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Introduction
NO, which was first discovered as endothelium-derived relaxing 
factors (EDRF) in cardiovascular system, has been established as a 
diffusible universal messenger that mediates cell-cell communication 
throughout the body and regulates different physiological and 
pathological processes in many tissues [1-7]. It works mainly through 
activation of its target receptor, the enzyme soluble guanylate cyclase 
(sGC), which, when activated, produces the second messenger 
cyclic-guanosine monophosphate (cGMP). Interestingly, a functional 
NO-cGMP signalling system that involves in development and early 
differentiation of embryonic stem cells (ESCs) can be evolutionarily 
conserved between vertebrates and invertebrates [8]. In addition, 
NO, as a short-lived free radical gas is synthesized from L-arginine 
by a family of enzymes known as NO synthases (NOS) [9]. Three 
NOS isoenzymes encoded by three separate genes, including the 
Ca21/calmodulin-dependent and constitutively expressed neuronal 
NOS (nNOS), endothelial NOS (eNOS) enzymes, and a calmodulin-
independent cytokine-inducible NOS (iNOS) enzyme found in 
various cell types [10]. A small amount of NO, produced by the 
constitutive NOS in response to increase in intracellular calcium, 
play a crucial role in numerous physiological functions, including 
neurotransmission, vascular tone and platelet aggregation, whereas 
the large amounts, generated by iNOS, are implicated in pathological 
functions such as cytotoxicity of activated macrophages [11-14]. 
Recently, experimental evidence has been presented that not only 
can stem cells produce NOS, but its production, exogenous and 
endogenous NO, can also affect the proliferation, mobilization, and 
differentiation of different stem cells.

Role of NO in ESCs
ESCs are pluripotent stem cells derived from the inner cell mass 
of the blastocyst, an early-stage embryo. Krumenacker et al 
(Krumenacker et al., 2006; Mujoo et al., 2006; Mujoo et al., 2008) 
have examined the expression of various subunits of sGC alpha (1), 
alpha (2), beta (1), beta (2), NOS, MLC2 (cardiac marker) and a 
cardiac-specific transcription factor (Nkx2.5) in human embryonic 
stem (hES) cells (H-9 cells) and differentiated cells subjected 
to differentiation in cell suspension using embryoid body (EB) 
formation [15-17]. Their results clearly demonstrate the role of 
NO signaling components in differentiation events or physiological 
processes of human ES or ES cell-derived cardiomyocytes. In 
addition, cGMP analysis in undifferentiated stem cells revealed a 
lack of stimulation with NO donors. Differentiated cells however, 
acquired the ability to be stimulated by NO donors. Although 
3-(4-amino-5-cyclopropylpyrimidin-2-yl)-1-(2-fluorobenzyl)-1H-
pyrazolo [3,4-b] pyridine (BAY 41-2272) alone was able to stimulate 
cGMP accumulation, the combination of NO donors and BAY 
41-2272 stimulated cGMP levels more than either of the agents 
separately. These studies demonstrate that cGMP-mediated NO 
signaling plays an important role in the differentiation of ES cells 
into myocardial cells. Additionally, they also found nNOS and 
eNOS are detected in undifferentiated mouse ES cells while iNOS 
were very low or undetectable. However, although analysis of sGC 
activity in cell lysates derived from undifferentiated ES cells revealed 
that NO could not stimulate cGMP, lysates from differentiated EB 
outgrowths produced abundant cGMP levels after NO stimulation. 
Furthermore, purification of ES-cell derived cardiomyocytes (CM) 
revealed that mRNA expression of all the NOS isoforms was very 
low to absent while sGCα1 and β1 subunit mRNAs were abundant 
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and sGC-mediated cGMP production was apparent in this population 
of cells. These data suggest that cGMP-mediated NO signaling may 
play a minor role, if any, in undifferentiated ES cells but could be 
involved in the early differentiation events or physiological processes 
of ES cells or ES cell-derived lineages. Moreover, Huang et al. 
suggests that NOS elements are present in endothelial cells (ECs) 
but inactive until later stages of differentiation, during which NOS 
inhibition reduces expression of EC markers and impairs angiogenic 
function [18]. Further researches has been reported by Mora-Castilla 
S et al. who indicate that exposure to 0.5 mM DETA-NO induces 
early differentiation events of cells with acquisition of epithelial 
morphology and expression of markers of definitive endoderm, 
such as FoxA2, Gata4, Hfn1-beta and Sox 17 [19].

Role of NO in EPC
EPCs are a controversial and hypothetical population of rare cells 
believed to circulate in the blood with the ability to differentiate 
into endothelial cells, the cells that make up the lining of blood 
vessels. The process by which blood vessels are born de novo 
from endothelial progenitor cells is known as vasculogenesis 
which involves in NO that can stimulates endothelial cell 
proliferation, survival and motility, and enhances matrix invasion 
and tubulogenesis with the help of the pro-angiogenic activity of 
growth factors such as VEGF, transforming growth factor-β and 
FGF [20-23]. Downstream mediators of NO, including cAMP- and 
cGMP-dependent protein kinases [PKA (protein kinase A) and 
PKG (protein kinase G)], Rho GTPases and ROS (reactive oxygen 
species), are likely to play a part. Recent studies have showed that 
the activity of Rho GTPases, key regulators of endothelial cell 
motility and angiogenesis is modulated by altering the metabolism 
of asymmetric dimethylarginine (ADMA) which is a cardiovascular 
risk factor, an endogenous inhibitor of NOS, increased when 
abnormal angiogenesis in cardiovascular disorder happened, and 
is metabolized by dimethylarginine dimethylaminohydrolases ( 
DDAHs) in vivo and in vitro. Fiedler et al. believed that the ADMA/
DDAH pathway is to regulate angiogenesis by influencing NO 
bioavailability [24,25]. Consistent with the role of NO in the ADMA/
DDAH pathway, DDAH I gene deletion in mice leads to inhibition 
of angiogenic responses, similar to that seen in eNOS-knockout mice 
[26-28]. Additionally, NO also modulates gene expression of factors 
that promote angiogenesis, such as αvβ3 integrin, and suppresses 
the production of antiangiogenic factors such as angiostatin, the 
degradation product of plasminogen And Shen et al.  indicate that 
suppressed NO production from EPCs was involved in the glycation 
endproducts (AGE)-induced apoptosis, which is in part mediated 
by mitogen-activated protein kinases (MAPKs) signaling [20,29]. 

Role of NO in MSC
MSCs are multipotent stem cells that can differentiate into a variety 
of cell types include osteoblasts, chondrocytes and adipocytes. 
Tatsumi R. et al., demonstrated that the quiescent satellite cells of 
resident myogenic stem cells which are from MSCs are activated 
to enter the cell proliferation cycle, divide, differentiate, and fuse 
with the adjacent muscle fiber, and are responsible for regeneration 
and work-induced hypertrophy of muscle fibers by activation 
mechanism which is a cascade of events including calcium ion 
influx, calcium-calmodulin formation, NO synthase activation, NO 
radical production when muscle is injured, exercised, overused or 
mechanically stretched [30]. Therefore, MSCs have received special 
attention for cardiomyoplasty. Rebelatto et al. report an investigation 
of the effects of two NO agents (SNAP and DEA/NO), able to 

activate both cGMP-dependent and independent pathways, on the 
cardiomyogenic potential of bone marrow-derived mesenchymal 
stem cells (BM-MSCs) and adipose tissue-derived stem cells 
(ADSCs) [31]. They found that untreated (control) ADSCs and BM-
MSCs expressed some muscle markers and NO-derived intermediates 
induce an increased expression of some cardiac function genes in 
BM-MSCs and ADSCs. And NO agents considerably increased the 
pro-angiogenic potential mostly of BM-MSCs as determined by 
VEGF mRNA levels. Additionally, Mookerjee et al. investigated 
the signaling mechanisms by human gene-2 (H2) relaxin which can 
inhibit renal myofibroblast differentiation by interfering with TGF-
beta1/Smad2 signaling regulates myofibroblast differentiation in 
vitro by examining its effects on mixed populations of fibroblasts and 
myofibroblasts propagated from injured rat kidneys [32]. Inhibition 
of nNOS, NO, and cGMP significantly blocked the inhibitory effects 
of relaxin on alpha-SMA and Smad2 phosphorylation, while the NO 
inhibitor, L-nitroarginine methyl ester (hydrochloride) (L-NAME) 
significantly blocked the inhibitory actions of relaxin on collagen 
concentration in vivo. Moreover, Bironaite et al. clearly demonstrate 
sustained activation of MAPKs which actively participate in the 
regulation of cell survival and of proapoptotic signals in myogenic 
stem cells after exposure to the NO inducer, NOC-18. Inhibition of 
MAPKs phosphorylation by specific inhibitors revealed the anti-
apoptotic role of MAPKs in myogenic stem cells [33]. On the other 
hand, Kraft DCE et al., indicate that Pulsating fluid flow (PFF) 
stimulatedNO production within 5 min by human dental pulp-derived 
mesenchymal stem cells (PDSCs) portraying mature (PDSC-mature) 
but not by PDSC immature [34]. The rapid stimulation of NO 
production by PFF in PDSCs is probably a result of the activity of 
eNOS, but not iNOS, since unlike iNOS, eNOS is constitutively 
expressed in bone cells and dental pulp cells [35,36]. Additionally, 
NO produced by eNOS is primarily regulated by Ca2+ fluxes and 
subsequent binding of calmodulin, and eNOS only produces NO 
for minutes after stimulation [36]. Also, Lee et al. demonstrate that 
NO-induced osteogenic differentiation through heme oxygenase-1 
(HO-1) may be an important mediator of periodontal regeneration 
or bone tissue engineering [37].

Role of NO in NSCs
NSCs can be propagated for extended periods of time and 
differentiated into both neuronal and glia cells. Tegenge et al. indicate 
that NO plays a role in the development of the human nervous 
system [38]. They used a model of human neuronal precursor cells 
(NPCs) from a well-characterized teratocarcinoma cell line (NT2). 
Their results from the differentiating NT2 model neurons point 
towards a vital role of the NO/cGMP/PKG signaling cascade as 
positive regulator of cell migration in the developing human brain. 
And Yoneyama et al. also suggest that NO and endogenous ROS 
are essential for the proliferation of embryonic NSCs and NPCs 
[39]. However, NO can also cause apoptosis of neural progenitor 
cells (NPCs). Hung et al. studied the role of p53 in the NO-induced 
apoptosis was examined in an in vitro model of NPCs [40]. Their 
results suggest a central role of p53 in the NO-induced apoptotic 
pathway in NPCs, which may hence provide new insights into the 
regulation of cell death in NPCs that respond to overproduction of 
NO in injured brain.

Current NO research on various diseases by stem cells
Gene therapy techniques for pulmonary hypertension
NO synthesized by eNOS is important in regulating vascular 
resistance and in vascular remodeling in the lung. NO deficiency due 
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to endothelial dysfunction plays an important role in the pathogenesis 
of Pulmonary hypertension (PH) which is a serious, often fatal 
disease characterized by remodeling of the pulmonary vascular bed, 
increase pulmonary arterial pressure, and right heart failure. Deng et 
al. describe the use of two gene transfer techniques, i.e., adenoviral 
gene transfer of eNOS and eNOS gene-modified rat marrow stromal 
cells, for eNOS gene delivery to the lung of laboratory animals 
for the treatment of PH [41]. Therefore, local eNOS gene delivery 
to the lung is a promising approach for the treatment of PH and 
Adenoviral-mediated in vivo gene therapy and adult stem cell-based 
ex vivo gene therapy are two attractive current gene therapies for 
the treatment of cardiovascular and pulmonary diseases.

Gene therapy techniques for fibrosarcoma
Emerging evidence suggests that MSC are able to migrate to 
sites of tissue injury and have immunosuppressive properties 
that may be useful in targeted gene therapy for sustained specific 
tissue engraftment. Xiang et al. observed that xenogenic MSC 
selectively migrated to the tumor site, proliferated and expressed 
the exogenous gene in subcutaneous fibrosarcoma transplants and 
no MSC distribution was detected in other organs, such as the liver, 
spleen, colon and kidney [42]. They further showed that the FGF2/
FGFR pathways may play a role in the directional movement of MSC 
to the Rif-1 fibrosarcoma and they performed in vitro co-culture and 
in vivo tumor growth analysis, showing that MSC did not affect 
the proliferation of Rif-1 cells and fibrosarcoma growth compared 
with an untreated control group. Finally, they demonstrated that 
the xenogenic MSC stably expressing iNOS protein transferred by 
a lentivirus-based system had a significant inhibitory effect on the 
growth of Rif-1 tumors compared with MSC alone and the non-
treatment control group. Therefore, iNOS delivered by genetically 
modified iNOS-MSC showed a significant anti-tumor effect both in 
vitro and in vivo. MSC may be used as a target gene delivery vehicle 
for the treatment of fibrosarcoma and other tumors.

Perivascular NO involved in stem-like character in PDGF-
induced glioma cells
eNOS expression is elevated in human glioblastomas and correlated 
with increased tumor growth and aggressive character. Charles et 
al. investigated the potential role of NO activity in the perivascular 
niche (PVN) using a genetic engineered mouse model of PDGF-
induced gliomas [43]. eNOS expression is highly elevated in 
tumor vascular endothelium adjacent to perivascular glioma cells 
expressing Nestin, Notch, and the NO receptor, sGC. In addition, 
the NO/cGMP/PKG pathway drives Notch signaling in PDGF-
induced gliomas in vitro, and induces the side population phenotype 
in primary glioma cell cultures. NO also increases neurosphere 
forming capacity of PDGF-driven glioma primary cultures, and 
enhances their tumorigenic capacity in vivo. Loss of NO activity 
in these tumors suppresses Notch signaling in vivo and prolongs 
survival of mice. This mechanism is conserved in human PDGFR 
amplified gliomas. The NO/cGMP/PKG pathway’s promotion of 
stem cell-like character in the tumor PVN may identify therapeutic 
targets for this subset of gliomas.

NO involved in the therapy for cardiovascular disease 
Recent studies have reported a marked impairment in the number 
and functions of EPCs in patients with coronary artery disease 
(CAD). LiN found that eNOS in the host myocardium promotes 
MSC migration to the ischemic myocardium and improves cardiac 
function through cGMP-dependent increases in cell-derived factor-

1alpha (SDF-1alpha) expression [44]. Furthermore, Kaur et al. 
conclude that eNOS gene transfection is a valuable approach to 
augment angiogenic properties of ex vivo expanded EPCs and 
eNOS-modified EPCs may offer significant advantages than EPCs 
alone in terms of their clinical use in patients with myocardial 
ischemia [45]. Moreover, Spallotta et al. found that NO-treated ES 
injected into the cardiac left ventricle selectively localized in the 
ischemic hindlimb and contributed to the regeneration of muscular 
and vascular structures [46]. These findings establish a key role for 
NO in therapy of cardiovascular diseases.

NO involved in the immunosuppression
MSCs hold great promise for treating immune disorders because 
of their immunoregulatory capacity and the mechanism of MSC-
mediated immunosuppression varies among different species. 
Immunosuppression by human- or monkey-derived MSCs is mediated 
by indoleamine 2,3-dioxygenase (IDO), whereas mouse MSCs 
utilize NO, under the same culture conditions. When the expression 
of IDO and iNOS were examined in human and mouse MSCs after 
stimulation with their respective inflammatory cytokines, Ren et al. 
found that human MSCs expressed extremely high levels of IDO, and 
very low levels of iNOS, whereas mouse MSCs expressed abundant 
iNOS and very little IDO [47]. However, immunosuppression by 
human MSCs was not intrinsic, but was induced by inflammatory 
cytokines and was chemokine-dependent, as it is in mouse. Further 
studies have reported that NSCs may exert direct anti-inflammatory 
activity. This action has been attributed, in part, to T-cell suppression. 
Wang et al. indicate that NSCs appear to suppress T-cells, at least in 
part, by NO and prostaglandin E2 (PGE2) production which, in turn, 
would account for the well-documented reduction of central nervous 
system immunopathology by transplanted NSCs [48]. These findings 
provide critical information about the immunosuppression of MSCs 
and for better application of MSCs in treating immune disorders.

Conclusions
In summary, the downstream mediators of NO and NO itself 
are likely to exert the function of modulation in the process of 
EPCs differentiation. Although scarcely can NO influence the 
undifferentiated ESCs, it can be dramatically involved in the early 
differentiation events or physiological processes of ES cells or ES 
cell-derived lineages. Nevertheless, overproduction of NO may 
induce the apoptosis of NPCs. Therefore, NO plays an important role 
in physiological and pathological processes of stem cells and we can 
utilize these characters in the treatment of various diseases by various 
methods like gene transfer techniques, stem cell transplantation et al. 
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