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Abstract
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equations, including non-relativistic and relativistic quantum theory with temperature, i.e., the temperature-dependent schrodinger 
equation, Dirac equation and photon equation. We give the solution of wave function and energy level with temperature, and 
introduced the temperature constant T0, which should be determined by the atom or molecule spectrum experiments. PACS: 
03.65.-w, 05.70.Ce, 05.30.Rt.

Petro Chem Indus Intern, 2022

ISSN: 2639-7536 

Volume 5 | Issue 2 | 100www.opastonline.com

Keywords: Thermal Potential Energy, Microcosmic Entropy, Non-Hermitian, Quantum Thermodynamics.

Citation: Xiang-Yao Wu., Ben-Shan Wu., Han Meng. (2022). The non-relativistic and relativistic quantum theory with 
temperature. Petro Chem Indus Intern, 5(2), 100-103. 

Introduction
The study of the physical properties of materials, focusing on its 
thermodynamic properties, is of great interest in condensed matter 
physics, solid-state physics, and materials science [1, 2]. The 
classical thermodynamics is built with the concept of equilibrium 
states. However, it is less clear how equilibrium thermodynamics 
emerges through the dynamics that follows the principle of 
quantum mechanics. The behaviour of quantum many-body 
systems driven out-of-equilibrium is one of the grand challenges 
of modern physics. The problem is particularly challenging when 
treating the dynamics of realistic finite-temperature systems, 
rather than systems evolving from the zero-temperature ground 
state. Recent development in the field of quantum thermodynamics 
taking place under nonequilibrium state [3-7]. The quantum 
thermodynamics which has grown rapidly over the last decade. It 
is fuelled by recent equilibration experiments [8] in cold atomic 
and other physical systems, the introduction of new numerical 
methods [9], and the discovery of fundamental theoretical 
relationships in non-equilibrium statistical physics and quantum 
information theory [10-13]. In this paper, we have proposed the 
non-Hermitian theory of quantum thermodynamics, and given the 
quantum thermodynamics equations, including non-relativistic 
and relativistic quantum theory, i.e., the temperature-dependent 
schrodinger equation, Dirac equation and photon equation. We give 
the solution of wave function and energy level with temperature, 
and introduced the temperature constant T0, which should be 

determined by the atom or molecule spectrum experiments.

The principle of quantum thermodynamics
In classical mechanics, the energy of a particle is

In thermodynamics, for the infinitely small processes, the entropy 
is defined as

For the finite processes, it is 

Q − Q0 = TS − TS0.

At temperature T, when a particle has the microcosmic entropy S, 
it should have the thermal potential energy Q, it is

Q = TS.

If there is an heat quantity exchange between the particle and 
the external environment, the total energy of particle should be 
the sum of kinetic energy, potential energy and thermal potential 
energy, it is

2 
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Where p2 / 2m  is the particle kinetic energy, V (r) is the potential 
energy, TS is called the particle thermal potential energy, T is the 
temperature of particle in the external environment, and S is the 
particle microcosmic entropy. The Eq. (5) is the classical total 
energy of particle, it should become operator form in quantum 
theory, it is

Where Hˆ = i~∂t∂ , ˆp2 = −~2∇2 and Sˆ is the microcosmic entropy 
operator of a particle.
At the i − th microcosmic state, the classical microcosmic entropy   
and  for Fermion and Bose systems are

Si
F = −kB[ni lnni + (1 − ni )ln(1 − ni )],

and

where kB is the Boltzmann constant, ni is the average particle 
numbers of particle in the i − th state. For the Fermion, ni ≤ 1, and 
for the Bose, ni ≥ 1.

In quantum theory, the quantum microcosmic entropy should 
become quantum operator. The microcosmic entropy operator        . 
.    and  of a particle in the i − th state for Fermion and Bose systems 
are

and

Where SFi = −kB[ni lnni + (1 − ni )ln(1 − ni)] and 
SBi = −kB[ni lnni − (1 + ni) ln (1 + ni)].

The microcosmic entropy operator should contain temperature, 
and it is dimensionless, the microcosmic entropy operators (9) 
and (10) can be obtained by adding temperature operator T ∂T∂ to 
classical microcosmic entropy (7) and (8).
We can prove the following operator relation:

Tˆ+ = Tˆ = T,

With Eqs. (11)-(13), we can prove the operator T ∂T∂ is not 

Hermitian operator, i.e., the microcosmic entropy operators (9) 
and (10) are not Hermitian operator, but their Hamilton operator H 
is PT symmetrical, there are

Hˆ+ 6= H,   (PT)H(PT)−1 = H.

This is because the particle exchanges energy with the external 
environment, the particle is a open system, its Hamiltonian 
operator should be non-Hermitian.

The Schroding equation with temperature
With the canonical quantization, E = i~∂t∂ , p~ = −i~∇, substituting 
Eq. (9) into (6), we can obtain the Schroding equation with 
temperature

By separating variables

ψ (~r,t.T) = Ψ(~r) f(t)φ(T),

we obtain

the Eq. (18) can be written as

where En = E1n +E2n, E1n is the eigenenergy obtained by the 
Schroding equation (19), E2n is the eigenenergy obtained by the 
temperature equation (20), n expresses the n−th energy level, ni is 
the average particle numbers of the i − th state in the n − th energy 
level, and fn is the degeneracy of the n − th energy level.

From Eq. (20), we can obtain its solution

E2n = SFiT0

and

the solution of temperature wave function is

Where A is the normalization constant, and T0 is the temperature 
constant. The general solution of Eq. (15) is

For the free particle of momentum p~, and in a temperature T 
environment, its plane wave solution and total energy are
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By the accurate measurement atom spectrum, we can determine 
the temperature constant T0, the transition frequency without 
temperature correction (the theoretical calculation with Schroding 
equation) is

the transition frequency with temperature correction (the 
experiment measurement) is

with Eqs. (28) and (29), we obtain

Where h is the Planck constant, by measurement transition 
frequency νmn

exp, we can determine the temperature constant T0.

The Dirac equation with temperature
In section 3, we have studied the quantum theory with temperature 
for the low energy non-relativistic particle. In the following, we 
should consider the high energy relativistic case. As is known to 
all, Dirac equation describes the particle of spin  , such as electron, 
by factorizing Einstein’s dispersion relation, such that the field 
equation becomes the first order in time derivative [16]. Namely, 
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From Eq. (20), we can obtain its solution 

 E2n = SFiT0, (21) 

and 

 , (22) 

the solution of temperature wave function is 

 . (23) 

Where A is the normalization constant, and T0 is the temperature constant. The general solution 

of Eq. (15) is 

 . (24) 

For the free particle of momentum p~, and in a temperature T environment, its plane wave 

solution and total energy are 

 , (25) 

 . (26) 

By the accurate measurement atom spectrum, we can determine the temperature constant T0, the 

transition frequency without temperature correction (the theoretical calculation with Schroding 

equation) is 

 , (27) 

the transition frequency with temperature correction (the experiment measurement) is 
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with Eqs. (28) and (29), we obtain 
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Where h is the Planck constant, by measurement transition frequency νmn
exp, we can determine 

the temperature constant T0. 
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The Dirac equation with temperature 

In section 3, we have studied the quantum theory with temperature for the low energy non-

relativistic particle. In the following, we should consider the high energy relativistic case. As is 

known to all, Dirac equation describes the particle of spin , such as electron, by factorizing 

Einstein’s dispersion relation, such that the field equation becomes the first order in time 

derivative [16]. Namely, Dirac factorized the relativistic dispersion relation employing four by 

four matrices, which is expressed as 

 E2 − c2p~ 2 − m2
0c4 = (E − cp~ · α~ − m0c2β)(E + cp~ · α~ + m0c2β) = 0, (30) 

thus we get 

 E − cα~ · p~ − m0c2β = 0. (31) 

By canonical quantization Eq. (32), i.e., E → i~∂t
∂ , p~ → −i~∇, we can obtain the Dirac spinor 

wave equation 

 , (32) 

where α~ and β are Dirac matrices, and ψ(~r,t) is spinor wave function, they are 

 , (33) 

and 

  (34) 

the Eq. (33) is the Dirac equation without temperature, its plane wave solution is  

ψ(~r,t) = u(p~)exp[i(p~·~r−Et)/~] . 

p 

Where the energy E = ± m2c4 + c2p2, the u(p) matrix is 

(35) 

  (36) 

When the particle of spin  is in temperature T external environment, we should consider the 

thermal potential energy Q = TS, the Eq. (31) should be written as 
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(E−TS−V (r))2−c2p~ 2−m2
0c4 = (E−TS−V (r)−cp~·α~−m0c2β)(E−TS−V (r)+cp~·α~+m0c2β) = 0, 

(37) 

where V (r) is the particle potential energy. it is similar to Eq. (33), we obtain the Dirac equation 

with temperature, it is 

 , (38) 

substituting Eq. (8) into (39), we obtain 

 , (39) 

The eigen equation of Eq. (40) is 

 , (40) 

by separating variables   

 ψ(~r,T) = ψn(~r)φ(T), (41) 

we obtain 

(−ic~α~ · 5~ + V (r) + m0c2β)ψn(~r) = E1nψn(~r), (42) 

 , (43) 

the total energy level is  

E = E1n − kBT0ni lnni. 

 

(44) 

The photon quantum theory with and without temperature 

With Dirac’s factorization approach, we can obtain the spinor wave equation of free photon. For 

a photon, its mass m0 = 0, Eq. (31) becomes 

E − cα~ p~ = 0. 

By canonical quantization Eq. (45), we obtain the spinor wave equation of photon 

(45) 

 , (46) 

where H = −ic~α~ · 5~ is Hamiltonian operator, and ψ is the spinor wave function of photon. For 

the proper Lorentz group Lp, the irreducibility representations of spin s = 1 photon are D10, D01 

and , respectively, and the dimension numbers of irreducibility representations corresponds to 
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three, three and four, respectively. We choose the spinor wave function of photon as the basis 

vector of three-dimension irreducibility representation, i.e. 

  , (47) 

and the α~ matrices are denoted by 

  . (48) 

The Eq. (47) is the spinor wave equation of photon without temperature, its plane wave solution 

and energy are 

 ψ(~r,t,) = u(p~)exp[i(p~·~r−Et)/~], (49) 

 E = ~ω, (50) 

where the u(p) matrix is 

  . (51) 

The detailed theory can see the Appendix A of Ref. [15]. 

When the photon is in the external environment of temperature T, we should consider the thermal 

potential energy Q = TS, the Eq. (46) should be written as 

E − TS − cα~ · p~ = 0. 

By canonical quantization Eq. (53), we obtain its spinor wave equation 

(52) 

 , (53) 

the Eq. (54) is the spinor wave equation of photon with temperature, the wave function and 

energy are 

 ψ(~r,t,T) = u(p~)exp[i(p~·~r−Et)/~] φ(T), (54) 

 E = ~ω − kBT0ni lnni. (55) 

Where ni is the photon numbers of photon in the i − th state. If ni = 0,1, the photon energy E = 

~ω. 
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The Eq. (47) is the spinor wave equation of photon without 
temperature, its plane wave solution and energy are

ψ(~r,t,) = u( p~)exp[i(p~ . ~r−Et)/~],

E = ~ω,

where the u(p) matrix is

The detailed theory can see the Appendix A of Ref. [15].
When the photon is in the external environment of temperature T, 
we should consider the thermal potential energy Q = TS, the Eq. 
(46) should be written as

E − TS − cα~ . p~ = 0.

By canonical quantization Eq. (53), we obtain its spinor wave 
equation

the Eq. (54) is the spinor wave equation of photon with temperature, 
the wave function and energy are

Where ni is the photon numbers of photon in the i − th state. If 
ni = 0,1, the photon energy E = ~ω.

Conclusions
In this paper, we have proposed the non-Hermitian theory of 
quantum thermodynamics, and given the quantum thermodynamics 
equations, including non-relativistic and relativistic quantum 

theory, i.e., the temperature-dependent schrodinger equation, 
Dirac equation and photon equation. We give the solution of wave 
function and energy level with temperature, and introduced the 
temperature constant T0, which should be determined by the atom 
or molecule spectrum experiments. The theory can be applied 
in superconductivity, condensed state and so on, and can further 
study finite temperature quantum field theory.
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