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Abstract
In this paper, a fractional order avian influenza epidemic model with quarantine and vaccination class is formulated and 
numerically solved using the Laplace Pade Differential Transform Method (LPDTM).
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Introduction
Avian influenza A viruses are very contagious among birds and 
some of these viruses can sicken and even kill certain domesti-
cated bird’s species including chickens, duck and turkeys (FAO, 
[10]; Causey and Edwards [5]. Avian influenza (AI) is an im-
portant disease of zoonotic origin that has caused morbidity and 
mortality in domestic animals, wildlife and humans [25, 28, 11]. 
It is known to be caused by type A viruses of the family Or-
thomyxoviridae, and they are classified by their hemagglutinin 
(HA) and neuraminidase (NA) surface glycoproteins. Highly 
Pathogenic Avian Influenza (HPAI) has caused respiratory dis-
ease and deaths in poultry and poultry handlers that were inap-
propriately exposed to aerosols generated from handling chick-
ens [27]. In recent times, several studies carried out in the area 
of mathematical modelling of physical phenomena involving 
nonlinear dynamics has continue to gain popularity success by 
applying fractional calculus in modelling which include reduc-
tion of errors from neglected parameters [30], avoid large com-
putational work [3].

Literature Review
Many mathematical models have been proposed or developed 
on Avian influenza (Bird Flu), with the aim of getting efficient 
inventive curative and the best strategies to control or curtal bird 
flu.[26] analyzed a model to examine the role of hospital and 
commonly control measures, artificial drugs are vaccination in 
combating a potential flu pandemic in a population. [12] incor-
porated the dynamics of both wild and domestic birds and the 
isolated of individuals with symptoms of both the avian and mu-
tant straps.[16] presented a dynamic behavior of the avian-hu-
man. influenza epidemic model by using efficient computational 
algorithm, namely the Multistage Differential Transform meth-
od (MSDTM)Also [17] applied Homotopy Analysis method 
(HAM) and expanded it to Hybrid Numeric Analysis Method 
known as Multislage HAM (MSHAM) in solving avian-human 
influenza epidemic model. [22] Proposed a Mathematical model 
on avian influenza with quarantine and vaccination. [19] con-
structed two avian influenza birds-to- human transmission mod-

els with different growth laws of the avian population, one with 
Logistive growth and the other with avian effect, and analyzed 
their dynamicbehaviors.

Model Formulation
The fractional- order Avian Influenza epidemic model is ob-
tained by extending the work of [17] and [22]. The parameters 
α,ρ and h used by [22] were cooperated. The basic assumptions 
and flow diagram are shown respectively below:

Basic Assumption for Model
1. Individuals are only recruited into susceptible sub-pop-
ulation
2. The number of susceptible for the bird population is 
increased by newrecruitment but reduced through natural death 
and infection.
3. The avian influenza virus is not contagious from an in-
fective human toa susceptible human. It is only contagious from 
an infective avian to a susceptible human
4. An infected avian keeps in the state of disease and can-
not recover butan infected human can recover the recovered hu-
man has permanent immunity.
5. Susceptible individuals are vaccinated.

3. The avian influenza virus is not contagious from an infective human to

a susceptible human. It is only contagious from an infective avian to a

susceptible human

4. An infected avian keeps in the state of disease and cannot recover but

an infected human can recover the recovered human has permanent

immunity.

5. Susceptible individuals are vaccinated.

Figure 3.1: Flow Diagram of Human population

Figure 3.2: Flow Diagram of Bird population
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3. The avian influenza virus is not contagious from an infective human to

a susceptible human. It is only contagious from an infective avian to a

susceptible human

4. An infected avian keeps in the state of disease and cannot recover but

an infected human can recover the recovered human has permanent

immunity.

5. Susceptible individuals are vaccinated.

Figure 3.1: Flow Diagram of Human population

Figure 3.2: Flow Diagram of Bird population

3Model Equation

dS

dt
= b+ ρV (t)− [β1Y (t) + β2Ia(t) + β3Im(t)]S(t) + (µ+ σ)S(t)]

dE

dt
= [β1Y (t) + β2Ia(t) + β3Im(t)]S(t)− (µ+ θ)E(t)

dIa
dt

= γθE(t)− (α + µ+ da + ϕ1)Ia(t)

dIm
dt

= (1− γ)θE(t) + αIa(t)− (α + µ+ dm + ϕ2 + ω)Im(t)

dR

dt
= ϕ1Ia(t) + ϕ2Im(t) + hQ(t)− µR(t)

dQ

dt
= ωIm(t)− (h+ µ)Q(t)

dV

dt
= σS(t)− (ρ+ µ)V (t)

dX

dt
= c− β4X(t)Y (t)− kX(t)

dY

dt
= β4X(t)Y (t)− (k + n)Y (t)

(3.1)

Table 3.1: VARIABLE DESCRIPTION

VARIABLE DESCRIPTION

S Susceptible Individuals

E Exposed Individuals

Ia Infected Individuals with avian strain

Im Infected Individuals with mutant strain

R Recovered Individuals

V Vaccinated Individuals

Q Quarantine Individuals

X Susceptible Birds

Y Infected Birds

4

(3.1)

Figure 3.2: Flow Diagram of Bird population

Table 3.1: Variable Description
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VARIABLE DESCRIPTION
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4

Initial conditions is S(0) = 21, E(0) = 12, Ia(0) = 5, Im(0) = 2, R(0) =
10, V (0) = 15, X(0) = 990, Y (0) = 10, Q(0) = 4
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Table 3.2: Parameters Description

PARAMETER DESCRIPTION VALUE REFERENCE
b Recruitment rate for human 30 Jabbari et al. [17]
c Bird inflow 1000 Assumed
β1 Rate at which bird to human

avian influenza is contacted
0.2 Jabbari et al.

[17]
β2 Rate at which human-human

avian influenza is contracted
0.4 Jabbari et al.

[17]
β3 Rate at which human-human

mutant influenza is contracted
0.0015 Jabbari et al.

[17]
β4 Rate at which bird contract

avian influenza
0.001 Jabbari et al.

[17]
µ Natural death rate for human 3.91 × 10−5 Liu et al. [19]
α Mutation rate 0.01 Gumel [12]
da Deduced death rate due to

avian strain in human
1 Iwami et al.

[13]
dm Induced death rate due to

mutant strain in human
0.06 Jabari et al.

[18]
k Natural death rate

for birds
3.4246 × 10−4 Liu et al.

[19]
n Induced death rate due to

avian strain in birds
5 Iwami et al.

[13]
PARAMETER DESCRIPTION VALUE REFERENCE
ϕ1 Recovery rate of human with

avian strain
0.2669 Lucche et al.

[20]
ϕ2 Recovery rate of human with

mutant strain
0.05 Gumel

[12]
θ Disease progression rate of human from 

exposed to infectious
0.8 Assumed

γ Proportion of human that are infected 
with avian strain

0.3 Assumed

σ Rate of transmission from
susceptible to vaccinated humans

0.1 Mishra et al.
[22]

ω Rate of transmission from
infected individual with mutant strain 
strain to quarantined individual

0.08 Mishra et al.
[22]

h Rate of transmission from
quarantined to recovered human

0.6 Mishra et al.
[22]

ρ Rate of transmission from
vaccinated to susceptible humans

0.02 Mishra et al.
[22]
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follows

dS

dt
=

∫ t

0

f(t− g)[b+ ρV (g)− [β1Y (g) + β2Ia(g) + β3Im(g)]S(g) + (µ+ σ)S(g)]dg

dE

dt
=

∫ t

0

f(t− g)[[β1Y (g) + β2Ia(g) + β3Im(g)]S(g)− (µ+ θ)E(g)]dg

dIa
dt

=

∫ t

0

f(t− g)[γθE(g)− (α + µ+ da + ϕ1)Ia(g)]dg

dIm
dt

=

∫ t

0

f(t− g)[(1− γ)θE(g) + αIa(g)− (α + µ+ dm + ϕ2 + ω)Im(g)]dg

dR

dt
=

∫ t

0

f(t− g)[ϕ1Ia(g) + ϕ2Im(g) + hQ(g)− µR(g)]dg

dQ

dt
=

∫ t

0

f(t− g)[ωIm(g)− (h+ µ)Q(g)]dg

dV

dt
=

∫ t

0

f(t− g)[σS(g)− (ρ+ µ)V (g)]dg

dX

dt
=

∫ t

0

f(t− g)[c− β4X(g)Y (g)− kX(g)]dg

dY

dt
=

∫ t

0

f(t− g)[β4X(g)Y (g)− (k + n)Y (g)]dg

(3.2)

Where f(t − g) is a kernel with respect to time. The power-law kernel is

define by

f(t− g) =
1

Γ(p− 1)
(t− g)p−2 (3.3)

7

(3.2)
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dE

dt
=
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=
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=
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=
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f(t− g) =
1
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(t− g)p−2 (3.3)

7

(3.3)

Substituting (3.3) into (3.2) to have

dS

dt
=

1

Γ(p− 1)

∫ t

0

(t− g)p−2[b+ ρV (g)− [β1Y (g) + β2Ia(g) + β3Im(g)]S(g)− (µ+ σ)S(g)]dg

dE

dt
=

1

Γ(p− 1)

∫ t

0

(t− g)p−2[[β1Y (g) + β2Ia(g) + β3Im(g)]S(g)− (µ+ θ)E(g)]dg

dIa
dt

=
1

Γ(p− 1)

∫ t

0

(t− g)p−2[γθE(g)− (α + µ+ da + ϕ1)Ia(g)]dg

dIm
dt

=
1

Γ(p− 1)

∫ t

0

(t− g)p−2[(1− γ)θE(g) + αIa(g)− (α + µ+ dm + ϕ2 + ω)Im(g)]dg

dR

dt
=

1

Γ(p− 1)

∫ t

0

(t− g)p−2[ϕ1Ia(g) + ϕ2Im(g) + hQ(g)− µR(g)]dg

dQ

dt
=

1

Γ(p− 1)

∫ t

0

(t− g)p−2[ωIm(g)− (h+ µ)Q(g)]dg

dV

dt
=

1

Γ(p− 1)

∫ t

0

(t− g)p−2[σS(g)− (ρ+ µ)V (g)]dg

dX

dt
=

1

Γ(p− 1)

∫ t

0

(t− g)p−2[c− β4X(g)Y (g)− kX(g)]dg

dY

dt
=

1

Γ(p− 1)

∫ t

0

(t− g)p−2[β4X(g)Y (g)− (k + n)Y (g)]dg

(3.4)

8

Now equation (3.1) is written in terms of time dependent integrations as follows

Where f(t − g) is a kernel with respect to time. The power-law kernel is define by

Substituting (3.3) into (3.2) to have

By definition of fractional integral, system (3.4) becomes

(3.4)
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By definition of fractional integral, system (3.4) becomes

dS

dt
= Jp−1[b+ ρV (g)− [β1Y (g) + β2Ia(g) + β3Im(g)]S(g)− (µ+ σ)S(g)]

dE

dt
= Jp−1[[β1Y (g) + β2Ia(g) + β3Im(g)]S(g)− (µ+ θ)E(g)]

dIa
dt

= Jp−1[γθE(g)− (α + µ+ da + ϕ1)Ia(g)]

dIm
dt

= Jp−1[(1− γ)θE(g) + αIa(g)− (α + µ+ dm + ϕ2 + ω)Im(g)]

dR

dt
= Jp−1[ϕ1Ia(g) + ϕ2Im(g) + hQ(g)− µR(g)]

dQ

dt
= Jp−1[ωIm(g)− (h+ µ)Q(g)]

dV

dt
= Jp−1[σS(g)− (ρ+ µ)V (g)]

dX

dt
= Jp−1[c− β4X(g)Y (g)− kX(g)]

dY

dt
= Jp−1[β4X(g)Y (g)− (k + n)Y (g)]

(3.5)

By applying fractional derivative of order p− 1 (J1−p) on both sides of pre-

9

(3.5)

By applying fractional derivative of order p − 1 (J1−p) on both sides of preceding system, we haveceding system, we have

Dp
∗S(t) = [b+ ρV (t)− [β1Y (t) + β2Ia(t) + β3Im(t)]S(t)− (µ+ σ)S(t)]

Dp
∗E(t) = [[β1Y (t) + β2Ia(t) + β3Im(t)]S(t)− (µ+ θ)E(t)]

Dp
∗Ia(t) = [γθE(t)− (α + µ+ da + ϕ1)Ia(t)]

Dp
∗Im(t) = [(1− γ)θE(t) + αIa(t)− (α + µ+ dm + ϕ2 + ω)Im(t)]

Dp
∗R(t) = [ϕ1Ia(t) + ϕ2Im(t) + hQ(t)− µR(t)]

Dp
∗Q(t) = [ωIm(t)− (h+ µ)Q(t)]

Dp
∗V (t) = [σS(t)− (ρ+ µ)V (t)]

Dp
∗X(t) = [c− β4X(t)Y (t)− kX(t)]

Dp
∗Y (t) = [β4X(t)Y (t)− (k + n)Y (t)]

(3.6)

Thus, a fractional order mathematical model that describes the avian in-

fluenza with the vaccination and quarantine class is proposed by system

(3.6).

4 The Concept and Application of Laplace

Differential Transform Method (LPDTM)

Several approximate methods provide power series solutions (polynomials).

Nevertheless, sometimes, this type of solutions lack large domains of con-

vergence. Therefore, Laplace-Padè ressumation method (Vasquel Led and

Gumero [32], Sweilem and Khader [31], Momani et al. [24]) is used in litera-

ture to enlarge the domain of convergence of solutions or inclusive to find the

exact solutions. Hence, Padè approximants are extensively used to overcome

10

(3.6)

Thus, a fractional order mathematical model that describes the avian influenza with the vaccination and quarantine class is proposed 
by system (3.6).
The Concept and Application of Laplace
Differential Transform Method (LPDTM)
Several approximate methods provide power series solutions 
(polynomials). Nevertheless, sometimes, this type of solutions 
lack large domains of convergence. Therefore, Laplace-Pad`er-
essumation method [32, 31], [24] is used in literature to enlarge 
the domain of convergence of solutions or inclusive to find the 
exact solutions. Hence, Pad`eapproximants are extensively used 
to overcome these shortcomings

The Pad`eapproximation of a function f(t) of order [m/n] is de-
fined by [23].

When we consider b0 = 1, the numerator and denominator have 
no common factors. It is important to note that the Pad`eapprox-
imant can be obtained through the in-built utility of symbolic 
computational software such as maple, matlap etc. Thus, the 
procedure of the Laplace Differential Transformation method 
to the given system of functional order differential equation is 
summarized as follows:
1. Apply the differential transformation method to the given sys-
tem offunctional order differential equation
2. Perform several desirable numbers of iterations (i.e. of K 

these shortcomings

The Padè approximation of a function f(t) of order [m/n] is defined by (

Mohamed and Torky [23])

[m/n] =
a0 + a1t+ · · ·+ amt

m

1 + b1t+ · · ·+ bntn
(4.1)

When we consider b0 = 1, the numerator and denominator have no common

factors. It is important to note that the Padè approximant can be obtained

through the in-built utility of symbolic computational software such as maple,

matlap etc. Thus, the procedure of the Laplace Differential Transformation

method to the given system of functional order differential equation is sum-

marized as follows:

1. Apply the differential transformation method to the given system of

functional order differential equation

2. Perform several desirable numbers of iterations (i.e. of K times) and

get the solution in power series form. e.g. For susceptible class we have

s1(G) =
K∑
z=0

S(z)Gz

3. Take the Laplace transform of the power series.

4. Next, s is substituted with
1

G
in the resulting equation

5. After that, the transformed series is converted into mormorphic func-

tion by forming its Padè approximant of order [m/n]. N and M are

arbitrary chosen but they should be smaller than order of the power

series.

In this step, the Padè approximant extends the domain of the truncated

series solution to obtain better accuracy and convergence

11

(4.1)
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times) and get the solution in power series form. e.g. For suscep-
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phic function by forming its Pad`eapproximant of order [m/n]. N 
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6. G is substituted by
1

s

7. The inverse Laplace transformation is obtained in term of G.

8. Finally, G is substituted with tp to obtain the exact or approximate

solution in terms of t

Using the definition of differential transformation method, equation (3.1) can

be re-written thus

S(K + 1) =
Γ(pK + 1)

Γ(p(K + 1) + 1)

[
βδ(K, 0)−

K∑
i=0

S(l)
[
β1Y (K − l) + β2Ia(K − l)

+ β3Im(K − l)
]
− (µ+ σ)S(K) + ρV (K)

]

E(K + 1)) =
Γ(pK + 1)

Γ(p(K + 1) + 1)

[ K∑
i=0

S(l)
(
β1Y (K − l) + β2Ia(K − l) + β3Im(K − l)

)
− k1E(K)

]

Ia(K + 1) =
Γ(pK + 1)

Γ(p(K + 1) + 1)
[γθE(K)− k2Ia(K)]

Im(K + 1) =
Γ(pK + 1)

Γ(p(K + 1) + 1)
[(1− γ)θE(K) + αIa(K)− k3Im(K)]

R(K + 1) =
Γ(pK + 1)

Γ(p(K + 1) + 1)

[
φ1Ia(K) + φ2Im(K) + hQ(K)− µR(K)

]

Q(K + 1) =
Γ(pK + 1)

Γ(p(K + 1) + 1)
[wIm(K)− k4Q(K)]

V (K + 1) =
Γ(pK + 1)

Γ(p(K + 1) + 1)
[σS(K)− (ρ+ µ)V (K)]

X(K + 1) =
Γ(pK + 1)

Γ(p(K + 1) + 1)

[
cδ(K, 0)− β4

K∑
i=0

(
X(l)Y (K − l)

)
− kX(K)

]

Y (K + 1) =
Γ(pK + 1)

Γ(p(K + 1) + 1)

[
β4

K∑
i=0

(
X(l)Y (K − l)

)
− k5Y (K)

]

(4.2)

12

(4.2)

where k1 = µ + θ, k2 = α + µ + da + φ1, k3 = φ2 + w + µ + dm, k4 = h + µ, k5 = k + n
using the initial conditions S(0) = 21,E(0) = 12,Ia(0) = 5,Im(0) = 2,R(0) = 10,V (0) = 15,Q(0) = 4,X(0) = 990,Y (0) = 10 and the pa-
rameter table 2.2 with the help of Maple 18, we obtain the series solution below for each compartment.

where k1 = µ+ θ, k2 = α + µ+ da + φ1, k3 = φ2 + w + µ+ dm, k4 = h + µ,

k5 = k + n

using the initial conditions S(0) = 21, E(0) = 12, Ia(0) = 5, Im(0) = 2, R(0) =

10, V (0) = 15, Q(0) = 4, X(0) = 990, Y (0) = 10 and the parameter table 2.2

with the help of Maple 18, we obtain the series solution below for each com-

partment.

s1(G) ∼=
15∑
z=0

S(z)Gz = 21− 55.8638211000000G+ 213.459041751002G2

− 618.248683844327G3 + · · · − 6541456.46965407G15

+ · · · − 6.9534471768499× 106t15

e(G) ∼=
81∑
z=0

E(z)Gz = 12 + 74.4625308000000G− 240.433232485777G2

+ 675.230521209997G3 − · · ·

ia(G) ∼=
81∑
z=0

Ia(z)G
z = 5− 3.50469550000000G+ 11.1731450547720G2

− 23.9904671956655G3 + · · ·

im(G) ∼=
81∑
z=0

Im(z)G
z = 2 + 6.44992180000000G+ 20.3158653065288G2

− 45.9274038469550G3 + · · ·

q(G) ∼=
81∑
z=0

Q(z)Gz = 4− 2.30015640000000G+ 0.851339933057620G2

+ 0.168318672700162G3 − 0.599341994306988G4 + · · ·
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where k1 = µ+ θ, k2 = α + µ+ da + φ1, k3 = φ2 + w + µ+ dm, k4 = h + µ,

k5 = k + n

using the initial conditions S(0) = 21, E(0) = 12, Ia(0) = 5, Im(0) = 2, R(0) =

10, V (0) = 15, Q(0) = 4, X(0) = 990, Y (0) = 10 and the parameter table 2.2

with the help of Maple 18, we obtain the series solution below for each com-

partment.

s1(G) ∼=
15∑
z=0

S(z)Gz = 21− 55.8638211000000G+ 213.459041751002G2

− 618.248683844327G3 + · · · − 6541456.46965407G15

+ · · · − 6.9534471768499× 106t15

e(G) ∼=
81∑
z=0

E(z)Gz = 12 + 74.4625308000000G− 240.433232485777G2

+ 675.230521209997G3 − · · ·

ia(G) ∼=
81∑
z=0

Ia(z)G
z = 5− 3.50469550000000G+ 11.1731450547720G2

− 23.9904671956655G3 + · · ·

im(G) ∼=
81∑
z=0

Im(z)G
z = 2 + 6.44992180000000G+ 20.3158653065288G2

− 45.9274038469550G3 + · · ·

q(G) ∼=
81∑
z=0

Q(z)Gz = 4− 2.30015640000000G+ 0.851339933057620G2

+ 0.168318672700162G3 − 0.599341994306988G4 + · · ·
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r(G) ∼=
81∑
z=0

R(z)Gz = 10 + 3.83410900000000G− 0.996575446305950G2

+ 1.50291620212654G3 − · · ·

x(G) ∼=
15∑
z=0

X(z)Gz = 990 + 989.760964600000G+ 14.7329135840316G2

− 14.9896593428025G3 + 10.5693573550055G4 − · · ·

y(G) ∼=
81∑
z=0

Y (z)Gz = 10− 40.1034246000000G+ 85.3630380553945G2

− 127.293497036055G3 + 148.559695512497G4 − · · ·

v(G) ∼=
15∑
z=0

V (z)Gz = 15 + 1.79941350000000G− 2.81122036853392G2

+ 7.13407950039577G3 − 15.4919572292373G4 − · · ·
(4.3)

Applying step 3 to step 8 of the procedure of the Laplace Differential Trans-

formation method to equation (4.3) and when p = 1 gives the approximate

solution to the fractional order A.I. model presented in (3.6).

s1(t) = 0.0601435920624958 e−19.4172245865354 t + 1.39956351085885 e−11.4494665963008 t

+ 8.03001432484090 e−5.24160405850728 t + · · ·

e(t) = −0.000450408960911004 e−30.1796295359648 t − 0.0831823106732497 e−18.7817878007770 t

− 1.76602629646116 e−10.9490321566713 t − · · ·

ia(t) = 0.000148671467499998 e−23.2346530924505 t + 0.0175963022338194 e−13.1717923124120 t

+ 0.236215399401915 e−6.65060451745231 t + · · ·
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(4.3)

Applying step 3 to step 8 of the procedure of the Laplace Differ-
ential Transformation method to equation (4.3) and when p = 1 
gives the approximate solution to the fractional order A.I. model 
presented in (3.6).
s1(t) = 0.0601435920624958e−19.4172245865354t + 
1.39956351085885e−11.4494665963008t
+ 8.03001432484090e−5.24160405850728t + •••
e(t) = −0.000450408960911004e−30.1796295359648t − 
0.0831823106732497e−18.7817878007770t
− 1.76602629646116e−10.9490321566713t − •••
ia(t) = 0.000148671467499998e−23.2346530924505t + 
0.0175963022338194e−13.1717923124120t
+ 0.236215399401915e−6.65060451745231t + •••
im(t) = 0.000441167846211876e−22.6997518392598t + 
0.0516231239419094e−12.5558106157352t
+ 1.00931690441547e−5.48260357632302t + •••
r(t) = −0.00000179851876388121e−23.8309721649748t − 
0.000515583955933068e−13.1932638529236t
− 0.0264768480657769e−5.91257334781731t •••
x(t) = 3.11428189434324 − 0.0888939449779140e−6.19844613454376t

+ 1.76910626064991e−3.72065472589920t + •••

y(t) = 0.0000218973510397729e−11.1597063532236t + 
1.13489272836264e−5.87648270221130t
+ 5.38912836978742e−4.37160992601893t + •••
v(t) = −0.00000379845977890386e−28.3677493227504t − 
0.000886216212473279e−17.3221558465245t
− 0.0303647659826797e−9.51067763148441t − •••
q(t) = −0.000000178972575797361e−25.7041970056611t − 
0.0000473250827509065e−15.2573101765748t−
0.00172192178447173e−8.29117429793647t − •••
The same is repeated for p = 0.2,0.4,0.6 and 0.8 respectively

Numerical Simulations
In this section, maple 18 is used to carry out simulations for the 
fractional order Avian influenza epidemic model with quarantine 
and vaccine using the following initial conditions S(0) = 21, E(0) 
= 12, Ia(0) = 5, Im(0) = 2, R(0) = 10, V (0) = 15, Q(0) = 4, X(0) = 
990, Y (0) = 10

Figure 5.1-5.9 display that the results obtained by LPDTM are 
in excellent agreement with those of Runge-Kutta method and 
provides correctly the dynamics of the formulated A. I. model
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R(0) = 10, V (0) = 15, Q(0) = 4, X(0) = 990, Y (0) = 10

Figure 5.1-5.9 display that the results obtained by LPDTM are in excellent

agreement with those of Runge-Kutta method and provides correctly the

dynamics of the formulated A. I. model

Figure 5.1: Graphical Comparison of S(t)

16

Figure 5.1: Graphical Comparison of S(t)
Figure 5.2: Graphical Comparison of E(t)
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Figure 5.2: Graphical Comparison of E(t)

Figure 5.3: Graphical Comparison of Ia(t)
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Figure 5.3: Graphical Comparison of Ia(t) Figure 5.4: Graphical Comparison of Im(t)
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Figure 5.4: Graphical Comparison of Im(t)

Figure 5.5: Graphical Comparison of Q(t)
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Figure 5.6: Graphical Comparison of V (t)
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Figure 5.5: Graphical Comparison of Q(t) Figure 5.6: Graphical Comparison of V (t)
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Figure 5.7: Graphical Comparison of R(t)
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Figure 5.8: Graphical Comparison of X(t)

23

Figure 5.9: Graphical Comparison of Y (t)

Figure 5.10-5.18 display the result obtained by LPDTM for different val-

ues of p. This shows that the dynamics of A.I depends on the value of p.

Since small changes in the value of p, greatly influences the population curve

of each compartment.

24

Figure 5.7: Graphical Comparison of R(t) Figure 5.8: Graphical Comparison of X(t)

Figure 5.9: Graphical Comparison of Y (t)

Figure 5.10-5.18 display the result obtained by LPDTM for different values of p. This shows that the dynamics of A.I depends on 
the value of p. Since small changes in the value of p, greatly influences the population curve of each compartment.



Volume 1 | Issue 1 | 17Curr Res Stat Math, 2022 www.opastonline.com

Figure 5.10: Graphical Comparison of different values of p for S(t)
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Figure 5.10: Graphical Comparison of different values 
of p for S(t)

Figure 5.11: Graphical Comparison of different values of p for E(t)
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Figure 5.11: Graphical Comparison of different values of p 
for E(t)

Figure 5.12: Graphical Comparison of different values of p for Ia(t)
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Figure 5.12: Graphical Comparison of different values 
of p for Ia(t)

Figure 5.13: Graphical Comparison of different values of p for Im(t)
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Figure 5.13: Graphical Comparison of different values of p 
for Im(t)
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Figure 5.14: Graphical Comparison of different values of p for Q(t)
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Figure 5.14: Graphical Comparison of different values of p 
for Q(t)

Figure 5.15: Graphical Comparison of different values of p for V (t)
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Figure 5.15: Graphical Comparison of different values of p 
for V (t)

Figure 5.16: Graphical Comparison of different values of p for R(t)
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Figure 5.16: Graphical Comparison of different values of p 
for R(t) Figure 5.17: Graphical Comparison of different values of p for X(t)
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Figure 5.17: Graphical Comparison of different values of p 
for X(t)
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Conclusion
A numerical technique called Laplace Differential Transforma-
tion method (LPDTM) is employed to solve a system of fraction-
al order nonlinear differential equation. This system of equations 
describe the use of vaccination and quarantine as a preventive 
measures to Avian Influenza. The proposed method can be used 
to obtain approximate solution and requires no perturbation, lin-
earization or dicretization thus stressing the point that LPDTM 
should be applied for various nonlinear models.

References
1. El-Sayed, A. M. A., Rida, S. Z., & Arafa, A. A. M. (2009). 

On the solutions of time-fractional bacterial chemotaxis in a 
diffusion gradient chamber. International Journal of Nonlin-
ear Science, 7(4), 485-492.

2. Ahmed, E., &Elgazzar, A. S. (2007). On fractional order 
differential equations model for nonlocal epidemics. Phys-
ica A: Statistical Mechanics and its Applications, 379(2), 
607-614.

3. Akinyemi, S. T., Salami, S. A., Akinyemi, I. B., & Sahabi, 
S. (2017). Analytic Solution of a Time Fractional Enzyme 
Kinetics Model Using Differential Transformation Method 
and Pade Approximant. International Journal of Applied 
Science and Mathematical Theory, 3(3), 25-32.

4. Bourouiba, L., Gourley, S. A., Liu, R., & Wu, J. (2011). The 
interaction of migratory birds and domestic poultry and its 
role in sustaining avian influenza. SIAM Journal on Applied 
Mathematics, 71(2), 487-516.

5. Causey, D., & Edwards, S. V. (2008). Ecology of avian in-
fluenza virus in birds. The Journal of Infectious Diseases, 
197(Supplement_1), S29-S33.

6. Che, S.Q., Xue, Y.K. (2014): The stability of highly stabil-
ity of highly pathogenic Avian influenza Epideemic Model 
with Saturated conket Rate. Applied Mathematics . , 3365-
3371

7. Chong, N. S., Tchuenche, J. M., & Smith, R. J. (2014). A 
mathematical model of avian influenza with half-saturated 
incidence. Theory in biosciences, 133(1), 23-38.

8. Chong, N. S. (2015). Modeling avian influenza using Filip-

pov systems to determine culling of infected birds and quar-
antine. Nonlinear analysis: real world applications, 24, 196-
218.

9. Ducatez, M. F., Olinger, C. M., Owoade, A. A., De Landt-
sheer, S., Ammerlaan, W., Niesters, H. G. M., ... & Muller, 
C. P. (2006). Multiple introductions of H5N1 in Nigeria. 
Nature, 442(7098), 37-37.

10. FAO, OIE and WHO (2004). Technical consultation on the 
control of Avian influenza. Animal health special report.

11. Gauthier‐Clerc, M., Lebarbenchon, C., & Thomas, F. 
(2007). Recent expansion of highly pathogenic avian influ-
enza H5N1: a critical review. Ibis, 149(2), 202-214.

12. Gumel, A. B. (2009). Global dynamics of a two-strain avian 
influenza model. International journal of computer mathe-
matics, 86(1), 85-108.

13. Iwami, S. Takenchi, Y., Liu, X. (2007). Avian human influ-
enza epidemic model.Math.Biosei207, 1-25

14. Iwami, S., Takeuchi, Y., Korobeinikov, A., & Liu, X. (2008). 
Prevention of avian influenza epidemic: What policy should 
we choose?. Journal of theoretical biology, 252(4), 732-741.

15. Iwami, S., Takeuchi, Y., Liu, X., &Nakaoka, S. (2009). A 
geographical spread of vaccine-resistance in avian influenza 
epidemics. Journal of Theoretical Biology, 259(2), 219-228.

16. Jabbari, A., Kheiri, H., &Bekir, A. (2015). Dynamical anal-
ysis of the avian-human influenza epidemic model using the 
semi-analytical method. Open Engineering, 5(1).

17. Jabbari, A., Kheiri, H., JodayreeAkbarfam, A., &Bekir, A. 
(2016). Dynamical analysis of the avian–human influenza 
epidemic model using multistage analytical method. Inter-
national Journal of Biomathematics, 9(06), 1650090.

18. Jabbari A., Kheiri A., Bekir A. (2017). Dynamical analy-
sis of the avian-human influenza epidemic model using the 
semi analytical method.Openeng; 5:148-156.

19. Liu, S., Ruan, S., & Zhang, X. (2017). Nonlinear dynamics 
of avian influenza epidemic models. Mathematical biosci-
ences, 283, 118-135.

20. Lucchetti, J., Roy, M., &Martcheva, M. (2009). An avian 
influenza model and its fit to human avian influenza cases. 
Advances in Disease Epidemiology, 1, 1-30.

Figure 5.18: Graphical Comparison of different values of p for Y (t)
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