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Abstract
Approximations of non-integer order elements as Warburg impedance or constant phase element (CPE) are frequently made with 
equivalent electrical circuits. We can show that 5 various models are impedances mathematically equivalent for their frequency 
behavior. However, if we look closer at these models according to their various properties: model available in all cases, number 
of optimum, transient simulation, integration time, it seems that only one of the 5 models have all the qualities. This result is 
fundamental for the good choice of a model used for transient identification or for on-line identification.
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Introduction
In the beginning of the XXth century, the electricians have de-
veloped different filters, which realize various transfer functions. 
We can particularly note the structures of Foster and Cauer [1, 
2]. O. Brune gives in 1931 a table of different LC circuits which 
contains four circuit solutions (2 Foster’s from and 2 Cauer’s 
from) “To find the necessary and sufficient conditions to be sat-
isfied by the impedance function of a finite passive network, and 
to construct a network corresponding to any function satisfying 
these conditions.” The modelling by equivalent networks being 
more and more used in other domains as the electrochemistry, 
thermal science  or in mechanics with linear viscoelastic sys-
tems [3-5]. For different boundary conditions for the frequency 
F = 0 and F = ∞, these models are classified for RC and RL 
circuits (see Appendix 1 of [6]). So, this paper is the following 
of [6]. The objective of this paper is to present the differences 
between equivalent models having exactly the same impedance 
and boundary conditions.

Equivalent Models of an Impedance
The different models
The four different circuits correspond to different developments 
of the impedance Z (transfer function), but there is only one 
factorized expression. For each circuit we can found a set of 
parameters, which give the same factorized transfer function. 
Therefore, these four circuits are all equivalent to the factorized 
impedance (Figure 1). 

For different models, the names of components are the same but 
to have equivalent the values of components must be different, 
see for example the results of Table 1.

Figure 1: Different equivalent models used in EIS as Cauer’s se-
ries, Cauer’s parallel, Foster’s series, Foster’s parallel and their 
same factorised form.
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The transformation of the impedance Z from a circuit form to a 
factorised expression can be easily done with the “factor” func-
tion of Maple software.

Identification Procedure
The principle of the parameter optimization is presented on Fig-
ure 2. An algorithm of optimization tries to minimize the dis-
tance between the measures and the model by adjusting the pa-
rameters. The “fminsearch” function in the optimization toolbox 
of the MatLab software is of good used.

The distance is the RMS value of the difference between the 
measurements and the model for all frequency points.

Figure 2: Principe of identification used in electrochemical im-
pedance spectroscopy (EIS).

Identification Procedure
The optimization of the parameters can be made for all the var-
ious circuits, even also for factorised impedance. Figure 3 give 

the results of parameters optimisation on a Nyquist plot. We can 
see the good accordance between the measures (black) and the 
5 models which give the same curve (blue) for N=6 (13 param-
eters).

Figure 3: N=6 Comparison of the models obtained by optimiza-
tion, the 5 same curves superposed (blue) for Cauer’ series, Cau-
er’s parallel, Foster’s series, Foster’s parallel and factorized im-
pedance with regard to measures (Ferri-Ferro solution) (black).
Results
The Table I gives for the criterion and parameters the values ob-
tained by optimisation. Besides stacked curves we obtain exact-
ly the same criterion for the 5 models, which confirm the total 
equivalence of the 5 models. The data are presented here for 
N=6 (13 parameters), but we can go easily until N=10 (21 pa-
rameters).

Foster’s series Foster‘s parallel Cauer’s series Cauer’s parallel Factorised impedance
N = 6 N = 6 N = 6 N = 6 N = 6

Criterion 2.5964 E+03 2.5964 E+03 2.5964 E+03 2.5964 E+03 Criterion 2.5964 E+03
ΣR 264.80 264.80 A.ΠZ/ΠP 264.80
1/Σ(1/R) 44.909 44.909
R0 44.909 264.80 44.909 264.80 A 44.909
C1 1.6776 E-03 1.3896 E-04 1.1648 E-06 6.9952 E-04 Z1 1.1180
R1 142.53 6436.4 14.081 361.58 P1 1.0648
C2 9.3182 E-04 4.8043 E-04 1.7073 E-05 1.1241 E-03 Z2 9.3738
R2 28.187 222.04 9.0613 285.63 P2 4.1817
C3 6.2168 E-02 7.3295 E-05 1.5691 E-04 6.1822 E-05 Z3 53.614
R3 15.105 254.47 22.347 316.97 P3 38.072
C4 2.2024 E-04 6.4685 E-06 5.2160 E-04 5.5425 E-06 Z4 421.71
R4 13.013 366.59 58.354 446.63 P4 348.91
C5 1.2629 E-06 2.9706 E-07 1.4233 E-03 3.4044 E-07 Z5 7784.85
R5 12.072 432.42 108.23 338.08 P5 6738.1
C6 1.6534 E-05 5.8177 E-08 1.1733 E-01 5.5398 E-08 Z6 83564
R6 8.9760 205.69 7.8131 258.247 P6 65588

Table 1: Results of parameters identification for the 5 models of “R+Tanh” N=6 (7 decades)
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The values of R0 for Foster’s series, Cauer’s series correspond 
to the value of Z for F=∞ . The values of 1/Σ1/R (parallel resis-
tances) for Foster’s parallel and Cauer’s parallel correspond to 
the value of Z for F=∞. 

The values of R0 for Foster’s parallel and Cauer’s parallel cor-
respond to the value of Z for  F=0.The values of ΣR (series re-
sistances) for Foster’s series, Cauer’s series correspond to the 
value of Z for F=0. 

The value of A of factorized impedance correspond to the value 
of Z for F=∞ (in green). The values of A. (Z1*…*Z6)/(P1*…
*P6) correspond to the value of Z for F=0 (inblue). So the values 
of the boundary conditions appear directly
to the reading of the table of parameters. 

We optimize on a window of measures between [Fmin,  Fmax]. 
But if the impedances are mathematically equivalent on the in-
terval between [Fmin,  Fmax], there are also for [0, ∞], and thus 
for the asymptotic behaviors. 

It is not easy to give an answer to the question: of these 5 models 
which converge best? But we already feel that in high  orders 
lake N=10 that it is the series models which have an ease.

Identification of Models from Transient
The identification method used
It is necessary to proceed to an identification of parameters. That 
corresponds to minimizing the RMS gap from behavior between 
the transient and the answer of the model obtained by
simulations as presented on the plan of the Figure 4.

Figure 4: Principle of identification parameters used with tran-
sient

Contrary to the spectral measures, which contain rich informa-
tion with all the frequencies, the transient cannot go beyond half 
of the frequency of sampling if we apply the theorem of Shan-

non. Thus, the transient is less rich in high frequencies than the 
spectroscopy analysis. For this reason, we go only to the order 
5 of the models to make an identification of parameters. The 
programs of simulation for all 5 different models are given in 
Appendix.

The measures give the current and voltage curves of the Fig. 5. 
So, this electrochemical system is not linear, and we will just 
consider the linear part around the polarization point at 100μA. 
Furthermore, to simulate transients and identify a model, we 
have the problem with the initial value of the voltage of capaci-
tors. The simplest is to leave with a zero voltage. We shall thus 
make the translations to arrive at the current and voltage for 
identification on Figure 5. The identified model being linear it 
changes nothing the obtained results.

The Appendix shows the simplicity of simulation for certain 
models (Foster’s series and Cauer’s series) to see the complexity 
for others (Foster’s parallel, Cauer’s parallel and factorized im-
pedance), we shall take in identification only Foster’s series and 
of Cauer’s series to compare the obtained results.
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Figure 5: Direct measures and corrected measures for identification (100μA±25μA)

Results for Foster’s series models
The results of the identification from a transient are presented 
in the Table 2 below. We find a value of 265Ω for the total re-

sistance of the solution in direct current. In high frequencies the 
value of the resistance R0 converges well on 70Ω from N=3 to 5. 
The value of the criterion does not decrease after N=3.

Table 2: Results of Identification for Foster’s Series Models (Transient Data 100μA ±25μA)

100μA ±25μA N = 0 N = 1 N = 2 N = 3 N = 4 N = 5

Criterion 9.7753  E-08 3.2456  E-08 3.1816  E-08 3.1808  E-08 3.1808  E-08 3.1808  E-08
ΣR 264.85 265.32 265.46 265.46 265.46 265.46
R0 264.85 121.62 97.162 71.727 69.935 69.507
C1 2.2291  E-03 7.8425  E-03 1.8256  E-03 1.8256  E-03 1.8256  E-03

R1 143.70 57.267 110.07 110.08 110.08
C2 1.7742  E-03 8.0219  E-03 8.0246  E-03 8.0246  E-03
R2 111.03 56.171 56.156 56.156
C3 43199. 42220. 42173.
R3 27.493 27.867 27.885
C4 1.7308  E-04 1.5540  E-04
R4 1.4170 1.4490
C5 5.9339  E-04
R5 0.37844

We can put these results in the form of factorized impedance. The first time constant (P1) is particularly well identified and have 
particularly constant whatever is the order N of the model.



      Volume 5 | Issue 1 | 318Adv Theo Comp Phy, 2022 www.opastonline.com

Table 3: Poles and Zeros of the Identified Impedance by Foster’s Series Models (Transient Data 100μA ±25μA)

N = 1 N = 2 N = 3 N = 4 N = 5

Criterion 3.2456   E-08 3.1816   E-08 3.1808   E-08 3.1808  E-08 3.1808   E-08

A 121.62 97.162 71.728 69.935 69.507

P1 3.1218 2.2265 2.2192 2.2190 2.2190

Z1 6.8103 2.6172 2.5966 2.5963 2.5963

P2 5.0761 4.9761 4.9757 4.9758

Z2 11.7987 11.104 11.103 11.103

P3 84.186 84.990 85.031

Z3 119.32 121.07 121.16

P4 4077.1 4440.7

Z4 4160.6 4450.2

P5 4453.0

Z5 4561.4

We can notice on Figure 6 that we have no asymmetry between the rise and the descent, thus we have a good overlapping between 
the measures and the identified model.

Figure 6: Comparison of transient measures (Black) and simulated models (Red) for different orders of Foster’s series models at 
100μA ±25μA).

Results for Cauer’s Series Models
The results of the identification from a transient are presented in 
the Table 4 and Table 5 below. We find the same value of 265Ω 

for the total resistance of the solution in direct current. Contrary 
to Foster models, the value of the criterion for Cauer’s models 
continues to decrease for N=4 and N=5.
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Table 4: Results of Identification for Cauer’s Series Models (Transient Data 100μA ±25μA)

100μA  ±25μA N = 0 N = 1 N = 2 N = 3 N = 4 N = 5
Criterion 9.7753   E-08 3.2456    E-08 3.1816    E-08 3,1807    E-08 2.6752   E-08 1.1005    E-08
ΣR 264,85 265.32 265.46 265.46 265.46 265.46
R0 264,85 121.62 97.162 71.916 67.506 52.145
C1 2.2291    E-03 1.4468    E-03 3.3757    E-04 3.1313   E-06 1.1772    E-06
R1 143.70 151.88 45.184 3.7682 10.892
C2 2.4522    E-02 1.3272    E-04 3.2423   E-04 1.3454    E-05
R2 16.417 133.68 45.305 8.6649
C3 2.7421    E-02 1.3302   E-03 3.2613    E-04
R3 14.678 134.13 24.883
C4 2.7243   E-02 4.9361    E-04
R4 14.746 89.113
C5 3186.7
R5 79.653

We can put these results in the form of factorized impedance. 
The first time constant (P1) is particularly well identified and 
constant for N+2 to N=4. P1 varies for N=5, what can be a sign 
of over-parameterization. 

For N=4, time constant P4 and Z4 is beyond the 5 kHz of Shan-
non (2π x 5000 Hz = 31415 rad/s) but can have an influence 
below 5 kHz. It's the same for P5 and Z5 in the case of N=5.

Table 5: Poles and Zeros of the Identified Impedance by Cauer’s Series Models (Transient Data 100μA ±25μA)

100μA  ±25μA N = 1 N = 2 N = 3 N = 4 N = 5
Criterion 3.2456    E-08 3.1816    E-08 3,1807    E-08 2.6752    E-08 1.1005    E-08
A 121.621 97.1622 71.9169 67.5064 52.1453
P1 3.1218 2.2265 2.2153 2.2189 2.9408
Z1 6.8103 2.6172 2.5905 2.5962 5.2615
P2 5.0761 4.9655 4.9754 17.1463
Z2 11.7987 11.0697 11.1023 31.9559
P3 83.4460 85.1841 209.324
Z3 118.156 121.642 234.824
P4 85568. 8173.41
Z4 90255. 9464.78
P5 85569.
Z5 1.0052    E+5

The transient responses for Cauer’s series models are identical 
to that of Fig. 6 in the case of Foster's series models.

Synthesis
From N=0 to N=3 the solutions found by both models arrive 
everything at the same criterion. The impedance factorization of 
allows to compare both models which we find identical.

Although the calculations are more or less similar between Fos-
ter and Cauer, we notice a faster convergence with Cauer’s se-
ries with regard to Foster’s series. For N=4 and N=5 the model 
of  Cauer’s series allows to find a solution with a better criterion 
while Foster’s series who does not progress any more. For N=4 
and N=5 Foster's model does not anymore manage to improve 
the criterion while the Cauer’s model still arrives there.
In Foster’s models, the different RC cells (Rx, Cx) are in se-

ries or in parallel. Therefore, if we make permutations of the 
positions between RC cells, we do not chance the value of the 
impedance. We can say that the structures of these circuits are 
not ordered. We can have different sets of parameters [R0, C1, 
R1, … , CN, RN] corresponding to the same circuit. Therefore, 
to compare sets of parameters we must and have to order its.

However, a major problem is that the possible number of permu-
tations increases with the order N as N! (Factorial N). If there is 
an optimum solution, it exists there then N! other identical solu-
tions by permutations. That can be very disturbing for a program 
of optimization. Also, if there is local optima, their number is 
also multiplied by N!. When the order N increase the density of 
optima also increase.

In Cauer’s models, we cannot exchange the elements without 
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change the impedance. We can say that these structures of cir-
cuits are ordered. Therefore, to compare sets of parameters we 
must not have to order it. The optimum or the local optima re-
main in this case unique. Which is already the big advantage of 
the models of Cauer’s on Foster's models.

The number of optima does not increase and we have a better 
sensitivity.

Conclusion
It is necessary to see electrochemical spectroscopy impedance as 
a tool of metrology of great precision. 

The identification from a transient is necessarily less rich than 
the electrochemical spectroscopy impedance (EIS) in high fre-
quencies. However, the weak point of the EIS is for the very 
low frequencies, and there the identification from a transient can 
turn out to be an excellent method. Thus, every method has its 
domain of preference: the transient measures for the very
low frequencies, the EIS for high frequencies. 

The financial costs of both methods are not comparable, and the 
advantage is unmistakably to the transient measures. We can 
also see the EIS as a tool of laboratory and the analysis of tran-
sitory measures as tool of the ground. 

This study thus allowed us to see clearly there more between 
these various models. On five possible equivalent modellings, 
this study highlights the particular interest of some ones. 

The factorized impedance is a very elegant method to obtain a 
spectral model decomposed into poles and zeros. However, the 
factorized impedance leads to heavy calculations to obtain the 
algorithm of simulation by its Z transform. For the factorized 
impedance, the evolution of the voltage V(n) at the step n is a 
function only of this previous voltage to the steps n-1, n-2, n-3 
and current at the steps n, n-1, n-2 and n-3. There is no internal 
variable in the calculation. However, with the increase of the 
order the calculations of simulation quickly become very heavy.

This complexity does not seem to us compatible with an identi-
fication of parameters from transient response. A use in parame-

ter identification of the simulations of the factorized impedance 
model is not a good choice.

For the four models under circuit forms, capacitors are of use 
as internal variables to the calculations. The calculated voltage 
V(n) at the step n is a unction only of the current I(n) in the step 
n and voltage of capacitors at the step n-1.

The transient calculations are more complex for parallel circuits 
than for series circuits. Therefore, we looked more attentively to 
the series models. 

Among the “series” circuits, Foster's models have the inconve-
nience to do not exist with all boundary conditions, while the 
Cauer’s models exist with all boundary conditions (see [6]). 

In the Foster’s models, the different stages RC in series or in 
parallel can be inverted without changing the behaviors of the 
impedance or the transfer function. We can say that the struc-
tures of these circuits are not ordered. Therefore, to compare a 
set of parameters we must and have to order it.

For a factorized impedance, the poles can switch between them 
and the zeros also, without changing the value of the impedance. 
We can say that the time constants of these functions are not 
ordered. Therefore, to compare a set of parameters we must and 
have to order it.

In the Cauer’s models, we cannot exchange the elements without 
change the behaviors or the impedance. We can say that these 
structures of circuit are ordered. Therefore, to compare a set of 
parameters we must not have to order it. The Cauer’s series cir-
cuits are a development from infinite frequency and we improve 
the model in high frequency by adding elements at the begin-
ning.

Furthermore, in the use it is the Cauer’s series models that shows 
itself the most effective. The Cauer’s Series models have proved 
in optimization more sensitive to find of better optimum with 
regard to Foster's series models. Thus, for all these reasons, there 
are Cauer’s series models that have our preference.

Table 6: Comparison of Difference Equivalent Models

Models Available in all cases Number of optimum Transient simulation Integration time Balance sheet

Foster’s series No N! Easy Variable
Foster’s parallel No N! Difficult Variable
Cauer’s series Yes 1 Easy Variable The Best!
Cauer’s parallel Yes 1 Difficult Variable
Factorized impedance Yes N! Difficult Constant

Before this study, we have 4 different equivalent circuit models 
and their factorized form. Now we can compare these models for 
the number of optimum and the difficulty to calculate a transient 
with the Table 6.

The result is that the Cauer’s series model has the best properties 
and can be used easily in all cases of boundary conditions and 
for impedance and transient identifications.
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By finding a good compromise between:
• Levels enough low of steps of 50μA giving variations of 

voltage of 10mV order, allow to have a linear approxima-
tion of the small signals.

• Levels enough brought up compared with the level of the 
noise allow to the measures to have signals rich in infor-
mation.

It is possible to obtain results in identification of impedances 
from transients, which can be compared with the measures by 
EIS. The obtained results are remarkable and
show all the interest of this method.

This study thus allows having good bases to go towards the de-
velopment of the on-line identification for the follow-up of pa-
rameters on real electrochemical processes.

Appendix
Comparison of 5 equivalent models for transient simulations
We shall give here as example the various calculations obtained 
for 5 various models corresponding to boundary conditions Z(0) 
= R0 Z(∞) = R∞ and for N=3 (7 parameters).

Example of lines of program for MatLab calculation
% Response to a step of current
% Initialization
 dT = 0.1;
 VC1= 0;
 VC2= 0;
 VC3= 0;
 VC0(1)=V(1) ;
 TC1=0;

% Loop
 for k = 1:500
  IC1 = (I(k)*R1 – VC1)/R1;
  IC2 = (I(k)*R2 – VC2)/R2;
  IC3 = (I(k)*R3 – VC3)/R3;
  VC1 = VC1 + dT*IC1/C1;
  VC2 = VC2 + dT*IC2/C2;
  VC3 = VC3 + dT*IC3/C3;
  TC1 = TC1 + dT;
  VC0(k+1) = R0*I(k) + VC1 + VC2 + VC3;
end;

Synthesis
For this Foster’s series model, the calculations are simple and the 
generalization when we increase the order is also very simple.

Example of lines of program for MatLab calculation
% Response to a step of current
% Initialization
  dT = 0.1;
  VC1=V(1);
  VC2=V(1);
  VC3=V(1);
  VC0(1)=V(1);
  TC1=0;
  deno = R0*R1*R2 + R0*R1*R3 + R0*R2*R3 + R1*R2*R3;

% Loop
 for k = 1:500
 I1 = (I(k)*R0*R2*R3 – (R0*R2+R0*R3+R2*R3)*VC1 + 
R0*R3*VC2 +
  R0*R2*VC3)/deno;
  I2 = (I(k)*R0*R1*R3 + R0*R3*VC1 –  
(R0*R1+R1*R3+R0*R3)*VC2 +
  R0*R1*VC3)/deno;
  I3 = (I(k)*R0*R1*R2 + R0*R2*VC1 + R0*R1*VC2 –
  (R0*R1+R1*R2+R0*R2)*VC3)/deno;
  VC1 = VC1 + dT*I1/C1;
  VC2 = VC2 + dT*I2/C2;
  VC3 = VC3 + dT*I3/C3;
  VC0(k+1) = R0*(I(k)*R1*R2*R3+R1*R2*VC3+R1*R3*VC2 +
  R2*R3*VC1) /deno;
  TC1 = TC1 + dT;
end;

Synthesis
For this Foster's parallel model, the calculations quickly become 
complicated when the order increases. It appears a common de-
nominator, which corresponds to the global matrix resolution.
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Example of lines of program for MatLab calculation
% Response to a step of current
% Initialization
dT = 0.1;
 VC3= V(1);
 VC2= V(1) ;
 VC1= V(1);
 VC0(1)= V(1);
 TC1 = 0;

% Loop
 for k = 1:500
  IR1 = (VC1-VC2)/R1;
  IR2 = (VC2-VC3)/R2;
  VC3 = VC3 + dT*((IR3-VC3/R3)/C3);
  VC2 = VC2 + dT*((IR1-IR2)/C2);
  VC1 = VC1 + dT*((I(k)-IR1)/C1);
  TC1 = TC1 + dT;
  VC0(k+1) = VC1 + R0*I(k);
end;

Synthesis
For this Cauer’s series model the calculations are simple and the 
generalization when we increase the order is also very simple.

Cauer’s parallel model: “Z(0) = R0 Z(∞) = R∞” 7 parame-
ters:

Example of lines of program for MatLab calculation

% Response to a step of current
% Initialization
 dT = 0.1;
 VC1 = 0;
 VC2 = 0;
 VC3 = 0;
Deno = (R0*R1*R2 + R0*R1*R3 + R0*R2*R2 + R1*R2*R3);

% Loop
 for k = 1:500
  I1 = (I(k)*R1*R2*R3 + R1*R2*(VC1+VC2+VC3) +
  R1*R3*(VC1+VC2) + R2*R3*VC1)/Deno;
  I2 = (I(k)*R0*R2*R3 + R0*R2*(VC2+VC3) + R0*R3*VC3 –
  R2*R3*VC1) /Deno;
  I3 = (I(k)*R0*R1*R3 + R0*R1*VC3 – R0*R3*VC2 –
  R1*R3*(VC1+VC2)) /Deno;
  VC1 = VC1 + dT*(I(k) – I1)/C1;
  VC2 = VC2 + dT*(I(k) – I1 – I2)/C2;
  VC3 = VC3 + dT*(I(k) – I1 – I2 – I3)/C3;
  VC0(k)= R0*(I(k)*R1*R2*R3 + R1*R2*(VC1+VC2+VC3) +
  R1*R3*(VC1+VC2)+R2*R3*VC1)/Deno;
end;

Synthesis
For this Cauer's parallel model, the calculations quickly become 
complicated when the order increases. It appears a common de-
nominator, which corresponds to the global matrix resolution.

Factorised impedance model: “Z(0) = R0 Z(∞) = R∞”
The impedance is written in its factorized form letting appear the 
poles and the zeros.

Example of lines of program for MatLab calculation
% Response to a step of current
% Initialization
 dT = 0.1;
     v(1) = A*(1+Z1*dT)*(1+Z2*dT)*(1+Z3*dT)*I(1)
     /((1+P1*dT)*(1+P2*dT)*(1+P3*dT));
     v(2) = (((1+P1*dT)*(1+P2*dT) + (1+P1*dT)*(1+P3*dT) +
     (1+P2*dT)*(1+P3*dT))*v(1) +
     A*(1+Z1*dT)*(1+Z2*dT)*(1+Z3*dT)*I(2) -
   A*((1+Z1*dT)*(1+Z2*dT)+(1+Z1*dT)*(1+Z3*dT)+(1+Z2* 
dT)*(1+Z3*
     dT))*I(1)) /((1+P1*dT)*(1+P2*dT)*(1+P3*dT));
     v(3) = (((1+P1*dT)*(1+P2*dT) + (1+P1*dT)*(1+P3*dT) +
     (1+P2*dT)*(1+P3*dT))*v(2) - ((P1+P2+P3)*dT+3)*v(1) +
A * ( ( 1 + Z 1 * d T ) * ( 1 + Z 2 * d T ) * ( 1 + Z 3 * d T ) * I ( 3 ) - 
((1+Z1*dT)*(1+Z2*dT)
   +(1+Z1*dT)*(1+Z3*dT) + (1+Z2*dT)*(1+Z3*dT))*I(2) +
   ((Z1+Z2+Z3)*dT+3)*I(1))) / ((1+P1*dT)*(1+P2*dT)*(1+P3
*dT));
% Loop
for n = 4:500
     v(n) = (((1+P1*dT)*(1+P2*dT) + (1+P1*dT)*(1+P3*dT) +
     (1+P2*dT)*(1+P3*dT))*v(n-1) - ((P1+P2+P3)*dT+3)*v(n-2) 
+ v(n-3) 
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A*((1+Z1*dT)*(1+Z2*dT)*(1+Z3*dT)*I(n) - 
((1+Z1*dT)*(1+Z2*dT) +
(1+Z1*dT)*(1+Z3*dT) + (1+Z2*dT)*(1+Z3*dT))*I(n-1) +
((Z1+Z2+Z3)*dT+3)*I(n-2) - I(n-3)))
/((1+X(3)*dT)*(1+X(5)*dT)*(1+X(7)*dT));
End

Synthesis
The expression of the factorized impedance has certain simplic-
ity. The fact of revealing time constant in the expression is of an 
attractive elegance.

However, at the third order, the calculations become very com-
plicated and to see inextricable in the order 4 and beyond. That 
is not compatible with the need of very fast simulations to make 
of the identification of parameters.
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