
  Volume 4 | Issue 2 | 1

Citation: Sovetov, V. (2024). The MIMO Data Transfer Line with Three-Frequency Quaternion Carrier. J Sen Net Data Comm, 4(2), 
01-17

The MIMO Data Transfer Line with Three-Frequency Quaternion Carrier
Research Article

Vadim Mikhailovich Sovetov*
*Corresponding Author
Vadim Mikhailovich Sovetov, Doctor of Technical Sciences, Russia.

 Submitted: 2024, Mar 18; Accepted:2024, Apr 23: Published: 2024, May 06

Abstract
With the development of communication systems and the Internet, as well as with the growth of services created on the basis 
of communication networks, the need to increase the capacity of communication channels is increasing. Theoretically, it is 
shown that it is possible to increase the capacity of communication channels and exceed the “Shannon limit” by moving from 
the real space of signals on a plane to a multidimensional one with dimension M. In a multidimensional space, each signal is 
a multidimensional vector, and when such a signal passes through a channel, a MIMO (Many-Input – Many-Output) scheme 
is formed.

As an alternative to existing methods for implementing a MIMO scheme in a physical space with multiple antennas at the input 
and output of a communication channel, a method for transmitting information using a MIMO scheme in a hypercomplex 
vector space with one antenna for transmission and one for reception is proposed for wireless communication systems and 
communication cables.

It is known that hypercomplex numbers are an extension of complex numbers through the doubling procedure and form a 
hypercomplex space on imaginary orthogonal axes and one scalar axis orthogonal to them. For example, a quaternion in 
algebraic form is written as q= s+xi+yj+zk, where s, x, y, z – real numbers, i, j, k – imaginary units. A quaternion forms a 
four-dimensional (4D) space. Hypercomplex numbers are also widely known, such as the octonion in 8D and sedenion in 
16D spaces. Accordingly, based on these numbers, MIMO schemes with dimensions of 4D, 8D, 16D are implemented.

Let us represent the mathematical model of a MIMO channel in a hypercomplex space using a square channel matrix of 
dimension MxM. From an energy point of view, this MIMO channel model is equivalent to the antenna diversity MIMO 
model. With an orthogonal channel matrix, maximum capacity is ensured. To synthesize the channel matrix, an exponential 
function of the quaternion and a polar form of representation of exponentials of imaginary units were used. To get rid 
of imaginary units in the algebraic form of writing a quaternion and for the purpose of forming a channel matrix, it is 
represented as a real matrix of dimension 4x4, i.e. three-frequency fundamental matrix Ф(ωi,ωj.ωk,t).

Using trigonometry formulas, the channel matrix is decomposed into 4 single-frequency matrices of combination frequencies: 
Ω1 =ωi+ωj+ωk, Ω2 =ωi+ωj-ωk,, Ω3 =ωi-ωj+ωk,, Ω4 =ωi-ωj-ωk. A three-frequency channel matrix will, accordingly, be equal 
to the sum of single-frequency matrices. Modulation of subcarrier frequencies is carried out by multiplying the channel 
matrix by information vectors: y(ωi,ωj.ωk,t)=Ф(ωi,ωj.ωk,t)x(0). As a result of multiplication, we obtain QPSK modulation 
for each combination frequency. When adding frequencies, we obtain a multifrequency oscillation in each element of the 
modulated vector. Moreover, each element of the output vector y(ωi,ωj.ωk,t) contains information about all elements of the 
information vector x(0), transmitted at all 4 combination frequencies.

Elements of the modulated vector are transmitted sequentially as information elements arrive, and the speed of information 
transmission at the output is equal to the speed of information arrival at the input of the transmitter. Moreover, each multi-
frequency element consumes the entire transmitter power, which is distributed between 4 frequencies and 4 spatial orthogonal 
coordinate axes. In addition, in the proposed solution only the elements of the multi-frequency vector are transmitted, and 
not the elements of the channel matrix, as in existing methods. Thus, using the space-time channel matrix synthesized on the 
basis of a hypercomplex number, we implement the MIMO scheme in M=2n - dimensional vector space, where n=2,3,4,… 
for the number of frequencies F=2M-2.

According to the transmission model, interference is added to each pulse of the modulated vector when passing through 

J Sen Net Data Comm, 2024

Doctor of Technical Sciences, Russia

Journal of Sensor Networks and Data Communications
ISSN: 2994-6433



  Volume 4 | Issue 2 | 2J Sen Net Data Comm, 2024

the communication channel. It is clear that the interferences are not correlated, and with a constant dispersion of the 
interferences, the interference vector has circular symmetry. Consequently, the interference power is distributed along 
orthogonal axes and frequencies. Since the interference is white noise, the optimal receiver for the received vector will be a 
correlator using transposed basis matrices for each combinational frequency.

By multiplying incoming modulated multi-frequency elements in the sum with interference by single-frequency basis 
matrices with subsequent integration, we obtain an estimate of each information element with uncorrelated interference 
and at different frequencies. Since when summing signals add up by energy, and noise - by power, the gain in the signal-
to-noise ratio (SNR) based on different basic matrices for the quaternion will be equal to 4. After adding up the obtained 
estimates for different frequencies, we also obtain a gain in SNR by another 4 times. The total gain in SNR will be 16. It is 
possible to increase the information transmission speed by an appropriate number of times at a given transmission power. 
By expanding the frequency band, it is also possible to increase the noise immunity and secrecy of transmitter operation. 
Since the same information is transmitted in each symbol of a multi-frequency vector, the noise immunity to signal fading in 
time and frequency increases.

Keywords: MIMO, Hypercomplex, Quaternion, 5G, 6G, QPSK

1. Introduction
The need to increase the capacity of communication lines is increasing. For example, in the new next-generation 5G mobile 
communications standard, it is necessary to provide downlink speeds of up to 20 Gbit/s and subscriber speeds of up to 100 Mbit/s. The 
use of traditional modulation schemes requires a transition to a higher wave range (more than 20 GHz), which is associated with an 
increase in the power of transmitting devices or a significant decrease in the communication distance.

Theoretically, increased capacity is possible by using a Many-Input – Many-Output (MIMO) scheme [1-4]. This requires that the signal 
and noise be multidimensional Gaussian processes. Maximum capacity is achieved with a square orthogonal channel matrix. If the 
dimension of the channel matrix is MxM, then the throughput of the MIMO channel will be M times greater than the throughput of a 
channel using real 1D or 2D signals.

To increase the speed of information transmission, the multi-frequency information transmission is mainly used, for example, orthogonal 
frequency division multiplexing - (OFDM). However, such a signal has a high crest factor and, accordingly, increases transmission 
power costs.

The transmission speed in 6G is expected to increase from 1 Tbit/s. To increase capacity, it is planned to use massive and ultra-massive 
MIMO, in which hundreds and thousands of active antennas in the form of multi-element digital antenna arrays are connected to base 
stations. At the same time, multi-element digital antenna arrays must also be implemented on user terminals.

To increase capacity in 6G, it is also planned to use the terahertz range from 300 GHz to 3 THz. However, the communication distance 
at terahertz waves decreases significantly due to increased propagation losses in free space. There is also an increase in propagation 
losses through obstacles, such as urban areas, and losses due to rain or fog. In fact, communications on terahertz waves are limited by 
line-of-sight range.

Currently MIMO scheme is implementing in physical space using many antennas for transmission and reception, which significantly 
complicates its use. As the number of antennas increases, the difficulties in implementing this method increase. In addition, this 
implementation makes it impossible to use MIMO in wireline communications.

In works [5, 6], methods were proposed for transmitting and receiving information using the MIMO scheme not in physical space with 
many antennas, but in complex and hypercomplex spaces using one antenna for transmission and one for reception. It is shown that when 
using complex numbers in a matrix representation, we obtain a 2-fold gain in noise immunity, and when using quaternions, a 4-fold gain 
compared to BPSK. Accordingly, it is possible to increase the speed of information transfer by the same amount. Moreover, this method 
of using the MIMO scheme can also be applied in wired communication channels.

However, to increase the capacity of communication channels, it is also necessary to expand the frequency band. In this case, problems 
arise regarding the frequency efficiency of the proposed methods. As already mentioned, the use of the OFDM method leads to a large 
crest factor and, as a consequence, to a loss of power in the amplifiers.

The purpose of this work is to present a method for increasing the capacity using a MIMO scheme in the hypercomplex space of a three-
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frequency quaternion.

2. Materials and Methods for Solving the Problem
The mathematical model of a MIMO channel with the same number of inputs and outputs is written in the form [1-4]:

     ( ) ( ) (0) ( )t t t= +s H x n   (1)

where ( )tH – square channel matrix of dimension MxM, (0)x - M - dimensional vector information symbols, ( )tn - zero-mean noise 
vector with circular symmetry.
To implement the MIMO channel model (1) in a hypercomplex space, we formulate the basic requirements for the channel matrix  H (t) :

1) Based on the requirement for maximum throughput, the channel matrix H (t) must be orthogonal. Physically, this means that the signal 
space must have a maximum volume, which is achieved when the coordinate axes of such a space are orthogonal. It is clear that a space 
of a given dimension and maximum volume makes it possible to increase the diversity of signals to the maximum extent;

2) Since the channel matrix H (t) is used as an M-dimensional function, which is modulated by M-dimensional information vectors X(0), 
and then radiated into space, the M-dimensional function must be continuous and harmonic;

3) It is known that the main way to increase capacity is to increase the frequency band. Therefore, the channel matrix must be multi-
frequency and decomposed into single-frequency matrices;

4) Since optimal signal reception under the influence of white noise is carried out using a dual basis and correlation processing using 
basis functions, the channel matrix must be decomposed into basis matrices.

Let's consider the problem of synthesizing a multi-frequency channel matrix using a quaternion as a hypercomplex number. In algebraic 
form we write the quaternion as [6]:

 q s xi yj zk= + + +                     (2)

where s, x, y, z – real numbers.

Let's present operations with imaginary units in the form of a table.

Table 1: Quaternion Imaginary Unit Multiplication Operations.

For the quaternion (2) we write the exponential function:

  ( )( )( )e e e cos sin cos sin cos sinq s xi yj zk s x i x y j y z k z+ + += = + + +    (3)

For a single-frequency quaternion x y z= =  therefore expression (3) will take the form:

   
( )ˆ( ) ( ) ˆe e e e e e e cos sinq s x i j k s x i j k s xi s x i x+ + + + += = = = +

  
(4)

where ˆ ( ) 3i i j k= + + - imaginary unit. Expression (4) was also used in [7-10] to obtain spectra from a single-frequency quaternion 

1
1 1

1
1

1

i j k
i j k

i i k j
j j k i
k k j i

×

− −
− −

− −
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and as a channel matrix for a 4×4 MIMO scheme [6].

Just as for a complex number in exponential representation, the coefficients for the imaginary units of the quaternion in the polar form 
of notation have the physical meaning of the rotation angle. In addition, frequency conversions in radio engineering problems are 

considered mainly for time-varying signals. Therefore, we write the angles x, y, z in (3) as functions of time: ( ) ix t tω= , ( ) jy t tω=

, ( ) kz t tω= , where iω , jω , kω  are the angular frequencies on the axes i, j, k. The radius of rotation in 4D space is calculated as 

2 2 2 2r s x y z= + + + . After multiplying the expressions in parentheses in formula (3) and grouping by the real and imaginary 
parts, we obtain an exponential function in the form of a three-frequency quaternion, which we denote as 

  ( )( , , , )i j kf q tω ω ω =

  
( , , , ) ( , , , ) ( , , , ) ( , , , )i j k i j k i j k i j kp t iu t jv t kw tω ω ω ω ω ω ω ω ω ω ω ω= + + +

  (5)
 
After grouping similar terms, the components in expression (5) will take the form:

   ( , , , ) cos cos cos sin sin sini j k i j k i j kp t t t t t t tω ω ω ω ω ω ω ω ω= −

  
( , , , ) sin cos cos cos sin sini j k i j k i j ku t t t t t t tω ω ω ω ω ω ω ω ω= +

  
( , , , ) cos sin cos sin cos sini j k i j k i j kv t t t t t t tω ω ω ω ω ω ω ω ω= −     (6)

  ( , , , ) sin sin cos cos cos sini j k i j k i j kw t t t t t t tω ω ω ω ω ω ω ω ω= +

As can be seen from (6), we received 8 combinations of products of cosines and sines of different frequencies. Let us transform 
expressions (6) using well-known trigonometry formulas for products of three combinations with sines and cosines. According to these 
formulas, the products of three sines and cosines in various combinations are converted into the sum of sines and cosines from the sum 
of frequencies in various combinations. Let us denote the combinations of angular frequencies obtained as a result of the expansion as

 1 2 ( )i j k i j kf f fω ω ω πΩ = + + = + +
 2 2 ( )i j k i j kf f fω ω ω πΩ = + − = + −

 3 2 ( )i j k i j kf f fω ω ω πΩ = − + = − +
 4 2 ( )i j k i j kf f fω ω ω πΩ = − − = − −

   (7)

So, for three generating (reference) frequencies iω , jω , kω  we get 4 2 22 2 4− = =  combinations of positive frequencies nΩ

, 1,2,3,4n = . Negative frequencies will appear when the signal spectrum is transferred to the carrier frequency cω . After 
decomposing the products of sines and cosines (6) into sums of sines and cosines, bringing similar terms and grouping by combination 
frequencies, we obtain the following expressions of functions (6) for combination frequencies (7): 

 1 2 3 44 ( , , , , )p tΩ Ω Ω Ω =         (8) 
     

1 1 2 2 3 3 4 4cos( ) sin( ) cos( ) sin( ) cos( ) sin( ) cos( ) sin( )t t t t t t t t= Ω + Ω + Ω − Ω + Ω − Ω + Ω + Ω  1 2 3 44 ( , , , , )u tΩ Ω Ω Ω =

1 1 2 2 3 3 4 4cos( ) sin( ) cos( ) sin( ) cos( ) sin( ) cos( ) sin( )t t t t t t t t= − Ω + Ω + Ω + Ω + Ω + Ω − Ω + Ω  1 2 3 44 ( , , , , )v tΩ Ω Ω Ω =
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1 1 2 2 3 3 4 4cos( ) sin( ) cos( ) sin( ) cos( ) sin( ) cos( ) sin( )t t t t t t t t= Ω + Ω − Ω + Ω + Ω − Ω − Ω − Ω
 1 2 3 44 ( , , , , )w tΩ Ω Ω Ω =

1 1 2 2 3 3 4 4cos( ) sin( ) sin( ) cos( ) sin( ) cos( ) cos( ) sin( )t t t t t t t t= − Ω + Ω − Ω − Ω + Ω + Ω + Ω − Ω

Thus, we have obtained expressions for the exponential function (3) of a three-frequency quaternion in the form of a sum of functions 
(5), which are represented by 8 combinations of products of cosines and sines (6) of different reference frequencies (7). Also, using 
trigonometry formulas for the products of three combinations with sines and cosines, we obtained the exponential function (3) in the 
form of sums of cosines and sines (8) from various combination frequencies (7).

To get rid of imaginary units in the algebraic form of writing the quaternion (2), we present it in the form of a real matrix of dimension 
4×4 [6-10]:

      

s x y z
x s z y
y z s x
z y x s

 
 − − =
 − −
 − − 

Q

           

(9)

Matrix (9) is decomposed into basis matrices E, I, J, K and quaternion (9) is written as a sum of matrices:

s x y z= + + +Q E I J K

where 

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 
 
 =
 
 
 

E  , 

0 1 0 0
1 0 0 0

0 0 0 1
0 0 1 0

 
 − =
 −
 
 

I , 

0 0 1 0
0 0 0 1
1 0 0 0

0 1 0 0

 
 
 =
 −
 − 

J , 

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

 
 − =
 
 − 

K .

The corresponding basis matrices of the quaternion, as well as the elements i, j and k, are related by the multiplication rules presented 
in Table 2:

                                                      

(10)

Table 2: Multiplication Operations of Quaternion Basis Matrices.

As can be seen from (10) the structure of the basis matrices E, I, J, K, they are spatial basis matrices, i.e. bases of 4D space. These 
matrices are also permutation matrices with a change of sign of 2 elements. The basis matrices will be orthogonal: T =II E ,           , 

T =KK E . Note that the basis matrices of a quaternion are also quaternions in matrix representation.

It is convenient to represent the information transfer model as a model in state space using the dynamics equation in the form [11]:

   ( ) ( )t t=x Ax        (11)

We write the state transition matrix A using the imaginary part of matrix (9) in the form:

 

T =JJ E

×

− −
− −

− −

E I J K
E E I J K
I I E K J
J J K E I
K K J I E
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   i j kω ω ω= + +A I J K
    

(12)

Let's call matrix A as a matrix of quaternion reference frequencies, where 2 2i i iT fω π π= =
 is the angular frequency of the imaginary 

axis i, radians/s; 1i iT f= – period of frequency if , s.; 2 2j j jT fω π π= = - angular frequency of the imaginary axis j, radian/s; 
1j jT f= – period of frequency jf , s. 2 2k k kT fω π π= = ;  - angular frequency of the imaginary axis k, radian/s; 1k kT f= – 

period of frequency kf , s.

The matrix of quaternion reference frequencies A is a differential operator for the state space model (11). The solution to equation (11) 
will be the exponent of matrix (12) for functions (6):

   
( ) ( , , , )i j k tt

i j ke e tω ω ω ω ω ω+ += = =I J KA Ö
   

(13)

   
( , , , ) ( , , , ) ( , , , ) ( , , , )i j k i j k i j k i j kp t u t v t w tω ω ω ω ω ω ω ω ω ω ω ω= + + +E I J K

Since matrix (13) is a solution to the differential equation (11), the matrix ( , , , )i j k tω ω ωÖ
 
is called the fundamental matrix.

Substituting expressions (6) into the matrix ( , , , )i j k tω ω ωÖ , we obtain a fundamental matrix in the form of sums of products of 
cosines and sines in various combinations:

      ( , , , )i j k tω ω ω =Ö     (14)

   
 
 
 

cos cos cos sin sin sin sin cos cos cos sin sin
(sin cos cos cos sin sin ) cos cos cos sin sin sin
(cos sin cos sin cos sin ) cos co

i j k i j k i j k i j k

i j k i j k i j k i j k

i j k i j k i

t t t t t t t t t t t t
t t t t t t t t t t t t
t t t t t t t

ω ω ω ω ω ω ω ω ω ω ω ω
ω ω ω ω ω ω ω ω ω ω ω ω
ω ω ω ω ω ω ω

− +
− + −

=
− − s sin sin sin cos

(cos cos sin sin sin cos ) (cos sin cos sin cos sin )
j k i j k

i j k i j k i j k i j k

t t t t t
t t t t t t t t t t t t

ω ω ω ω ω
ω ω ω ω ω ω ω ω ω ω ω ω




 +
− + − − 

 

 

cos sin cos sin cos sin cos cos sin sin sin cos
(cos cos sin sin sin cos ) cos sin cos sin cos sin
cos cos cos sin sin sin (sin cos

i j k i j k i j k i j k

i j k i j k i j k i j k

i j k i j k i

t t t t t t t t t t t t
t t t t t t t t t t t t

t t t t t t t

ω ω ω ω ω ω ω ω ω ω ω ω
ω ω ω ω ω ω ω ω ω ω ω ω
ω ω ω ω ω ω ω ω

− +
− + −

− − cos cos sin sin )
sin cos cos cos sin sin cos cos cos sin sin sin

j k i j k

i j k i j k i j k i j k

t t t t t
t t t t t t t t t t t t

ω ω ω ω
ω ω ω ω ω ω ω ω ω ω ω ω




+
+ − 

As in the case of a communication line with a single-frequency quaternion, the three-frequency matrix (14) will serve as the channel 
matrix of the MIMO scheme [6]. Therefore, by analogy with a single frequency matrix, let's call it a three-frequency quaternion carrier.

Let us denote the basis matrices for the fundamental matrix (14) of the reference angular frequencies , ,i j kω ω ω , as

  ( )( , , , ) cos( )cos( )cos( ) sin( )sin( )sin( )i j k i j k i j kt t t t t t tω ω ω ω ω ω ω ω ω= −EÖ E

  ( )( , , , ) sin( )cos( )cos( ) cos( )sin( )sin( )i j k i j k i j kt t t t t t tω ω ω ω ω ω ω ω ω= +IÖ I

  ( )( , , , ) cos( )sin( )cos( ) sin( )cos( )sin( )i j k i j k i j kt t t t t t tω ω ω ω ω ω ω ω ω= −JÖ J

  ( )( , , , ) cos( )cos( )sin( ) sin( )sin( )cos( )i j k i j k i j kt t t t t t tω ω ω ω ω ω ω ω ω= +KÖ K
 

            (15)
Using notation (15), we write the three-frequency fundamental matrix (14) as a sum of basis matrices:
  
           

Φ

Φ

Φ

Φ

Φ

Φ

Φ

Φ
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( , , , )i j k tω ω ω =Ö

   
( , , , ) ( , , , ) ( , , , ) ( , , , )i j k i j k i j k i j kt t t tω ω ω ω ω ω ω ω ω ω ω ω= + + +E I J KÖ Ö Ö Ö

             (16) 
The fundamental matrix (16) is orthogonal, since
  

   
T T( , , , ) ( , , , ) ( , , , ) ( , , , )i j k i j k i j k i j kt t t tω ω ω ω ω ω ω ω ω ω ω ω= =Ö Ö Ö Ö E

Using expressions (8), we decompose the fundamental matrix (14) of the reference angular frequencies iω , jω , kω  into single-
frequency matrices of frequency combinations (7).

Let's group by frequencies and write single-frequency matrices through the basis matrices E, I, J, K in the form:

  
( ) ( )( ) ( ) ( )( )1 1 1 1 1 1

1( , ) cos sin cos sin
4

t t t t tΩ = Ω + Ω + − Ω + Ω +Ö E I

  ( ) ( )( ) ( ) ( )( )1 1 1 1cos sin cos sint t t t + Ω + Ω + − Ω + Ω J K

  
( ) ( )( ) ( ) ( )( )2 2 2 2 2 2

1( , ) cos sin cos sin
4

t t t t tΩ = Ω − Ω + Ω + Ω +Ö E I

  ( ) ( )( ) ( ) ( )( )2 2 2 2cos sin cos sint t t t + − Ω + Ω + − Ω − Ω J K

  
( ) ( )( ) ( ) ( )( )3 3 3 3 3 3

1( , ) cos sin cos sin
4

t t t t tΩ = Ω − Ω + Ω + Ω +Ö E I

  ( ) ( )( ) ( ) ( )( )3 3 3 3cos sin cos sint t t t + Ω − Ω + Ω + Ω J K

  
( ) ( )( ) ( ) ( )( )4 4 4 4 4 4

1( , ) cos sin cos sin
4

t t t t tΩ = Ω + Ω + − Ω + Ω +Ö E I

  ( ) ( )( ) ( ) ( )( )4 4 4 4cos sin cos sint t t t + − Ω − Ω + Ω − Ω J K

J Sen Net Data Comm, 2024

(17)

From this we can conclude that the fundamental three-frequency quaternion matrix (14) is equal to the sum of single-frequency quaternion 
matrices:

In accordance with (7), we present the matrix for converting reference frequencies iω , jω , kω  into combinational ones nΩ , 
1,2,3,4n = , as:

We   write  the  reference  frequencies  as a vector [ ]T1 2 3f f f=f
 
and the vector of combination frequencies, as [ ]T1 2 3 4F F F F=F

. From here F=Ωf.

The matrix for converting combination frequencies into reference ones will look like:

1 1 2 2 3 3 4 4( , , , ) ( , ) ( , ) ( , ) ( , )i j k t t t t tω ω ω = Ω + Ω + Ω + ΩÖ Ö Ö Ö Ö (18)

Φ

Φ

Φ Φ Φ Φ

Φ Φ Φ

Φ

Φ

Φ

Φ

Φ Φ Φ Φ Φ

1 1 1
1 1 1
1 1 1
1 1 1

 
 − =
 −
 

− − 

ÙΩ
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T
1 1 1 1

1 1 1 1 1
4

1 1 1 1

 
 = − − 
 − − 

Ù

For example, at [ ]T6 2 1= − −f  we get

and

As can be seen, the matrix  ΩT is a pseudo-inverse. Thus, we can obtain the necessary values of the reference and combination frequencies.

1 1 1 3
6

1 1 1 5
2

1 1 1 7
1

1 1 1 9

   
    −     = = − =    −
 −    − −   

FÙf

T

3
1 1 1 1 6

51 1 1 1 1 1 2
74 4

1 1 1 1 1
9

 
    
    = = − − = −    
   − − −    

 

fÙ FT

3
1 1 1 1 6

51 1 1 1 1 1 2
74 4

1 1 1 1 1
9

 
    
    = = − − = −    
   − − −    

 

fÙ F

3. Information Transmission Line Diagram
3.1 Modulation of Three-Frequency Quaternion Carrier

We will modulate the three-frequency carrier in the same way as in [6], by multiplying the information vector [ ]T0 1 2 3(0) x x x x=x  by the fundamental matrix (14), which acts as a channel matrix in the MIMO scheme (1). As a result, we obtain the output modulated 
vector

                   y(ωi ,ωj ,ωk ,t) = Φ(ωi ,ωj ,ωk ,t)x(0) .                           (19)

Since the channel matrix is the fundamental matrix for the dynamics equation in state space (11), then, by definition, the information 

vector (0)x  is also the vector of the initial state of the dynamic system.

Let's consider the case of a binary information vector [ ]T(0) 1 1 1 1= ± ± ± ±x . We write all possible combinations of information 
vectors in the form of a matrix:

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

(0)
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

− − − − − − − − 
 − − − − − − − − =
 − − − − − − − −
 − − − − − − − − 

x
(20)

More generally, the initial vector can take on any value in 4D space. A binary vector   can take on 16 different values. We will depict 
possible combinations of information vectors as states in two 3D spaces, as shown in Figures 1 and 2. Positive values of the most 
significant bit of the information vector are shown in red in the form of a point mass (charge), and negative values in blue.

 Ω

F=Ωf

f        ΩTF 
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Figure 1: Vectors of Information Pulses in the Form of a Quaternion for Positive Values of the First Element of the Information 
Vector.

Figure 2: Vectors of Information Pulses in the Form of a Quaternion for Negative Values of the First Element of the Information 
Vector.
Since the three-frequency matrix is equal to the sum of single-frequency matrices (18), then modulation by single-frequency matrices 
will, accordingly, have the form:

Since channel matrix ( , , , )i j k tω ω ωÖ
 is orthogonal, the power of the output vector will be the same as the input one.

8 
 
Let's consider the case of a binary information vector  T(0) 1 1 1 1    x . We write 

all possible combinations of information vectors in the form of a matrix: 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

(0)
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

        
         
        
         

x . (20) 

More generally, the initial vector can take on any value in 4D space. A binary vector (0)x  
can take on 16 different values. We will depict possible combinations of information vectors as 
states in two 3D spaces, as shown in Figures 1 and 2. Positive values of the most significant bit of 
the information vector are shown in red in the form of a point mass (charge), and negative values 
in blue. 

 

 
Figure 1. Vectors of information pulses in the form of a 

quaternion for positive values of the first element of 
the information vector 

Figure 2. Vectors of information pulses in the form of a 
quaternion for negative values of the first element of 

the information vector 
Since the three-frequency matrix is equal to the sum of single-frequency matrices (18), then 

modulation by single-frequency matrices will, accordingly, have the form: 
1 2 3 4( , , , , ) ( , , , ) (0) ( , , , )i j k i j kt t t           y Φ x y  (21) 

1 1 2 2 3 3 4 4( , ) (0) ( , ) (0) ( , ) (0) ( , ) (0)t t t t        Φ x Φ x Φ x Φ x  

1 1 2 2 3 3 4 4( , ) ( , ) ( , ) ( , )t t t t       y y y y . 
Since channel matrix ( , , , )i j k t  Φ  is orthogonal, the power of the output vector will be 

the same as the input one. 
Figure 3 shows a visualization of the formation of a modulated signal in a transmitting 

device with an information vector of  T(0) 1 1 1 1 x . The input of the transmitting device 
receives binary data pulses 0, 1. This data sequence is converted into bipolar pulses by replacing 
0 1  and 1 1 . The first 4 pulses of the bipolar sequence, as they arrive, are converted into a 
4D vector by delaying the 1st received pulse by a pulse duration of 3T, the second by 2T, the third 
by T, and the last pulse arrives in real time. During the arrival of the 4th pulse, the three-frequency 
quaternion carrier is modulated in the form of a 4x4 matrix (14) by multiplying it by the vector of 
incoming pulses. Multiplication occurs by four rows of the matrix during the arrival and formation 
of the next 4D vector of pulses. 

Since a three-frequency matrix is equal to the sum of single-frequency ones (18), 
modulation is easier to implement by multiplying the vector by single-frequency channel matrices 
followed by summation (21). 
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Figure 3 shows a visualization of the formation of a modulated signal in a transmitting device with an information vector of 

[ ]T(0) 1 1 1 1= −x . The input of the transmitting device receives binary data pulses 0, 1. This data sequence is converted into 
bipolar pulses by replacing 0 1→  and 1 1→− . The first 4 pulses of the bipolar sequence, as they arrive, are converted into a 4D vector 
by delaying the 1st received pulse by a pulse duration of 3T, the second by 2T, the third by T, and the last pulse arrives in real time. 
During the arrival of the 4th pulse, the three frequency quaternion carrier is modulated in the form of a 4x4 matrix (14) by multiplying 
it by the vector of incoming pulses. Multiplication occurs by four rows of the matrix during the arrival and formation of the next 4D 
vector of pulses.

Since a three-frequency matrix is equal to the sum of single-frequency ones (18), modulation is easier to implement by multiplying the 
vector by single-frequency channel matrices followed by summation (21).9 
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To obtain modulated elements in real time, i.e., sequentially for each clock period, it is necessary to represent all the rows in the form of 
columns, i.e., transpose the matrix, and write these columns in reverse order:

As you can see, matrix elements ( ) ( )( )1 1cos sint t± Ω + Ω  and ( ) ( )( )1 1cos sint t± Ω − Ω  are conjugate oscillations with the initial phase  

4π , 3 4π , 5 4π  and 7 4π . Thus, when an information vector is multiplied by a matrix, QPSK modulation occurs.

As shown in Figure 3, simultaneously with the time-sequential multiplication of the information vector by the elements of the columns 
at the duration of the cycle, summation occurs, as a result of which we obtain oscillations with the corresponding initial state. In 4 clock 
cycles we obtain a sequence of modulated oscillations with a frequency with the corresponding initial states that determine the initial 
phases of the oscillations.

In the same way, at the same time, we obtain modulated oscillations with frequencies 2Ω , 3Ω , and 4Ω . As shown in the lower part 
of Figure 3, modulated oscillations with different frequencies are added in real time, resulting in a vector of elements from combination 

frequencies: 1 1 2 3 4( , , , , )y tΩ Ω Ω Ω . Since the three-frequency fundamental matrix is orthogonal, the power of each resulting three 
frequency element will be equal to the power of the information element, i.e. in our case 1. According to (17), the power of each single 
frequency element will be equal to 1/4. Note that for some combinations of information elements we can obtain single-frequency signals 
not only with phase modulation, but also with amplitude and space modulation.

In the process of obtaining combined oscillations, they enter, according to Figure 3, a power amplifier and are sequentially emitted into 

space or transmitted through wires. First, from right to left, the 1st element of the vector is emitted 1 1 2 3 4( , , , , )y tΩ Ω Ω Ω , then the 

2nd 2 1 2 3 4( , , , , )y tΩ Ω Ω Ω , 3rd 3 1 2 3 4( , , , , )y tΩ Ω Ω Ω and 4th 4 1 2 3 4( , , , , )y tΩ Ω Ω Ω .

It is possible to use a separate power amplifier for each single-frequency oscillation, and summation should be done after amplification. 
In the process of emitting oscillations, a new information vector is formed from newly received impulses and the process is repeated. 
Thus, the modulation scheme requires a time delay of 3T.

3.2 Demodulation of a Three-Frequency Quaternion Carrier
When modulated oscillations from combination frequencies pass through the communication channel, interference is added to them. 
As a noise, consider 4D white noise with circular symmetry. Let's imagine the interference as a 4D vector and write the received signal 
(19) or (21) as:
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As you can see, matrix elements     1 1cos sint t     and     1 1cos sint t     are conju-

gate oscillations with the initial phase 4 , 3 4 , 5 4  and 7 4 . Thus, when an information 
vector is multiplied by a matrix, QPSK modulation occurs. 

As shown in Figure 3, simultaneously with the time-sequential multiplication of the infor-
mation vector by the elements of the columns at the duration of the cycle, summation occurs, as a 
result of which we obtain oscillations with the corresponding initial state. In 4 clock cycles we 
obtain a sequence of modulated oscillations with a frequency with the corresponding initial states 
that determine the initial phases of the oscillations. 
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3 , and 4 . As shown in the lower part of Figure 3, modulated oscillations with different fre-
quencies are added in real time, resulting in a vector of elements from combination frequencies: 
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the power of each resulting three-frequency element will be equal to the power of the information 
element, i.e. in our case 1. According to (17), the power of each single-frequency element will be 
equal to 1/4. Note that for some combinations of information elements we can obtain single-fre-
quency signals not only with phase modulation, but also with amplitude and space modulation. 

In the process of obtaining combined oscillations, they enter, according to Figure 3, a 
power amplifier and are sequentially emitted into space or transmitted through wires. First, from 
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2 1 2 3 4( , , , , )y t    , 3rd 3 1 2 3 4( , , , , )y t     and 4th 4 1 2 3 4( , , , , )y t    . 
It is possible to use a separate power amplifier for each single-frequency oscillation, and 

summation should be done after amplification. In the process of emitting oscillations, a new infor-
mation vector is formed from newly received impulses and the process is repeated. Thus, the mod-
ulation scheme requires a time delay of 3T. 
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result of which we obtain oscillations with the corresponding initial state. In 4 clock cycles we 
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In the same way, at the same time, we obtain modulated oscillations with frequencies 2 , 

3 , and 4 . As shown in the lower part of Figure 3, modulated oscillations with different fre-
quencies are added in real time, resulting in a vector of elements from combination frequencies: 

1 2 3 4( , , , , ) ( , , , )i j kt t      y y . Since the three-frequency fundamental matrix is orthogonal, 
the power of each resulting three-frequency element will be equal to the power of the information 
element, i.e. in our case 1. According to (17), the power of each single-frequency element will be 
equal to 1/4. Note that for some combinations of information elements we can obtain single-fre-
quency signals not only with phase modulation, but also with amplitude and space modulation. 

In the process of obtaining combined oscillations, they enter, according to Figure 3, a 
power amplifier and are sequentially emitted into space or transmitted through wires. First, from 
right to left, the 1st element of the vector is emitted 1 1 2 3 4( , , , , )y t    , then the 2nd 

2 1 2 3 4( , , , , )y t    , 3rd 3 1 2 3 4( , , , , )y t     and 4th 4 1 2 3 4( , , , , )y t    . 
It is possible to use a separate power amplifier for each single-frequency oscillation, and 

summation should be done after amplification. In the process of emitting oscillations, a new infor-
mation vector is formed from newly received impulses and the process is repeated. Thus, the mod-
ulation scheme requires a time delay of 3T. 
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symmetry. Let's imagine the interference as a 4D vector and write the received signal (19) or (21) 
as: 

1 1 2 3 4 1

2 1 2 3 4 2

3 1 2 3 4 3

4 1 2 3 4 5

( , , , , ) ( )
( , , , , ) ( )

( )
( , , , , ) ( )
( , , , , ) ( )

y t n t
y t n t

t
y t n t
y t n t

      
          
      
         

s . (22) 

Just as in [6], demodulation will be carried out using transposed basic single-frequency 
matrices. When separating the signal spectra and at a constant spectral density of the interference 
power, we obtain that in the signal band for each element of the output vector the interference will 
be 4 times less than the total power. That is, the interference dispersion vector when distributing 
the interference power over the frequencies of each element can be written as 

T2 2 2 2 21
4       σ . As stated, 4 information elements are distributed along orthogonal 

axes within each single-frequency element. The circular symmetry of the interference in the form 
of white noise means that the noise on the orthogonal coordinate axes is not correlated. Conse-
quently, the interference acting on them is also distributed in power over 4 orthogonal axes and, 
accordingly, has 4 times less power. Hence, the vector of interference dispersion acting on a sep-
arate information element, taking into account the distribution over frequencies and orthogonal 

axes, has the form 
T2 2 2 2 21

16       σ . 

Thus, when using the MIMO scheme in a 3-frequency hypercomplex quaternion space, the 
power of both the signal and the interference is distributed over 4 frequencies and 4 orthogonal 
axes so that each information element and the interference acting on it have a power of 16 times 
less and maintain the signal-to-noise ratio (SNR). 

In accordance with the theory of optimal reception in white noise, demodulation will be 
carried out using transposed basic single-frequency matrices. Let's first consider the demodulation 
circuit for combination frequency 1 i j k      . Let us decompose the single-frequency 
channel matrix (17) for frequency 1  into basis matrices, which we denote as 

      T T
1 1 1 1, cos sint t t    E E ,       T T

1 1 1 1, cos sint t t     I I ,  (23) 

      T T
1 1 1 1, cos sint t t    J J ,       T T

1 1 1 1, cos sint t t     K K . 
Since white noise is considered as interference, the optimal receiver for each element is a 

correlator. Demodulation will be carried out by multiplying the received vector (22) by transposed 
basis matrices (23) with subsequent integration over the pulse duration T. Since during integration 
high-frequency components are compensated, at the end of integration the basis matrices (23) will 
be orthogonal: 

        2T
1 1 1 1 1 10 0

, , cos sin
T T

t t dt t t dt       E E E E , (24) 

        2T
1 1 1 1 1 10 0

, , cos sin
T T
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T T

t t dt t t dt       K K E E . 

The basis matrices for matrices (17) with frequencies 2  , 3  , 4  will also be orthogonal. 
The demodulation circuit is shown in Figure 4. As shown in the diagram, multiplication of 

the received sequence of elements of vector ( )ts  (22) by elements of basic single-frequency ma-
trices (23) and their integration (24) with subsequent summation of the results is carried out in real 
time. Multipliers and integrators are grouped into 4 groups in accordance with the number of  
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trices (23) and their integration (24) with subsequent summation of the results is carried out in real 
time. Multipliers and integrators are grouped into 4 groups in accordance with the number of  

Since white noise is considered as interference, the optimal receiver for each element is a correlator. Demodulation will be carried out 
by multiplying the received vector (22) by transposed basis matrices (23) with subsequent integration over the pulse duration T. Since 
during integration high-frequency components are compensated, at the end of integration the basis matrices (23) will be orthogonal:

The basis matrices for matrices (17) with frequencies 2Ω , 3Ω , 4Ω  will also be orthogonal.

The demodulation circuit is shown in Figure 4. As shown in the diagram, multiplication of the received sequence of elements of vector   
(22) by elements of basic single frequency matrices (23) and their integration (24) with subsequent summation of the results is carried 
out in real time. Multipliers and integrators are grouped into 4 groups in accordance with the number of  elements in one bus. The first 
received element 1 1 1 2 3 4 1( , , , , ) ( )s y t n t= Ω Ω Ω Ω +  is fed to bus 1 and multiplied by the elements of the transposed basis matrices 
located in the first columns of the basis matrices. At the same time, we obtain from the first element   estimates of all 4 elements of 
information vector X(0).

σ2

σ2
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In Figure 4, the arrows show that from the first bus, the accumulation results are distributed to the corresponding locations of the pulses 
on the graph located at the bottom of the basis matrix ( )T

1 1,tΩE . Since the final result of accumulation is important to us, at the end 
of accumulation all 4 samples are counted and stored in RAM.

Next, the second element 2 2 1 2 3 4 2( , , , , ) ( )s y t n t= Ω Ω Ω Ω +  arrives and is fed to bus 2. Similarly, during the arrival process, it is 
multiplied by the elements of the basis matrices in the second columns. At the same time, we also obtain from the second element s2 
estimates of all 4 elements of the information vector. In the figure, the arrows show that from the 2nd bus, the accumulation results are 
distributed on the graph located at the bottom of the basis matrix ( )T

1 1,tΩI . At the end of accumulation, all 4 counts are counted and 
stored.

The following elements 3 3 1 2 3 4 3( , , , , ) ( )s y t n t= Ω Ω Ω Ω +  and 4 4 1 2 3 4 4( , , , , ) ( )s y t n t= Ω Ω Ω Ω +  are supplied to buses 3 and 
4, and are multiplied by the elements of the basis matrices in columns 3 and 4, respectively. The results of integration for each matrix 
are shown in the figure directly below matrices ( )T

1 1,tΩJ and ( )T
1 1,tΩK . Below is the sum of the results for the single-frequency 

fundamental matrix     as a whole.

As can be seen from the diagram, each input element produces 4 outputs and thus the MIMO scheme is implemented. At the same time, 
the estimation of each information element occurs under different noise conditions. Since interference affects signal elements at different 
times, they are not correlated. When adding the integration results, the information components are added by energy, and the interference 
components are added by power. The signal amplitude increases 4 times.

Demodulation occurs in a similar way for single-frequency matrices    If the frequencies are sufficiently 
separated, the interference will also be uncorrelated. As shown at the bottom of Figure 4, when summing up the evaluation results, we 
obtain a 16-fold increase in the signal amplitude. Accordingly, the ratio of signal power to noise power will increase by 16 times. The 
total results of the readings are sent to the decision device (solver), in which the received information elements are evaluated.
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As described above, we transmit information vectors in 4D space using matrices (17). From 
the point of view of separability of information symbols, it is important to note that the fundamen-
tal matrix (14) is decomposed into basic matrices (17), i.e. is equal to the sum of the basis matrices. 
Therefore, when multiplying one of the possible information vectors (20) by the basis matrices E, 
I, J, K, we obtain 4 orthogonal information vectors. 

Figure 5 shows the corresponding 4 vectors in 3D space obtained after multiplying the 
information vector  (0) 1 1 1 1 x  by the basis matrices when depicting the scalar as a point 

mass. Figure 6 shows 4 vectors for the information vector  (0) 1 1 1 1  x , which differs 
from the original vector by the value of the 1st element.  
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As can be seen from Figures 5, 6, the difference between four spatial vectors in 4D is more 

significant than the difference between two vectors that differ only in one symbol, determined by 
the scalar product. Let's write these vectors in the form of matrices: 
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where the matrix indices show the column numbers in (20) for the initial state vector, which is 
written in the first row.  

The matrix data is orthogonal because T T
5 5 5 5 4 F F F F E  и T T

13 13 13 13 4 F F F F E. 
Thus, we are faced with the task of distinguishing not two vectors, but two matrices for 

different hypotheses. This problem is solved by calculating the square of the Euclidean norm of 
the matrix or the Frobenius norm. 

It is shown that all 16 resulting matrices will be orthogonal. The squared Frobenius norm 
of these matrices will be 2 16n F F , or    T T

5 5 5 5tr tr 16 F F F F  and    T T
13 13 13 13tr tr 16 F F F F . 

The squared Frobenius norms for two matrices formed from opposite vectors will be equal -16, 
for example, for a matrix 5F  and 10F  we get  T

5 10tr 16 F F . Having calculated all possible 
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Figure 6: Information Vectors Obtained from the Initial State Vector [-1-111] by Multiplication by Spatial Basis Matrices.

As can be seen from Figures 5, 6, the difference between four spatial vectors in 4D is more significant than the difference between two 
vectors that differ only in one symbol, determined by the scalar product. Let's write these vectors in the form of matrices:

where the matrix indices show the column numbers in (20) for the initial state vector, which is written in the first row. 

Thus, we are faced with the task of distinguishing not two vectors, but two matrices for different hypotheses. This problem is solved by 
calculating the square of the Euclidean norm of the matrix or the Frobenius norm.

The matrix data is orthogonal because and
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It is shown that all 16 resulting matrices will be orthogonal. The squared Frobenius norm of these matrices will be 
2 16n F =F , 

or { } { }T T
5 5 5 5tr tr 16= =F F F F

 
and { } { }T T

13 13 13 13tr tr 16= =F F F F . The squared Frobenius norms for two matrices formed from 
opposite vectors will be equal -16, for example, for a matrix 5F  and 10F  we get { }T

5 10tr 16= −F F . Having calculated all possible 
Frobenius norms for matrix products, we obtain 4 norms 8, 4 norms -8, 6 norms 0 and 1 norm -16. Therefore, the minimum distance 
between norms will be equal to 16 – 8=8.

Thus, we have obtained that the result of calculating the maximum likelihood does not depend on whether we calculate the distance 
between two vectors with amplitude 4 times larger using the scalar product or between two matrices using the Frobenius norm.

3.4 Orbits of Rotation of the Vector of Initial States in the Three-Frequency Space of the Quaternion
Of the 16 possible combinations of information bipolar vectors, we have 8 vectors with a positive scalar part and 8 with a negative 
one. Figure 7 shows various orbits of rotation of the scalar part of the quaternion for initial states equal to the numbers of information 
vectors 1, 3, 10, 12 for reference frequencies 1 6f = , 2 2f = − , 3 1f = −  Hz. The corresponding combination frequencies are 1 3F =
, 2 5F = , 3 7F = , 4 9F =  Hz. From 16 orbits, identical orbits are selected and grouped into four with positive and negative scalar 
parts, such as 1, 6 and 11,16; 2, 3 and 1, 15; 4, 7 and 10, 13; 5, 8 and 9,12. Thus, we got 4 different orbits for 4 different initial states of 
each.

For a single-frequency quaternion, we also obtained 4 orbits for 4 different initial states of each [6]. However, a comparison of these 
orbits with the orbits of a three-frequency quaternion shows that the orbits of a three-frequency quaternion occupy a significantly larger 
volume of quaternion space and, as a consequence, the signals have a significantly greater variety. As is known, the greater the diversi-
ty of the signal, the less susceptible it is to interference and the higher the information transmission speed it is possible to obtain. In the 
limiting case, when the signal is similar to white noise and occupies the entire volume, we obtain the throughput [3].
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For a single-frequency quaternion, we also obtained 4 orbits for 4 different initial states of 
each [6]. However, a comparison of these orbits with the orbits of a three-frequency quaternion 
shows that the orbits of a three-frequency quaternion occupy a significantly larger volume of qua-
ternion space and, as a consequence, the signals have a significantly greater variety. As is known, 
the greater the diversity of the signal, the less susceptible it is to interference and the higher the 
information transmission speed it is possible to obtain. In the limiting case, when the signal is 
similar to white noise and occupies the entire volume, we obtain the throughput [3]. 
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Figure 7. Orbits of rotation of the scalar part of the quaternion 

 
From Figure 7 you can also visually draw the following conclusion. Since in the MIMO 

scheme each information pulse will be simultaneously transmitted at different frequencies and at 
different times, the influence of frequency selective fading and time selective fading will also be 
reduced. 

 

V. CONCLUSION 
Thus, in contrast to existing technologies for increasing the capacity of communication 

channels using a MIMO scheme with many antennas at the input and output, the proposed tech-
nology using a MIMO scheme in a hypercomplex vector space, which has a patent [12], has sig-
nificant advantages: 

Instead of transferring the entire MxM matrix to the space-time code, i.e. channel matrix, a 
multi-frequency modulated vector is transmitted, obtained by multiplying the information vector 
by the channel matrix. In this case, all phase relationships between elements obtained during mod-
ulation are preserved, and the entire transmitter power is spent on each multi-frequency element 
of the vector; 

Instead of M antennas for transmission and reception, one antenna is used for transmission 
and reception, and the MIMO signal is generated in a multidimensional hypercomplex space, 
which significantly reduces the complexity of implementing MIMO schemes and instead of M 
antennas, M multipliers and adders are used for transmission and reception; 

As the dimension of the MIMO scheme increases, the degree of increase in throughput 
does not decrease, as is the case in physical space due to the limitation of its dimension; 

There is no need to increase the size of mobile radios and mobile phones when increasing 
the MIMO dimension, since there is no need to place multiple antennas in them; 

Since the phase relationships are preserved during the formation of the modulated vector, 
there is no need to know the phase shift of the signal from M transmitting antennas in each of the 
M receiving antennas. Instead of a complex synchronization system with a return channel, only 
knowledge of the carrier frequency and phase synchronization with it is required, as in the case of 
coherent reception of a one-dimensional signal; 

Obtaining a gain in noise immunity of M times allows us to provide the necessary speed of 
information transmission in 5G and 6G without the need to switch to the terahertz range and, 
accordingly, without reducing the communication range to line-of-sight range; 

Without a transition to the terahertz range there will be no significant impact on the human 
body, and the technological difficulties of creating electronic elements in this range will not in-
crease;  

Figure 7: Orbits of Rotation of the Scalar Part of the Quaternion.
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From Figure 7 you can also visually draw the following 
conclusion. Since in the MIMO scheme each information pulse 
will be simultaneously transmitted at different frequencies and at 
different times, the influence of frequency selective fading and 
time selective fading will also be reduced.

4. Conclusion
Thus, in contrast to existing technologies for increasing the 
capacity of communication channels using a MIMO scheme with 
many antennas at the input and output, the proposed technology 
using a MIMO scheme in a hypercomplex vector space, which has 
a patent [12], has significant advantages:

Instead of transferring the entire MxM matrix to the space-time 
code, i.e. channel matrix, a multi-frequency modulated vector is 
transmitted, obtained by multiplying the information vector by 
the channel matrix. In this case, all phase relationships between 
elements obtained during modulation are preserved, and the entire 
transmitter power is spent on each multi-frequency element of the 
vector;

Instead of M antennas for transmission and reception, one antenna 
is used for transmission and reception, and the MIMO signal is 
generated in a multidimensional hypercomplex space, which 
significantly reduces the complexity of implementing MIMO 
schemes and instead of M antennas, M multipliers and adders are 
used for transmission and reception;

As the dimension of the MIMO scheme increases, the degree of 
increase in throughput does not decrease, as is the case in physical 
space due to the limitation of its dimension;

There is no need to increase the size of mobile radios and mobile 
phones when increasing the MIMO dimension, since there is no 
need to place multiple antennas in them;

Since the phase relationships are preserved during the formation 
of the modulated vector, there is no need to know the phase shift 
of the signal from M transmitting antennas in each of the M 
receiving antennas. Instead of a complex synchronization system 
with a return channel, only knowledge of the carrier frequency and 
phase synchronization with it is required, as in the case of coherent 
reception of a one-dimensional signal;

Obtaining a gain in noise immunity of M times allows us to provide 
the necessary speed of information transmission in 5G and 6G 
without the need to switch to the terahertz range and, accordingly, 
without reducing the communication range to line-of-sight range;

Without a transition to the terahertz range there will be no significant 
impact on the human body, and the technological difficulties of 
creating electronic elements in this range will not increase;

The absence of a large crest factor in hypercomplex signals, unlike 
multi-frequency signals, does not require an increase in amplifier 
power;

The use of MIMO in the hypercomplex space allows for increased 
throughput in wireline communication systems;

When using the MIMO scheme in hypercomplex space, each multi-
frequency pulse contains information about all M information 
elements, which significantly reduces the impact of frequency and 
time selective fading.
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