependent heat generation per unit volume within the fin specified 
by Q(T). The non-linear, transient one-dimensional heat balance 
equation in dimensional form can be written as
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                                                                                                  (1)

Both the thermal conductivity and internal heat generation terms in 
many engineering applications are assumed to be linear functions 
of temperature and are given as

                                                                                                  (2)

where  is the thermal conductivity of the fin at ambient temperature 
and   is a parameter that controls the dependence of conductivity 
on temperature.

                                                                                               (2b)

where Ø is the internal heat generation gradient? The heat transfer 
coefficient is expressed by a power law used in many industrial 
applications [21]

                                                                                               (2c)

where hb is the heat transfer coefficient at the base temperature? The 
exponent n depends on the heat transfer mode and usually varies 
between -6.6 and 5. However for most practical applications it has 
been found to lie in the neighborhood of -3 and 3 [21]. With the 
introduction of the following dimensionless variables

                                                                                               (3)

Equation (1) reduces to a dimensionless energy equation expressed as

                                                                                               (4)

An insulated fin tip with the other end at a base temperature,   
represent Dirichlet and Neumann type boundary conditions given as:

                                                                                               (5a)

Initially the fin is kept at an initial temperature

                                                                                               (5b)
      
Solution Procedure
The numerical formulation adopted herein is based on the Fredholm 
singular integral theory which employs the free-space Green’s 
function of the Laplace’s differential operator. This application has 
earlier been utilized in previous work and as such is not described 
in detail. Equation (4) is recast to read:

                                                                                                   (6)

where D()=1 + β. Applying the Green’s second identity to equation 
(6) yields

                                                                                                 (7) 

where                                            is the free-space Green’s function 
and Φ is an arbitrary function  which is set equal to the longest 
element in the computational domain, φ, is the spatial derivative of 
the dependent variable or the ‘flux’, ς is a parameter that is set to 
unity when the source node Xi  is within the element  or 0.5 when it 
is at the nodes  of  an element, and                          .Next, in order 
to facilitate the computation of the line integral, we approximate all 
the functional quantities that constitute the kernel with linear shape 
functions. For example

                                                                                               (8)

where the element shape functions are defined as Ω1 = (X2 - X ) /l, Ω2 = 
(X - X1 ) /l   In order to enhance elemental integration, it is convenient 
to convert to convert to a local coordinate system that takes X1 as 
the origin. This is expressed as ξ = (X - X1 ) /l , as a consequence, 
Ω1= (1 - ξ ), Ω2 = ξ ). Substituting the expressions for the free-space 
Green’s function, as well as the interpolation approximations into 
equation (7) yields the matrix equation

  
                                                                                                (9)

The transient term is discretized bya two-level time discretization 
scheme and is substituted into equation (9) to yield

                                                                                               (10)
Equation (10) is a system of nonlinear equations solved for each 
element in a discretized problem domain. We choose the Picard 
algorithm to handle the nonlinearity in this case, and equation (10) 
is recast to read:
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where s and  s+1  denote  the current and previous iteration levels. 
Equation (11) is a hybrid BEM-FEM discretization of the nonlinear 
fin problem together with heat generation and nonlinear conduction 
and heat transfer coefficient parameters. As each elemental equation 
is nonlinear, the Picard iterative procedure is implemented at each 
time step until convergence is achieved.  Since the integral element 
equation is solved for each element of the discretized problem 
domain, the coefficient matrix is banded and its entries are dependent 
on the solution at previous iteration.

The code developed herein obtains solutions (the dependent variable 
and its spatial coordinate) at different time steps by adopting linear 
approximations for the dependent variables as well as linear finite 
difference time approximation. The resulting matrix equation is of 
the type:

                                                                                               (12) 

Results and Discussions 
The validity of the algorithm developed herein was tested by 
comparing the numerical results with those obtained from analytic 
and finite element solutions as shown in Table 1. The fin parameters 
are the same as those found in [26].  The magnitude of the relative 
errors demonstrates that this numerical technique is closer to the 
analytic than FEM and can be relied on for other challenging 
computations.
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Table 1: Numerical Vs. Analytic Solution
Grid Points Current Work Analytic Results FEM results (Ref. 26) Relative Errors Current Work Relative Errors (FEM Results)
0000000E+00 0.7888016    0.7888326    0.7857143    3.9367060E-05 3.9292681E-03
  5.000001E-02   0.7892877      0.7893187      0.7862500     3.9191789E-05 3.8635940E-03
  0.1000000      0.7907478      0.7907783      0.7878571     3.8591825E-05 3.6690740E-03
  0.1500000      0.7931847      0.7932152      0.7905357     3.8398124E-05 3.3509040E-03
  0.2000000      0.7966052      0.7966352      0.7942857     3.7634716E-05 2.9201773E-03
  0.2500000      0.8010176      0.8010470      0.7991071     3.6757760E-05 2.3907283E-03
  0.3000000      0.8064328      0.8064617      0.8050000     3.5771878E-05 1.7799205E-03
  0.3500000      0.8128647      0.8128927      0.8119643     3.4389013E-05 1.1089741E-03
  0.4000000      0.8203292      0.8203561      0.8200000     3.2840981E-05 4.0145908E-04
  0.4500000      0.8288446      0.8288707      0.8291072     3.1496871E-05 3.1667613E-04
  0.5000001      0.8384330      0.8384577      0.8392857     2.9501700E-05 1.0160588E-03
  0.5500001      0.8491219      0.8491411      0.8505358     2.2602482E-05 1.6623426E-03
  0.6000001      0.8609224      0.8609475      0.8628572     2.9146442E-05 2.2422792E-03
  0.6500001      0.8738659      0.8739066      0.8762500     4.6515692E-05 2.7208286E-03
  0.7000001      0.8881473      0.8880506      0.8907143     1.0886624E-04 2.8819491E-03
  0.7500001      0.9030958      0.9034150      0.9062501     3.5337301E-04 3.4805823E-03
  0.8000001      0.9205891      0.9200383      0.9228572     5.9874263E-04 2.4576029E-03
  0.8500001      0.9371783      0.9379619      0.9405358     8.3545217E-04 3.5698053E-03
  0.9000002      0.9580032      0.9572307      0.9592858     8.0705289E-04 1.3370080E-03
  0.9500002      0.9773933      0.9778929      0.9791072     5.1090069E-04 1.7505045E-03
   1.000000       1.000000       1.000000       1.000000    0.0000000E+00 0.0000000E+00  

Effect of power law index
Equation (4) shows the fin parameters that influence the transient 
response of fins to heat dissipation and energy transport.  They are the 
conduction parameter β , the power law exponent n, heat generation 
parameter Q, the heat generation coefficient γ and the thermo-
geometric parameter ψ. The heat energy entering at X=0   comprises 
conduction heat transfer as well as the energy due to convection.  The 
instantaneous base heat flow can be represented in dimensionless 
form as                            .The instantaneous rate of energy storage 
in the fin can be derived from energy conservation principles as: 
Qstored = Qgen + Qb - Qloss; where  Qgen is the heat generation term  
supplied to the fin and  , the instantaneous heat loss is essentially 
due to convection from the fin Qloss. It must be noted that when 

radiation effects are not considered this is the primary source of heat 
loss. In order for the analysis not to become unwieldy, the transient 
response of each of these parameters is computed for the heat energy 
and temperature fields. Figure1a shows the effect of the power law 
exponent on the transient dimensionless temperature field for the 
following values of fin parameters; n=1.0, β=1.0, ψ=1.0, Q=0.0, 
γ=0.1. The steepest profile is displayed at a dimensionless time 
τ=0.1. As time progresses however the profile becomes flatter as 
the magnitude of the temperature increases. It can be surmised that 
as time progresses and we approach steady state performance, the 
temperature field will become time- invariant and run parallel to the 
time axis. This trend may be compared at least qualitatively with the 
Sobamowo who conducted studies on steady-state heat conduction 

( )1,bQ Xθ τ= ∂ ∂
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in a fin using the Galerkin method approach [26].  Figure 1b shows 
the dimensionless temperature field run with the same values of 
fin parameters, but with the power law index increased (n=2). The 
profiles show higher fin temperatures with a higher value for the 
n parameter with no internal heat generation. The whole effect is 
more pronounced at the tip of the fin.Fig. 1c shows the effect of the 
power law exponent n on the base heat flux, Qb heat storage Qs and 
total heat flux Qf for the following fin parameters:  

Figure 1a: Effect of power law exponent n=1 on dimensionless 
temperature

Figure 1b: Effect of power law exponent n=2 on dimensionless 
temperature

Figure 1c: Effect of power law exponent n=1 on heat profile

Figure 1d: Effect of power law exponent n=1 on heat loss

β=0.1, n=1.0, ψ=0.1, Q=0.5, γ=0.4 while Fig 1d shows the 
accompanying heat loss term for the same value of fin parameters. 
From Fig. 1d, it can be seen that at the very early part of the transient 
process, the heat loss rises gradually almost imperceptibly because 
great percentage of the energy in the fin from the base of the fin 
and the heat generation component are still stored in the fin. This 
can be seen from Fig. 1c where the heat storage component has 
the highest magnitude. Fig. 1d shows that as time progresses, the 
surface heat loss increases and the stored energy, total heat flux and 
base flux components decrease as well. We observe that when the 
fin achieves steady state operation approximately at τ≈ 1.5, the heat 
storage term approaches  a value of 0.5 asymptotically which is the 
value of the heat generation term while both the base  and the total 
heat flux  tend to a zerovalue  while the heat storage term approach 
Qgen asymptotically.

Effect of thermo-geometric parameter
The effect of changes in the profiles of both the dimensionless fin 
temperature and heat profiles are determined for the following fin 
parameters Qgen=0.5, β=1.0, n=1.0, γ=0.1. Figures 2a (ψ=1.0)   and 
2b (ψ=2.5) show that the dimensionless fin profile at each node 
is higher the fin thermos-geometric parameter operates at a lower 
value. The magnitude of the difference is found to increase as time 
progresses. Since this parameter relates to convection of heat out 
of the fin; it is clear that the higher the more the heat is withdrawn 
from the system. The reverse is the case if more heat is retained 
in the system   for a lower value of  ψ and the temperature profile 
becomes higher. Figure 2c (ψ=1.0) as well as Figure 2d (ψ=2.0) 
show the instantaneous base heat flow, heat gain, heat loss and 
heat store respectively. The base heat flow as well as the surface 
heat loss is remarkably enhanced eventhough they retain similar 
shapes. For both cases, as time progresses the base heat flow and 
the surface heat loss do not become equal instead the difference 
between them is accounted for by the approximate  magnitude of  
the heat generated in the fin Qgen  for the case of ψ=1.0 and almost 
twice as much  for  the higher value of thermos-geometric parameter. 
There is a considerable loss of heat for ψ=2. It happens to such an 
extent that fin becomes dysfunctional at τ p 0.5 , but on the contrary 
starts gaining heat as illustrated by the negative sign of the heat loss 
energy component.
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Figure 2a: Effect of thermo-geometric parameter ξ=1 on 
dimensionless temperature

Figure 2b: Effect of thermo-geometric parameter ξ=3 on 
dimensionless temperature

Figure 2c: Effect of thermo-geometric parameter ξ=1 on heat profile

Figure 2d: Effect of thermo-geometric parameter ξ=3 on heat profile

Effect of internal heat generation
The effect of the internal heat generation are illustrated for the 
following fin parameters: β=1.0, n=1.0, ψ=1.0 γ=0.1 . Figures 
3a and 3b illustrate cases for no heat generation (Qgen=0.0)  and 
heat generation (Qgen=3.0). As expected the higher value of the 
heat generation parameter displays higher temperatures profile as 
compared with those where there is no internal heat generation. The 
maximum difference is accomplished at steady state. In addition as 
time progresses the no heat generation profiles become less steep 
as steady state is approached. On the contrary the other profiles 
display a considerable slope reversal after τ > 0.2. The reason for 
this is obvious. At this time, he fin is no longer able to remove heat 
from its primary surface and the fin configuration can be termed as 
dysfunctional. Values of the fin parameters as well as the time at 
which this occurs, can be considered as valuable design parameters.  
Figures 3c and 3d show the heat profiles for these two cases. Figure 
3d shows that the heat loss term Qloss is higher than that of figure 
3c due to the higher temperature generation. All the other heat 
components decrease asymptotically until steady state is reached 
at τ> 0.57. With the profiles of Fig. 3d showing more rapid decline 
than those of Fig. 3c where there is no heat generation.

Figure 3a: Effect of conduction parameter β=0.0 on dimensionless 
temperature

Figure 3b: Effect of conduction parameter β=3.0 on dimensionless 
temperature
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Figure 3c: Effect of conduction parameter  β=0.0  on heat profile

Figure 3d: Effect of conduction parameter  β=3.0  on heat profile

Effect of conduction parameter
The conduction parameter is varied for the following fin parameter 
values ψ=1.0, Qgen=0.5, γ=0.1. Figures 4a and 4b display the 
temperature profiles for β=0.0  and β=3.0 respectively. Higher 
temperature profiles are displayed for the latter case as the profiles 
approach steady state with a flatter temperature profile. The heat 
profiles if Fig. 4a reflects the temperature profile in Fig. 4a where 
it takes a much longer time to achieve steady state. In addition 
Fig.4c shows that there is a continuous loss of heat by convection 
until τ>  1.0. This is unlike Fig. 4d where steady state comes much 
earlier (τ< 0.5). Heat loss is mostly by convection as exemplified 
by the value of the thermo-geometric parameter (ψ=1.0). Fig. 4d 
displays the heat loss term rising asymptotically to a value of 1.0 
and in addition, the increase in the increase in the base temperature 
gradient is reflected by an increase in the base heat flow.

Figure 4a: Effect of heat generation parameter Qgen=1 on 
dimensionless temperature

Figure 4b: Effect of heat generation parameter Qgen=2.5 on 
dimensionless temperature

Figure 4c: Effect of heat generation parameter Qgen=1  on heat profile

Figure 4d: Effect of heat generation parameter  Qgen=3.0  on heat 
profile

Conclusion 
In the work reported herein we have studied the transient heat and 
temperature response to changes in certain fin parameters. The effects 
of the power law index, thermo- geometric, conduction, and heat 
generation parameters have been studied numerically. It was shown 
that they all play a very important role in the overall performance 
of the fin and   can be used as very significant factors in fin design
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