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Abstract
We present a novel dataset captured from a BMW X5 test carrier within the German research project KI-ASIC for use in 
radar sensor development and autonomous driving research. Our work aims at providing a blueprint for the process of 
creating labeled datasets for the development of neural networks for pattern recognition in radar data in the automotive 
environment. With a variety of different sensor types such as wide angle color cameras, a high-resolution color stereo 
camera, an Ouster OS1-64 laser scanner and three novel Infineon radar sensors, we recorded over 100,000 scenes of real 
traffic scenarios as well as defined test scenarios with a frequency of 10 Hz. The scenarios in real traffic contain inner-city 
situations, but also scenes from rural areas with static and dynamic objects. Besides, the defined test scenarios are based 
on the NCAP scenarios and focus mostly on turning, overtaking and follow-up maneuvers. The data from the different 
sensors is calibrated, synchronized and timestamped including raw and rectified information. Our dataset also contains 
labels for all detected objects from a defined class list with distance and angle properties. The content of the paper aims at 
the description of the recording test carrier, the format of the provided sensor data and the structure of the overall dataset.
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1. Introduction
The KI-ASIC dataset has been recorded from a moving test car-
rier while driving in and around Amberg, Germany. The defined 
test scenarios were performed at the airfield in Schmidgaden near 
Amberg. It includes images, laser scans and raw data of three nov-
el Infineon radar sensors. The goal of the dataset is to provide a 
data basis for the development of neural networks for radar pat-
tern recognition, but also to expand the currently available data 
field in literature in order to advance automated and autonomous 
driving [1-4]. While our introductive paper describes the process 
of data acquisition and semi-automated labeling using an exem-
plary dataset, we here close the frame by giving insight into the 
technical details of the used sensors and the raw data itself [5]. 
All collected information was then stored in a separate dataset for 
every accomplished test scenario. A subset of the KI-ASIC dataset 
can be downloaded from abc.def.ghi.jkl.mno.oth-aw.de, all data is 
available on request. To give a detailed overview about the label-
ing process that leads to the provided datasets, we refer the reader 
to [5,6].

2. Sensor Setup
Our setup shown in Fig. 1 includes the following sensors:
• 2x IDS UI-3080CP Rev. 2 color cameras (used as one stereo 

camera), 5.04 Megapixels, 2/3” Sony IMX250 CMOS, global 
shutter.

• 2x Kowa LM5JC10M lenses, 5 mm, 2/3” C-Mount, 10 
Megapixels, manual focus with lock, opening angle horizon-
tal 82.2◦, opening angle vertical 66.5◦.

• 2x IDS UI-3040CP Rev. 2 color cameras, 1.57 Megapixels, 
1/3” Sony IMX273 CMOS, global shutter.

• 2x Theia MY125M lenses, 1.3 mm, 1/3” C-Mount, 5 Megapix-
els, distortion < 3%, opening angle horizontal 125◦, opening 
angle vertical 109◦.

• Ouster OS1-64 rotating 3D laser scanner with gradient beam 
distribution, 0.01◦ angular resolution and 0.1 cm range reso-
lution, field of view: 360◦ horizontal, 45◦ vertical, range up 
to 200 m. The sensor was used with following configurable 
settings: 10 Hz, 1024x64 channels, collecting more than 2.6 
million points/second.

• 3x Infineon radars, 76 GHz ± 607.7 MHz for mid-range, open-
ing angle 180◦, 4 transmitters, 8 receivers, 64 ramps.
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Abstract—We present a novel dataset captured from a BMW
X5 test carrier within the German research project KI-ASIC
for use in radar sensor development and autonomous driving
research. Our work aims at providing a blueprint for the
process of creating labeled datasets for the development of neural
networks for pattern recognition in radar data in the automotive
environment. With a variety of different sensor types such as
wide angle color cameras, a high-resolution color stereo camera,
an Ouster OS1-64 laser scanner and three novel Infineon radar
sensors, we recorded over 100,000 scenes of real traffic scenarios
as well as defined test scenarios with a frequency of 10 Hz. The
scenarios in real traffic contain inner-city situations, but also
scenes from rural areas with static and dynamic objects. Besides,
the defined test scenarios are based on the NCAP scenarios and
focus mostly on turning, overtaking and follow-up maneuvers.
The data from the different sensors is calibrated, synchronized
and timestamped including raw and rectified information. Our
dataset also contains labels for all detected objects from a defined
class list with distance and angle properties. The content of the
paper aims at the description of the recording test carrier, the
format of the provided sensor data and the structure of the
overall dataset.

Index Terms—Data Labeling, Deep Learning, Computer Vi-
sion, Autonomous Driving, Neural Network, Radar Sensor, Lidar
Sensor, Stereo Camera, Object Detection, KI-ASIC

I. INTRODUCTION

The KI-ASIC dataset has been recorded from a moving
test carrier while driving in and around Amberg, Germany.
The defined test scenarios were performed at the airfield in
Schmidgaden near Amberg. It includes images, laser scans and
raw data of three novel Infineon radar sensors. The goal of the
dataset is to provide a data basis for the development of neural
networks for radar pattern recognition, but also to expand
the currently available data field in literature [1]–[4] in order
to advance automated and autonomous driving. While our
introductive paper [5] describes the process of data acquisition
and semi-automated labeling using an exemplary dataset, we
here close the frame by giving insight into the technical details
of the used sensors and the raw data itself. All collected
information was then stored in a separate dataset for every
accomplished test scenario. A subset of the KI-ASIC dataset
can be downloaded from abc.def.ghi.jkl.mno.oth-aw.de, all
data is available on request. To give a detailed overview about
the labeling process that leads to the provided datasets, we
refer the reader to [5] and [6].

II. SENSOR SETUP

Our setup shown in Fig. 1 includes the following sensors:

• 2x IDS UI-3080CP Rev. 2 color cameras (used as one
stereo camera), 5.04 Megapixels, 2/3” Sony IMX250
CMOS, global shutter.

• 2x Kowa LM5JC10M lenses, 5 mm, 2/3” C-Mount,
10 Megapixels, manual focus with lock, opening angle
horizontal 82.2◦, opening angle vertical 66.5◦.

• 2x IDS UI-3040CP Rev. 2 color cameras, 1.57 Megapix-
els, 1/3” Sony IMX273 CMOS, global shutter.

• 2x Theia MY125M lenses, 1.3 mm, 1/3” C-Mount, 5
Megapixels, distortion < 3%, opening angle horizontal
125◦, opening angle vertical 109◦.

• Ouster OS1-64 rotating 3D laser scanner with gradient
beam distribution, 0.01◦ angular resolution and 0.1 cm
range resolution, field of view: 360◦ horizontal, 45◦

vertical, range up to 200 m. The sensor was used with fol-
lowing configurable settings: 10 Hz, 1024x64 channels,
collecting more than 2.6 million points/second.

• 3x Infineon radars, 76 GHz ± 607.7 MHz for mid-range,
opening angle 180◦, 4 transmitters, 8 receivers, 64 ramps.

Fig. 1. Test Carrier with Sensor Setup. Our BMW X5 test carrier is
equipped with four color cameras in the area of the interior mirror, a rotating
3D laser scanner mounted on the vehicle roof and three novel radar sensors
integrated into the front bumper.
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Figure 1: Test Carrier with Sensor Setup

Our BMW X5 test carrier is equipped with four color cameras in 
the area of the interior mirror, a rotating 3D laser scanner mounted 
on the vehicle roof and three novel radar sensors integrated into 
the front bumper.

The focus of the project aims at detecting objects in the field of 

view of our stereo camera which covers a region of about ±40◦, 
where most of the objects are aging. Therefore, only the stereo 
camera and laser scanner are calibrated to each other, the outer 
wide-angle cameras are turned outwards and observe the remain-
ing opening angle of the radar sensor without being calibrated or 
labeled in order to just not lose any edge objects.

The focus of the project aims at detecting objects in the field
of view of our stereo camera which covers a region of about
±40◦, where most of the objects are aging. Therefore only the
stereo camera and laser scanner are calibrated to each other,
the outer wide-angle cameras are turned outwards and observe
the remaining opening angle of the radar sensor without being
calibrated or labeled in order to just not lose any edge objects.

Fig. 2. Sensor Setup with Mounting Positions and Coordinate System

The baseline of the stereo camera system illustrated in Fig. 2
is about 10 cm for the test drives in January 2023, but was
enlarged to 15 cm for the tests in March and April 2023 to
optimize the distance determination on the basis of disparity.
The trunk of our test carrier houses a PC for data recording
with an Intel Xeon Gold 5119T processor, 64 GB RAM, two
SSDs with 8 TB each and a NVIDIA Quadro P2000 graphic
card with 5 GB RAM. Our computer runs on Ubuntu Linux
(64 bit) to store the incoming data streams for all sensors.

III. DATASET

We have automatically processed all recorded test scenarios
with our processing pipeline, a small subset was also manually
relabeled with our implemented labeling tool. The processed
datasets can be accessed at abc.def.ghi.jkl.mno.oth-aw.de.
The object detection was performed using two neural net-
works (Mask-RCNN [7] and DetectoRS [8]) trained using
the Cityscapes dataset [?]. The selected dataset includes sig-
nificantly more object classes than typically encountered in
intersection traffic. Therefore, it was decided to reduce the
scope of detectable object classes to a level sufficient for the
real-world traffic radar use case that is the focus of the project.
Only the following object classes are considered: person, car,
bicycle, rider, motorcycle, truck and bus.
The various Euro NCAP [9] scenarios are used as a basis for
data acquisition with the test vehicle. However, the focus of
the tests is not on collision avoidance by the vehicle, but on
detecting critical situations. The test scenarios are therefore set
up in such a way that a collision between the test vehicle and
other road users is avoided. Special attention will be paid to
scenarios such as turning and tailgating maneuvers with road
users typical for urban intersections in real traffic. Those tests
were performed at the airfield in Schmidgaden mostly without
having interfering objects. In addition, some scenarios in real
traffic in and around Amberg were recorded and evaluated.

The test drives were conducted from 23rd to 27th of January,
14th of March and 6th to 12th of April 2023 with all possible
weather conditions. We have processed over 100,000 scenes
with a total data size of around 5 TB. The quality of the
datasets was evaluated using 1,010 randomly selected scenes.
Thereby, 414 objects were detected correctly, 4 incorrectly and
21 not at all in the relevant range of up to 40 meters.

A. Dataset Description

The dataset is divided according to test days, each of which
includes both defined test and evaluated driving scenarios in
real traffic. Examplary scenes are shown in Fig. 3.

Fig. 3. Examples from the KI-ASIC Dataset

A scenario typically comprises approx. 10 seconds in a
separate folder. Each evaluated scenario comprises another
folder in which all labeled objects with calculated distances
are stored as an image for each timestamp.
If it was possible to determine a distance value for an object
using both the lidar data and the information from the stereo
camera system, two images are stored for each timestamp.
In addition, the result files are saved in HDF5 format [10] in
each scenario folder. Due to file size limitations, 50 timestamps
including raw data and computed object information are stored
in a result file whose directory structure is shown in Fig. 4.
In the following, the structure of the dataset as well as the
annotations for the detected objects will be described on the
basis of an exemplary scene:

1) Specifications: This includes general information such
as the date of the test, the neural networks used for image
labeling, the maximum distance for object detection, the name
of the test scenario defined in the test catalogue, as well as
the weather data at the time and the GPS coordinates of the
test drives. In addition, the specifications of the sensors used
to record the data necessary are also documented.

2) Images: Each timestamp includes the image name, raw
images from the wide-angle cameras, rectified and undistorted
images from the stereo camera, the resulting depth map and
the labeled images including the distance for each object
calculated using the lidar sensor or the stereo camera.

3) Lidar data: The raw data of the lidar sensor were
recorded in pcd format and stored with the same structure.

4) Radar data: The raw data of each of the three radar
sensors are saved with data type int16 in a separate folder.

Figure 2: Sensor Setup with Mounting Positions and Coordinate System

The baseline of the stereo camera system illustrated in Fig. 2 is 
about 10 cm for the test drives in January 2023, but was enlarged 
to 15 cm for the tests in March and April 2023 to optimize the 
distance determination on the basis of disparity. The trunk of our 
test carrier houses a PC for data recording with an Intel Xeon Gold 
5119T processor, 64 GB RAM, two SSDs with 8 TB each and a 
NVIDIA Quadro P2000 graphic card with 5 GB RAM. Our com-
puter runs on Ubuntu Linux (64 bit) to store the incoming data 
streams for all sensors.

3. Dataset
We have automatically processed all recorded test scenarios with 
our processing pipeline, a small subset was also manually rela-
beled with our implemented labeling tool. The processed datasets 

can be accessed at abc.def.ghi.jkl.mno.oth-aw.de. The object de-
tection was performed using two neural networks (Mask-RCNN 
and DetectoRS trained using the Cityscapes dataset [7,8]. The se-
lected dataset includes significantly more object classes than typi-
cally encountered in intersection traffic. Therefore, it was decided 
to reduce the scope of detectable object classes to a level sufficient 
for the real-world traffic radar use case that is the focus of the 
project. Only the following object classes are considered: person, 
car, bicycle, rider, motorcycle, truck and bus. The various Euro 
NCAP scenarios are used as a basis for data acquisition with the 
test vehicle [9]. However, the focus of the tests is not on collision 
avoidance by the vehicle, but on detecting critical situations. The 
test scenarios are therefore set up in such a way that a collision 
between the test vehicle and other road users is avoided. Special 
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attention will be paid to scenarios such as turning and tailgating 
maneuvers with road users typical for urban intersections in real 
traffic. Those tests were performed at the airfield in Schmidgaden 
mostly without having interfering objects. In addition, some sce-
narios in real traffic in and around Amberg were recorded and eval-
uated.

The test drives were conducted from 23rd to 27th of January, 14th 
of March and 6th to 12th of April 2023 with all possible weather 
conditions. We have processed over 100,000 scenes with a total 

data size of around 5 TB. The quality of the datasets was evaluated 
using 1,010 randomly selected scenes. Thereby, 414 objects were 
detected correctly, 4 incorrectly and 21 not at all in the relevant 
range of up to 40 meters.

3.1. Dataset Description
The dataset is divided according to test days, each of which in-
cludes both defined test and evaluated driving scenarios in real 
traffic. Examplary scenes are shown in Figure 3.

The focus of the project aims at detecting objects in the field
of view of our stereo camera which covers a region of about
±40◦, where most of the objects are aging. Therefore only the
stereo camera and laser scanner are calibrated to each other,
the outer wide-angle cameras are turned outwards and observe
the remaining opening angle of the radar sensor without being
calibrated or labeled in order to just not lose any edge objects.

Fig. 2. Sensor Setup with Mounting Positions and Coordinate System

The baseline of the stereo camera system illustrated in Fig. 2
is about 10 cm for the test drives in January 2023, but was
enlarged to 15 cm for the tests in March and April 2023 to
optimize the distance determination on the basis of disparity.
The trunk of our test carrier houses a PC for data recording
with an Intel Xeon Gold 5119T processor, 64 GB RAM, two
SSDs with 8 TB each and a NVIDIA Quadro P2000 graphic
card with 5 GB RAM. Our computer runs on Ubuntu Linux
(64 bit) to store the incoming data streams for all sensors.

III. DATASET

We have automatically processed all recorded test scenarios
with our processing pipeline, a small subset was also manually
relabeled with our implemented labeling tool. The processed
datasets can be accessed at abc.def.ghi.jkl.mno.oth-aw.de.
The object detection was performed using two neural net-
works (Mask-RCNN [7] and DetectoRS [8]) trained using
the Cityscapes dataset [?]. The selected dataset includes sig-
nificantly more object classes than typically encountered in
intersection traffic. Therefore, it was decided to reduce the
scope of detectable object classes to a level sufficient for the
real-world traffic radar use case that is the focus of the project.
Only the following object classes are considered: person, car,
bicycle, rider, motorcycle, truck and bus.
The various Euro NCAP [9] scenarios are used as a basis for
data acquisition with the test vehicle. However, the focus of
the tests is not on collision avoidance by the vehicle, but on
detecting critical situations. The test scenarios are therefore set
up in such a way that a collision between the test vehicle and
other road users is avoided. Special attention will be paid to
scenarios such as turning and tailgating maneuvers with road
users typical for urban intersections in real traffic. Those tests
were performed at the airfield in Schmidgaden mostly without
having interfering objects. In addition, some scenarios in real
traffic in and around Amberg were recorded and evaluated.

The test drives were conducted from 23rd to 27th of January,
14th of March and 6th to 12th of April 2023 with all possible
weather conditions. We have processed over 100,000 scenes
with a total data size of around 5 TB. The quality of the
datasets was evaluated using 1,010 randomly selected scenes.
Thereby, 414 objects were detected correctly, 4 incorrectly and
21 not at all in the relevant range of up to 40 meters.

A. Dataset Description

The dataset is divided according to test days, each of which
includes both defined test and evaluated driving scenarios in
real traffic. Examplary scenes are shown in Fig. 3.

Fig. 3. Examples from the KI-ASIC Dataset

A scenario typically comprises approx. 10 seconds in a
separate folder. Each evaluated scenario comprises another
folder in which all labeled objects with calculated distances
are stored as an image for each timestamp.
If it was possible to determine a distance value for an object
using both the lidar data and the information from the stereo
camera system, two images are stored for each timestamp.
In addition, the result files are saved in HDF5 format [10] in
each scenario folder. Due to file size limitations, 50 timestamps
including raw data and computed object information are stored
in a result file whose directory structure is shown in Fig. 4.
In the following, the structure of the dataset as well as the
annotations for the detected objects will be described on the
basis of an exemplary scene:

1) Specifications: This includes general information such
as the date of the test, the neural networks used for image
labeling, the maximum distance for object detection, the name
of the test scenario defined in the test catalogue, as well as
the weather data at the time and the GPS coordinates of the
test drives. In addition, the specifications of the sensors used
to record the data necessary are also documented.

2) Images: Each timestamp includes the image name, raw
images from the wide-angle cameras, rectified and undistorted
images from the stereo camera, the resulting depth map and
the labeled images including the distance for each object
calculated using the lidar sensor or the stereo camera.

3) Lidar data: The raw data of the lidar sensor were
recorded in pcd format and stored with the same structure.

4) Radar data: The raw data of each of the three radar
sensors are saved with data type int16 in a separate folder.

Figure 3: Examples from the KI-ASIC Dataset                         

A scenario typically comprises approx. 10 seconds in a separate 
folder. Each evaluated scenario comprises another folder in which 
all labeled objects with calculated distances are stored as an image 
for each timestamp.

If it was possible to determine a distance value for an object us-
ing both the lidar data and the information from the stereo camera 
system, two images are stored for each timestamp. In addition, the 
result files are saved in HDF5 format in each scenario folder [10]. 
Due to file size limitations, 50 timestamps including raw data and 
computed object information are stored in a result file whose direc-
tory structure is shown in Fig. 4. In the following, the structure of 
the dataset as well as the annotations for the detected objects will 
be described on the basis of an exemplary scene:
• Specifications: This includes general information such as 

the date of the test, the neural networks used for image label-
ing, the maximum distance for object detection, the name of 
the test scenario defined in the test catalogue, as well as the 
weather data at the time and the GPS coordinates of the test 
drives. In addition, the specifications of the sensors used to 
record the data necessary are also documented.

• Images: Each timestamp includes the image name, raw im-
ages from the wide-angle cameras, rectified and undistorted 
images from the stereo camera, the resulting depth map and 
the labeled images including the distance for each object cal-
culated using the lidar sensor or the stereo camera.

• Lidar Data: The raw data of the lidar sensor were recorded in 
pcd format and stored with the same structure.

• Radar Data: The raw data of each of the three radar sensors 
are saved with data type int16 in a separate folder.
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dataset.h5
1 user agreement
specifications

general
classes to be analyzed
label
labeling nn
latitude
longitude
max dist
timestamp
translation camera radar
weather data

list of parameters
cameras
lidars
radars

timestamp 0001
depth map
image labeled
image labeled depth
image left 120
image left stereo
image name
image right 120
image right stereo
objects
point cloud
radar data

timestamp 0002
...

...

Fig. 4. Dataset Structure in HDF5 Format

B. Annotations

For each detected object within the field of view of the
camera system, a distance in meters (mean and standard
deviation) as well as a horizontal and vertical angle range in
rad (mean and value to outer edge) is calculated under which
the test object occurs to the front-mid radar sensor. When
possible, this calculation was performed using both the stereo
camera system and the lidar data if enough lidar points lay
within the object mask. Every detected object with a maximum
distance of 40 meters was considered, objects further away
or without determinable distance were filtered out. The left
camera of the stereo camera system is used as the origin of
the calculations. The outcomes of the property computation
were then transformed to the front-mid radar sensor using the
measured translation between the camera and radar. Fig. 5
shows the result of an exemplary test scenario.

Fig. 5. Exemplary Test Scenario with Detected Objects. The processing
chain in MATLAB has detected two objects within the scene of the defined
test scenario, whose object classes, contours as well as distance information
starting from the front-mid radar sensor have been inserted into the image.

In addition, a 2D bounding box in pixel starting from the
upper left corner is specified, which indicates in which image
area in pixels the detected object is located. For each detected
object, the object mask is saved as a bitmap with the same
resolution as the original image and a confidence score is
given, which indicates the probability of belonging to the
particular object class. Comparing the maximum number of
lidar points that can ideally occur within the object mask
with the lidar points actually present within the object mask
after merging camera and lidar data, a quality score can be
determined. For a detailed description of the object property
determination, the reader is referred to [5] and [6].

IV. SYNCHRONIZATION AND SENSOR CALIBRATION

For a meaningful evaluation of the recorded data, it is essen-
tial to calibrate the sensors to each other and to synchronize
them in time. To avoid deviations between measurement days,
the sensor system was calibrated each day before start of
recording using a checkerboard and the toolboxes available
in MATLAB. Both the raw data of the calibration process and
the raw data of all experiments are available on request.
To synchronize the radar with our reference system (lidar
and cameras), a software trigger method was implemented.
The reference system is synchronized internally by a HW
trigger controller. The lidar sensor generates an electrical
signal each time it has completed one full rotation, which
is then transmitted to the camera with a delay that can be
adjusted using the trigger controller. When the camera API
detects the trigger event, the software trigger management
thread processes the signal for each connected sensor. If a
radar data acquisition thread detects the trigger event, it starts
a measurement with the corresponding UDP command.
The sensors of the reference system were calibrated to each
other using the toolboxes in MATLAB for single [11] as
well as stereo camera [12] and lidar-camera [13] calibration.
The resulting matrices are stored in the result file, as is the
translation vector between the reference system and the front-
mid radar sensor.

V. SUMMARY AND FUTURE WORK

In this paper, we have presented a calibrated, rectified and
synchronized dataset for radar pattern recognition and other
algorithms in automotive environment with camera, lidar and
radar data. This work contributes to the further development
of automated and autonomous driving functions. In further
work, the object recognition could be optimized and extended
to other object classes. Furthermore, it would be conceivable
to implement a methodology that enables object annotation
with the aid of the lidar point cloud in order to create a more
robust data basis for the calculation of distances and angles.
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B. Annotations

For each detected object within the field of view of the
camera system, a distance in meters (mean and standard
deviation) as well as a horizontal and vertical angle range in
rad (mean and value to outer edge) is calculated under which
the test object occurs to the front-mid radar sensor. When
possible, this calculation was performed using both the stereo
camera system and the lidar data if enough lidar points lay
within the object mask. Every detected object with a maximum
distance of 40 meters was considered, objects further away
or without determinable distance were filtered out. The left
camera of the stereo camera system is used as the origin of
the calculations. The outcomes of the property computation
were then transformed to the front-mid radar sensor using the
measured translation between the camera and radar. Fig. 5
shows the result of an exemplary test scenario.

Fig. 5. Exemplary Test Scenario with Detected Objects. The processing
chain in MATLAB has detected two objects within the scene of the defined
test scenario, whose object classes, contours as well as distance information
starting from the front-mid radar sensor have been inserted into the image.

In addition, a 2D bounding box in pixel starting from the
upper left corner is specified, which indicates in which image
area in pixels the detected object is located. For each detected
object, the object mask is saved as a bitmap with the same
resolution as the original image and a confidence score is
given, which indicates the probability of belonging to the
particular object class. Comparing the maximum number of
lidar points that can ideally occur within the object mask
with the lidar points actually present within the object mask
after merging camera and lidar data, a quality score can be
determined. For a detailed description of the object property
determination, the reader is referred to [5] and [6].

IV. SYNCHRONIZATION AND SENSOR CALIBRATION

For a meaningful evaluation of the recorded data, it is essen-
tial to calibrate the sensors to each other and to synchronize
them in time. To avoid deviations between measurement days,
the sensor system was calibrated each day before start of
recording using a checkerboard and the toolboxes available
in MATLAB. Both the raw data of the calibration process and
the raw data of all experiments are available on request.
To synchronize the radar with our reference system (lidar
and cameras), a software trigger method was implemented.
The reference system is synchronized internally by a HW
trigger controller. The lidar sensor generates an electrical
signal each time it has completed one full rotation, which
is then transmitted to the camera with a delay that can be
adjusted using the trigger controller. When the camera API
detects the trigger event, the software trigger management
thread processes the signal for each connected sensor. If a
radar data acquisition thread detects the trigger event, it starts
a measurement with the corresponding UDP command.
The sensors of the reference system were calibrated to each
other using the toolboxes in MATLAB for single [11] as
well as stereo camera [12] and lidar-camera [13] calibration.
The resulting matrices are stored in the result file, as is the
translation vector between the reference system and the front-
mid radar sensor.

V. SUMMARY AND FUTURE WORK

In this paper, we have presented a calibrated, rectified and
synchronized dataset for radar pattern recognition and other
algorithms in automotive environment with camera, lidar and
radar data. This work contributes to the further development
of automated and autonomous driving functions. In further
work, the object recognition could be optimized and extended
to other object classes. Furthermore, it would be conceivable
to implement a methodology that enables object annotation
with the aid of the lidar point cloud in order to create a more
robust data basis for the calculation of distances and angles.
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Figure 4: Dataset Structure in HDF5 Format

3.2. Annotations 
For each detected object within the field of view of the camera 
system, a distance in meters (mean and standard deviation) as well 
as a horizontal and vertical angle range in rad (mean and value 
to outer edge) is calculated under which the test object occurs to 
the front-mid radar sensor. When possible, this calculation was 
performed using both the stereo camera system and the lidar data 
if enough lidar points lay within the object mask. Every detected 

object with a maximum distance of 40 meters was considered, ob-
jects further away or without determinable distance were filtered 
out. The left camera of the stereo camera system is used as the 
origin of the calculations. The outcomes of the property computa-
tion were then transformed to the front-mid radar sensor using the 
measured translation between the camera and radar. Fig. 5 shows 
the result of an exemplary test scenario.

Figure 5: Exemplary Test Scenario with Detected Objects

The processing chain in MATLAB has detected two objects within 
the scene of the defined test scenario, whose object classes, con-
tours as well as distance information starting from the front-mid 
radar sensor have been inserted into the image.

In addition, a 2D bounding box in pixel starting from the upper left 
corner is specified, which indicates in which image area in pixels 
the detected object is located. For each detected object, the object 

mask is saved as a bitmap with the same resolution as the original 
image and a confidence score is given, which indicates the prob-
ability of belonging to the particular object class. Comparing the 
maximum number of lidar points that can ideally occur within the 
object mask with the lidar points actually present within the object 
mask after merging camera and lidar data, a quality score can be 
determined. For a detailed description of the object property deter-
mination, the reader is referred to [5,6].
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4. Synchronization and Sensor Calibration
For a meaningful evaluation of the recorded data, it is essential to 
calibrate the sensors to each other and to synchronize them in time. 
To avoid deviations between measurement days, the sensor system 
was calibrated each day before start of recording using a checker-
board and the toolboxes available in MATLAB. Both the raw data 
of the calibration process and the raw data of all experiments are 
available on request. To synchronize the radar with our reference 
system (lidar and cameras), a software trigger method was imple-
mented. The reference system is synchronized internally by a HW 
trigger controller. The lidar sensor generates an electrical signal 
each time it has completed one full rotation, which is then trans-
mitted to the camera with a delay that can be adjusted using the 
trigger controller. When the camera API detects the trigger event, 
the software trigger management thread processes the signal for 
each connected sensor. If a radar data acquisition thread detects the 
trigger event, it starts a measurement with the corresponding UDP 
command. The sensors of the reference system were calibrated to 
each other using the toolboxes in MATLAB for single as well as 
stereo camera and lidar-camera calibration [11,12,13]. The result-
ing matrices are stored in the result file, as is the translation vector 
between the reference system and the frontmid radar sensor.

5. Summary and Future Work
In this paper, we have presented a calibrated, rectified and synchro-
nized dataset for radar pattern recognition and other algorithms in 
automotive environment with camera, lidar and radar data. This 
work contributes to the further development of automated and 
autonomous driving functions. In further work, the object recog-
nition could be optimized and extended to other object classes. 
Furthermore, it would be conceivable to implement a methodology 
that enables object annotation with the aid of the lidar point cloud 
in order to create a more robust data basis for the calculation of 
distances and angles.
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