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Abstract 
This work is the first in literature to tackle the difficult open problem of determining the upper bound and threshold theorem 
for the TDCDP (time-dependent controller parameter) of the (Fokker Planck Kolmogorov) probability density function. This 
revolutionary exposition will put control theory and other related inter-disciplinary fields to a higher level towards contemporary 
control theory. Notably, based on the influential role of control theory in both engineering and industry, this paper will be of 
great value to all engineering and industry professionals who seek to know more about advanced trends within control theory 
settings. On the other remit of the spectrum,  Fokker Planck Kolmogorov(FPK) equations are of high importance to physicists 
as well as mathematicians, based on their multiple applicability to information theory, graph theory, data science, finance, 
economics, and beyond. So, this by default adds more taste and credibility to this study. This leads by nature to introducing a 
different flavor to this ground-breaking research by highlighting the impact of Fokker Planck Kolmogorov(FPK) to revolutionize 
crypocurrency,which have  received its name because it uses encryption to verify transactions, a new debatable digital payment 
system that doesn't rely on banks to verify transactions. It’s a peer-to-peer system that can enable anyone anywhere to send 
and receive payments. The paper ends with closing remarks combined with some challenging open problems and the next 
phase of research.
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1. Introduction 
Because complex stochastic systems are highly unpredictable 
and random, they are difficult to manage. Gaussian stochastic 
systems are controlled for unpredictability using a statistical 
measure called variance [1-4].

Variance control techniques cannot be directly applied to 
stochastic systems with nonlinearities. This is since non-
Gaussian distributions of system variables are possible even in 
the case of Gaussian noise in the system [5].

Gaussian processes may not be sufficient to capture the 
randomness and uncertainty of certain nonlinear systems. 
Variance control techniques are ineffective in these situations 
[6].

Discrete-time stochastic nonlinear systems (SNSs) frequently use 
PDF control techniques. However, it is challenging to develop 
an analytical solution for the FPK equation for continuous-time 
SNSs [7].

With the specified control method, the closed-loop system may 
be seen [7] as an Ornstein-Uhlenbeck process.

Here xt is the system’s state, φ > 0 defines the   controller’s 
designed parameter, Wt defines the Weiner process and σ is a 
positive real constant.

The FPK reads as follows:

                                                                                                  (2)

p(x,t) serves as the PDF with x to define the random variable of 
xt.

The PDF provides the closed form solution for equation (2)

Provided that W0 is the Lambert W function [8] and r(t)  serves 
as  a  variance function that depends on time. Fig. 1 [7] shows a 
simulation of the outcomes, discretizing the undertaken model 
with a sampling time of 0.1. Figure 1 depicts the system's 
trajectory in relation to state xt and offers compelling evidence 
that the system's variable stabilization was attained.
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Figure1: The System’s Trajectory State xt  [7]

On another important note, the Lamber W function,  W0 (c.f., (4)) reads (c.f., [8])

Where z  is any complex number and it is satisfied when z is real. Also, for real values of z, W0 (z) satisfies:

The following theorem is essential to obtain the main results of section two.

Preliminary Theorem (PT) [9]
Let f  be a function that is defined and differentiable on an open interval (c,d).Preliminary Theorem (PT) [9] 

Let f  be a function that is defined and differentiable on an open interval (c,d). 
If 𝑓𝑓��𝑥𝑥� � ���0 �𝑥𝑥 � �𝑐𝑐,𝑑𝑑�, then f  increases(decreases) on �𝑐𝑐,𝑑𝑑�                                                                             (7)                  

    
This current paper contributes to: 
 

 Finding the TDCDP’s threshold . 
 Finding for the first time ever, the TDCDP’s  upper bound. 
 The provision of some FPK equations applications to cryptocurrency. 
 The provision of new emerging open problems. 

 
This paper’s roadmap reads as: Section two  is concerned with the methodology. Section three 

provides results and discussion. A summary of  some influential applications of  the FPK equations to 
cryptocurrencies is given in section four. Section five concludes with tough open problems and offers 
suggestions for further investigation.      

                                        
Methodology 
 

Notably, a mathematical approach is undertaken to calculate the threshold based on the preliminary 
theorem(see Eqn (7)). More potentially, calculus and more advanced algebraic forms are utilized to 
uncover the upper bound of the time-dependent controller’s designed parameter. Looking at the bigger 
picture, this discovery will lead to a contemporary control theory rather than being limited within the traditional 
classical frames.  
 
From another perspective, one might wonder about the possibility of employing Fokker Planck Kolmogorov 
Probability Density Function to revolutionize the most advaocated hot topic, namely cryptocurrency. 
Is this posible or not? 
 
This current paper provides the full answer, by providing some potential applications of Fokker Planck 
Kolmogorov Probability Density Function to crypotcurrency, but yet there are still numerous 
unexplored applications. This will put the research community into more spacious frontiers of 
thoughtful innovation. 
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This paper’s roadmap reads as: Section two  is concerned with the methodology. Section three provides results and discussion. A 
summary of  some influential applications of  the FPK equations to cryptocurrencies is given in section four. Section five concludes 
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2. Methodology
Notably, a mathematical approach is undertaken to calculate the threshold based on the preliminary theorem(see Eqn (7)). More 
potentially, calculus and more advanced algebraic forms are utilized to uncover the upper bound of the time-dependent controller’s 
designed parameter. Looking at the bigger picture, this discovery will lead to a contemporary control theory rather than being limited 
within the traditional classical frames. 

From another perspective, one might wonder about the possibility of employing Fokker Planck Kolmogorov Probability Density 
Function to revolutionize the most advaocated hot topic, namely cryptocurrency. Is this posible or not?

This current paper provides the full answer, by providing some potential applications of Fokker Planck Kolmogorov Probability 
Density Function to crypotcurrency, but yet there are still numerous unexplored applications. This will put the research community 
into more spacious frontiers of thoughtful innovation.

3. Results and Discussion
Theorem 1  For φ (c.f., (4)-(7)), it holds that:
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i)  φ is forever(increasing)(decreasing) in σ if and only if

ii)  φ is forever(increasing)(decreasing) in t if and only if

iii)  φ is forever(increasing)(decreasing) in r(t) if and only if

Following (6), it is implied that:

By (7) and (12), the proof of part i) is immediate.
ii)

Combining (7) with (4), ii) follows.

iii) Engaging the same procedure, the proof follows.

Theorem 2  For φ (c.f., (4) and (5)), it holds that
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Notably, the obtained upper bound (c.f., (15)) is time dependent. 
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Notably, the obtained upper bound (c.f., (15)) is time dependent. 
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Notably, the obtained upper bound (c.f., (15)) is time dependent. 
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Notably, the obtained upper bound (c.f., (15)) is time dependent. 
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Notably, the obtained upper bound (c.f., (15)) is time dependent.

3.1 TDCP Applications to Cryptocurrency
The mean-variance paradigm, or Markowitz paradigm[10], is 
frequently linked to expected return and portfolio risk. When 
there are several decision-making bodies active in online 
markets, including digital and cryptocurrency markets, variance 
reduction issues can occur. These interactive decision-making 
issues, sometimes known as "game problems," can be represented 
as linear-quadratic Gaussian (LQG) games, in which the cost 
functional in the state and control variables is quadratic and the 
state dynamics are a linear stochastic system.

If the cost functional and/or state dynamics involve an average or 
expected value of the state and/or the control actions, the game 
is referred to as a mean-field LQG game, or MFT-LQG[10–15]. 
These kinds of game problems have been solved using a variety 
of techniques, including the FPK equation, the Hamilton-
Jacobi-Bellman-Isaacs equation, and the Stochastic Maximum 

Principle[10–15].

The creation of a probabilistic master equation method to identify 
the best course of action for decision-makers was discussed 
in [10–12]. Prior research in this field has employed a master 
equation incorporating a stochastic FPK or a maximal principle. 
Assuming indistinguishability within classes, most studies  have 
concentrated on mean-field game methods in linear-quadratic 
games with an infinite number of decision-makers. This 
assumption, however, might not apply in circumstances like 
variance reduction or risk quantification issues where decision-
makers have varying levels of sensitivity to risk [11–16].

The term "Direct method" describes a particular method or 
methodology applied in a matrix-valued linear jump-diffusion-
regime switching system of mean-field type mathematical 
framework. Therefore, to analyze and solve this system, the 
"Direct method" entails a few crucial phases or procedures[10]. 
Fig.2 provides a schematic (c.f., [10]).
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While macroeconomics has not directly influenced financial mathematics or financial engineering, 
certain contributions are influential to develop stochastic optimization and stochastic differential game 
theory[17]. One such example is the work of Krusell and Smith, whose numerical algorithm for 
approximating equilibrium closely resembles the mean field game strategy, which is used to solve 
equations and search for Nash equilibria in the context of generic agents and FPK equations, by which 
this connection suggests a potential link between macroeconomic models and mean field games in 
economic theory[17]. 
In the context of cryptocurrency mining, [17] presented a dynamic competitive mining game in which 
miners compete by putting up computational effort to gain mining rewards, balancing the reward 
associated with block production with the cost of computing (such as power). The explicit 
determination of the game's equilibrium under specific utility functions exposes the impact of model 
parameters on the equilibrium and draws attention to elements like risk aversion and wealth 
distribution that may contribute to a greater concentration of mining power[17]

Fig.2: A Schematic for the Direct Method’s Key Steps[10].
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While macroeconomics has not directly influenced financial 
mathematics or financial engineering, certain contributions are 
influential to develop stochastic optimization and stochastic 
differential game theory[17]. One such example is the work of 
Krusell and Smith, whose numerical algorithm for approximating 
equilibrium closely resembles the mean field game strategy, 
which is used to solve equations and search for Nash equilibria 
in the context of generic agents and FPK equations, by which this 
connection suggests a potential link between macroeconomic 
models and mean field games in economic theory [17].

In the context of cryptocurrency mining, presented a dynamic 
competitive mining game in which miners compete by putting 
up computational effort to gain mining rewards, balancing 
the reward associated with block production with the cost of 
computing (such as power). The explicit determination of the 
game's equilibrium under specific utility functions exposes 

the impact of model parameters on the equilibrium and draws 
attention to elements like risk aversion and wealth distribution 
that may contribute to a greater concentration of mining power.

In a Markovian setting, when considering the behavior of a 
population average, the best response of individual players can 
be expressed as a function of their own state. By simultaneously 
solving for the response of all players, we can determine the 
best response [17]. The temporal variations in the miners' wealth 
distribution in the Bitcoin network are depicted in Fig. 3. As 
time progresses, most miners experience a decrease in wealth, 
resulting in a concentration of wealth towards the lower end of 
the distribution. However, a small portion of miners who initially 
had more money accumulated wealth over time, leading to a 
spike in their wealth. This observation aligns with the empirical 
findings and supports the notion of preferential attachment 
effects in the Bitcoin network.
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Fig.3. As time passes, the wealth concentration shifts towards the left side of a peak value, indicating that miners with 
higher initial wealth accumulate more wealth over time [17]. 
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Fig.4: The estimated instantaneous profit for miners at various wealth levels and times is displayed in Figure (a). It demonstrates that 
miners with greater wealth typically anticipate higher rates of profit. The percentage of miners with wealth over 100 and their share 
of the total instantaneous earnings are shown in Figure (b), which shows that as time goes on, a bigger percentage of profits flow to 
wealthier miners. The parameters of Fig.(b) are the same as those in Fig.3 [17].
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4. Conclusion and Future Research
In this exposition, the TDCDP’s threshold theorem and 
upper bound are determined. More potentially, this study has 
highlighted  how  FPK equations can advance cryptocurrency.

Here are some proposed open problems:

Open Problem 1
Is it mathematically doable to unlock the challenging open 
problem of finding the lower bound of φ (c.f., (4) and (5))? If 
yes, will it be time-dependent?

Open Problem 2
Is it possible mathematically wise to unlock the most challenging 
open problem ever in finding the threshold values governing the 
increasability(decreasability) regions for Lamber W function,  
W0 

Open Problem 3

Is it possible to unlock more FPK applications to Satellite 
Technology?

Open Problem 4
It is still a mathematical challenge to solve higher-dimensional 
FPK equations, will it be viable to find such an analytic solution 
to them, if there is any?

The next phase of research includes searching for solutions to 
the proposed open problems and investigating more extensions 
to FPK theory to other multi-interdisciplinary fields of human 
knowledge.
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