
     Volume 1 | Issue 1 | 40

The refractive index and dispersion of the sensors are dependent on the 
parameters of the photonic crystal fibers   

Research Article

Gifted Guardianship Committee, Missan Directorate of 
Education, Misan, Iraq.

Mohammed Salim Jasim*

*Corresponding author
Mohammed Salim Jasim, Gifted Guardianship Committee, Missan Directorate 
of Education, Misan, Iraq.

Submitted: 10  Oct  2022; Accepted: 17  Oct  2022; Published:  31  Oct   2022

Insights of Herbal Medicine

Insights Herbal Med, 2022

Abstract
A refractive index sensor based on photonic crystal fibers (PCFs) using finite element method (FEM) has been 
suggested in this paper. The designed fiber has a hexagonal cladding structure running around its solid core, 
with six air holes rings. Using the FEM, effective refractive index, confinement loss, fundamental mode laser 
profile, and sensor resolution are investigated. This constructed sensor characterized by low confinement loss 
and high resolution such that a small change in the analyte refractive index could be detected which could be 
useful in detecting changes in biological molecule reaction information as well as in medical applications in 
areas such as toxins, medication residues, vitamins, antibodies, proteins and parasites.
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Introduction
Sensors of photonic crystal fibers (FCFs), which in recent de-
cades have attracted particular attention due to their specific ad-
vantages of flexibility, high sensitivity, compact size, low cost 
and fast response, have been widely used in many fields of sens-
ing applications [1-3]. PCFs sensor typically obtains the mea-
surement of strain , temperature, curvature and other quantities 
by calculating the change in intensity or wavelength shift. Most 
of these optical sensors are calculating the variations in optical 
properties due to a transition in the PCF refractive index (RI) [4]. 
Measuring the RI of PCFs is very important in order to illustrate 
the optical properties of PCFs that lead to the development of 
RI sensors for use in many fields, biotechnology processes also 
play an important role in the interaction of drug / DNA and cell 
growth [2,5,6]. 

A new form of optical fiber was developed, named Photonic 
Crystal Fibers (PCFs), in which air holes along the fiber struc-
ture were developed [7]. PCFs may be categorized by guidance 
mechanism, the core is solid in this form, and the cladding is rep-
resented by two-dimensional air holes lattices running around 
the entire length of the fiber. The RI of the index-guiding PCFs is 
higher than the cladding, so that the light inside the fiber core is 
guided through total internal reflection, whereas in the band-gap 
type, the light is guided by a two-dimensional photonic band-
gab, since the core of these fibers is air or (hollow core) less than 
the refractive index of the cladding. Because of the band-giving 
phenomena, specific light frequencies that propagate along the 
fiber are not allowed to escape from the core, but are reflected 
and constructively interfered within the core and destructively 
interfered in the core it, Figure (1) shows two types of PCFs 
[8,9]. 

Figure 1: shown PCF microstructure cladding (a) solid core and (b) hollow core PCF [10].  

Figure 1: shown PCF microstructure cladding (a) solid core and (b) hollow core PCF 

[10].  

PCFs are designed very flexibly. Manipulating lattice pitch, air hole shape and diameter, 

refractive glass index, and type of lattice are several parameters. Several techniques can 

be used to compensate with the wavelength for the dispersion and the area effect, one of 

which changes the diameter of the air-hole lattice [11-12]. Pulse dispersion is one of the 

two most significant factors restricting the efficiency of a fiber (the other is the loss of 

fiber) [13]. Pulse dispersion occurs for four principal reasons [14]: 

1.Intermodal Dispersion. 

2. Material Dispersion. 

3. Waveguide Dispersion. 

4. Polarization Mode Dispersion (PMD) 

An electromagnetic wave, such as the light emitted by an optical fiber, is essentially a 

mixture of electrical and magnetic fields that oscillate perpendicularly. When an 

electromagnetic wave travels over free space. 

The dispersion equation depends on the wave- length D (λ) gives by the relation [15-17] 
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cladding of PCFs by the relation [18]: 
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Where, A,B,C,D,E,F, is Sellmeier factor, are constants depend on the material, and 

experimental compute [19-21]for pure silica (si  ) the values are: 

A= 0.069675, B=0.408218, C= 0.890815, D=0.0047701, E= 0.0133777,      F= 98.02107, 

and(  ) is the wavelength measure  by (microns) [22]. 
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the terms j in the brackets indicate a number (and this number 
has nothing to do with the complex term that appears outside 

the brackets). Note, moreover, that Zhu et al., approximate the 
refractive indices by averaging the refractive indices of adjacent 
cells. Eqs (6-8) may be written in the form of a matrix as follows:
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these are represented, please consult[23].  
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The approximation of the staircase has to be used in the rectangular mesh in the finite 

differential analysis of waveguides with curved interfaces. To improve that 
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The diameter of air holes influence on the effective refractive index and dispersion 

To know the diameter air hole effect of the photonic crystal fiber by dispersion curve for 

Gaussian pulse, will be change  the diameter air hole  as a from d=[(0.5,0.8,1,1.2,1.4)  ] 

In Eqns. (12-13), the matrices Ux  ,Uy,Vx,  and Vy , are square 
matrices, which depend on the boundary conditions of the rect-
angular computation window.For more details on how these are 
represented, please consult[23]. 

Now that a set of matrix equations including the finite difference 
formulation have been developed, these can be solved using 
available numerical routines of eigenvalue, which then provide 
the effective modal index Aeff=  β⁄k°  and the guided modes modal 
fields. The approximation of the staircase has to be used in the 

rectangular mesh in the finite differential analysis of waveguides 
with curved interfaces. To improve that approximation, Zhu, et,.
al. Use average refractive indices over the interface for mesh 
cells. In the plane-wave expansion method and in the FDTD 
analysis, similar techniques have been used before. Using the 
interfacial cell average refractive index can significantly accel-
erate convergence and improve the accuracy of modeling for 
waveguides with curved interfaces, such as PCF.



     Volume 1 | Issue 1 | 43Insights Herbal Med, 2022

The diameter of air holes influence on the effective refractive 
index and dispersion
To know the diameter air hole effect of the photonic crystal fiber 
by dispersion curve for Gaussian pulse, will be change  the di-

ameter air hole  as a from d=[(0.5,0.8,1,1.2,1.4)μm] with binding 
other value such as number of hole (N),wavelength, and pitch 
value equal 2.8μm .will be acquisition the follows show in fig-
ures below:

Figure 2: for dispersion curves with different values of diameter air hole when (a)  N=8, (b) N=10, (c) N=12, (d) N=14. and pitch 
=2.8

(a) (b)

(c)
(d)

(a) (b)
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(c) (d)

Figure 3: for effect reflective index curves with different values of diameter air hole when (a) N=8,(b) N=10,(c) N=12,(d) N=14. 
and pitch =2.8

 Result and Discussion
In this study, fixing the value for N and Λ , with different val-
ue of d which equal d=0.5,0.8,1,1,1.2,1.4.The relation between 
dispersion curve for photonic crystal fiber,and pulse wavelength 
for above value,when the number of  hole rings (N=8), as show 
in figures (a),observed whenever the air hole diameter increased, 
the zero dispersion (ZD) shifting toward short wave length, 
whereas dispersion value increased with increase of d value too, 
that mean we can be control of the zero dispersion for  PCFs, by 
air hole diameter controlled.

When increase the value of N will be obtain  the same con-
sequences above-mentioned, show in figures (d),.increase N 
for(N=12) notice whenever d increase  via (d=0.5-1.2),the ZD 
shifting eastward toward long wavelength and convergence the 
curves as show in figure (d ).Number of ring increase (N=10) 
for the same value of (pitch, wavelength) with different value of 
d, we obtain the same consequence above-mentioned,as show 
in figures (b,c), when (N=12,14), notice the curves of cladding 
refracted index are convergence both, with increase value of d, 
also, decreasing of refracted index value at large value of d, over 
and above notice decrease the different between the core refract-
ed index and cladding refracted index when d increased.

Conclusion
Successfully developed a PCFs sensor based on parameters of 
resonance to detect refractive index and dispersion. Numerical 
analyzes based on finite element method were used to investi-
gate both the sensor's structure and performance. The set of con-
ditions perfectly suited the air hole diameter, the number of air 
holes and the pitch, features to absorb the energy emitted from 
the device. Optimizing structural parameters to increase sensi-
tivities. Of all samples, the effective refractive index has been 
reduced by raising the wavelength range, and the fundamental 
modes are also highly confined in the core region of air-infil-
trated samples whose RI is lower than the silica RI, the light is 
propagated by total internal reflection. Due to its high resolution 
and low confinement loss, this PCF RI-sensor may be used in 

various medical and environmental sensing applications using 
specific d, N, and ubiquitous analytes.
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