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Abstract
The Double-Sided Laplace Transform (DSLT) and the Fourier Transform (FT) are the same at s=jω, but the Unit Step function 
(Heaviside Function), U(t) does not have the same DSLT and FT at s=jω. This is now solved. It will be shown that the DSLT 
of f   is the Single-Sided Laplace transform (SSLT) of f(t). With the use of generalized function (in particular the complex 
delta function and its derivatives), the DSLT can be used where ever SSLT and FT are used in engineering applications. The 
SSLT of an even rational function is shown to be odd, and visa-versa. The problem of the region of convergence in the “s” 
complex plane is eliminated by including the complex delta function for solving divergent DSLT integrals. The solution for 
solving divergent integrals are already well established for solving divergent integrals for FT by using the real delta function. 
An example is provided for solving the Phase Retrieval problem exactly by measuring the signal's even and odd components 
autocorrelation functions. This has not been possible with the use of the SSLT because one is then only considers cases for 
time greater than zero, whereas an even and odd function in time needs to be both positive and negative. 

Introduction
The DSLT F(s) of a function f(t) and it's FT are one and the 
same at s=jω and yet the DSLT and FT of the Unit Step function 
(Heaviside Function) are different at s=jω. As stated by Professor 
Bracewell on page 219 of reference 1, "there is a profound 
difference in application between the two transforms." That is 
why the Fourier Transform (FT) and the Laplace Transform (LT) 
are taught as independent separate subjects in universities. This 
paper unifies the two subjects under one subject, the Double-
Sided Laplace Function (DSLT). This was not possible up to 
now because the complex delta function is not all that well 
appreciated [1]. The complex delta function makes it possible 
to solve divergent integrals. The solution for solving divergent 
integrals is already well established in Fourier transforms using 
the real delta function. This is now carried over to the DSLT 
by including the complex delta function, which has not been 
fully appreciated for its applications. At present FT had more 
functions that could be transformed than LTs, but now with this 
inclusion of the complex delta function, all functions that have 
FT will also have DSLT, simply by replacing “s” with jω and 
vice-versa [2-8]. 

Under present knowledge, there was no LT for F(t)—the inverse 
LT—where as in FT, the inverse for FT is 2πF (-ω). The theory 
of symmetry [Ref 2. p 14] is now carried over to DSLT where it 
will be shown that the DSLT of F(t) is 2πjf(-s). 

II. Mathematical inconsistency between the FT and LT using 
present knowledge      

The FT of U(t), the Unit Step Function, is now 

Yet the DSLT of U(t) is given as     , but at the s=jω it is simply    
     for FT. That is the delta term that is missing. In fact, the 
complex delta function πjδ(s) is the one absent. 

The DSLT of U(t) is derived as follows:      
The Unit Step Function U(t) is composed of two components: 
 
     (1) 

Therefore, to find the DSLT of U(t) one needs to find the DSLT 
of Unity and sgn t. 
 
DSLT of Unity 
The DSLT of unity is given by: 

     (2)
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jω [See ref. 2, p. 37].  
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s, but at the s=jω 

it is simply 1
jω for FT. That is the delta term that is 

missing. In fact, the complex delta function πjδ(s) is 
the one absent. 
     The DSLT of U(t) is derived as follows: 
     The Unit Step Function U(t) is composed of two 
components: 
 

U(t) = 12 + sgn t
2  (1) 

     Therefore, to find the DSLT of U(t) one needs to 
find the DSLT of Unity and sgn t. 
 

The application of the Single Sided Laplace 
Transform and Fourier Transform embodied 
within Double Sided Laplace Transform by 

using generalized functions, eliminating 
regions of convergence restraints 

Roland Khera 

ABSTRACT—The Double-Sided Laplace Transform (DSLT) and the Fourier Transform (FT) are the same at s=jω, 
but the Unit Step function (Heaviside Function), U(t) does not have the same DSLT and FT at s=jω. This is now 
solved. It will be shown that the DSLT of f(t) sgn t

2   is the Single-Sided Laplace transform (SSLT) of f(t). With the use 
of generalized function (in particular the complex delta function and its derivatives), the DSLT can be used where 
ever SSLT and FT are used in engineering applications. The SSLT of an even rational function is shown to be odd, 
and visa-versa. The problem of the region of convergence in the “s” complex plane is eliminated by including the 
complex delta function for solving divergent DSLT integrals. The solution for solving divergent integrals are already 
well established for solving divergent integrals for FT by using the real delta function. An example is provided for 
solving the Phase Retrieval problem exactly by measuring the signal's even and odd components autocorrelation 
functions. This has not been possible with the use of the SSLT because one is then only considers cases for time 
greater than zero, whereas an even and odd function in time needs to be both positive and negative. 
 

I. Introduction 
     The DSLT F(s) of a function f(t) and it's FT are one 
and the same at s=jω and yet the DSLT and FT of the 
Unit Step function (Heaviside Function) are different 
at s=jω. As stated by Professor Bracewell on page 219 
of reference 1, "there is a profound difference in 
application between the two transforms." That is why 
the Fourier Transform (FT) and the Laplace Transform 
(LT) are taught as independent separate subjects in 
universities. This paper unifies the two subjects under 
one subject, the Double-Sided Laplace Function 
(DSLT). This was not possible up to now because the 
complex delta function is not all that well appreciated. 
[Ref 6. Appendix B, Vol. 1. page 370] The complex 
delta function makes it possible to solve divergent 
integrals. The solution for solving divergent integrals 
is already well established in Fourier transforms using 
the real delta function. This is now carried over to the 
DSLT by including the complex delta function, which 
has not been fully appreciated for its applications. 
     At present FT had more functions that could be 
transformed than LTs, but now with this inclusion of 
the complex delta function, all functions that have FT 
will also have DSLT, simply by replacing “s” with jω 
and vice-versa. 

     Under present knowledge, there was no LT for 
F(t)—the inverse LT—where as in FT, the inverse for 
FT is 2πF (-ω). The theory of symmetry [Ref 2. p 14] 
is now carried over to DSLT where it will be shown 
that the DSLT of F(t) is 2πjf(-s). 

II. Mathematical inconsistency between the FT 
and LT using present knowledge 

     The FT of U(t), the Unit Step Function, is now 
πδ(ω) + 1

jω [See ref. 2, p. 37].  

     Yet the DSLT of U(t) is given as 1
s, but at the s=jω 

it is simply 1
jω for FT. That is the delta term that is 

missing. In fact, the complex delta function πjδ(s) is 
the one absent. 
     The DSLT of U(t) is derived as follows: 
     The Unit Step Function U(t) is composed of two 
components: 
 

U(t) = 12 + sgn t
2  (1) 

     Therefore, to find the DSLT of U(t) one needs to 
find the DSLT of Unity and sgn t. 
 

The application of the Single Sided Laplace 
Transform and Fourier Transform embodied 
within Double Sided Laplace Transform by 

using generalized functions, eliminating 
regions of convergence restraints 

Roland Khera 

ABSTRACT—The Double-Sided Laplace Transform (DSLT) and the Fourier Transform (FT) are the same at s=jω, 
but the Unit Step function (Heaviside Function), U(t) does not have the same DSLT and FT at s=jω. This is now 
solved. It will be shown that the DSLT of f(t) sgn t

2   is the Single-Sided Laplace transform (SSLT) of f(t). With the use 
of generalized function (in particular the complex delta function and its derivatives), the DSLT can be used where 
ever SSLT and FT are used in engineering applications. The SSLT of an even rational function is shown to be odd, 
and visa-versa. The problem of the region of convergence in the “s” complex plane is eliminated by including the 
complex delta function for solving divergent DSLT integrals. The solution for solving divergent integrals are already 
well established for solving divergent integrals for FT by using the real delta function. An example is provided for 
solving the Phase Retrieval problem exactly by measuring the signal's even and odd components autocorrelation 
functions. This has not been possible with the use of the SSLT because one is then only considers cases for time 
greater than zero, whereas an even and odd function in time needs to be both positive and negative. 
 

I. Introduction 
     The DSLT F(s) of a function f(t) and it's FT are one 
and the same at s=jω and yet the DSLT and FT of the 
Unit Step function (Heaviside Function) are different 
at s=jω. As stated by Professor Bracewell on page 219 
of reference 1, "there is a profound difference in 
application between the two transforms." That is why 
the Fourier Transform (FT) and the Laplace Transform 
(LT) are taught as independent separate subjects in 
universities. This paper unifies the two subjects under 
one subject, the Double-Sided Laplace Function 
(DSLT). This was not possible up to now because the 
complex delta function is not all that well appreciated. 
[Ref 6. Appendix B, Vol. 1. page 370] The complex 
delta function makes it possible to solve divergent 
integrals. The solution for solving divergent integrals 
is already well established in Fourier transforms using 
the real delta function. This is now carried over to the 
DSLT by including the complex delta function, which 
has not been fully appreciated for its applications. 
     At present FT had more functions that could be 
transformed than LTs, but now with this inclusion of 
the complex delta function, all functions that have FT 
will also have DSLT, simply by replacing “s” with jω 
and vice-versa. 

     Under present knowledge, there was no LT for 
F(t)—the inverse LT—where as in FT, the inverse for 
FT is 2πF (-ω). The theory of symmetry [Ref 2. p 14] 
is now carried over to DSLT where it will be shown 
that the DSLT of F(t) is 2πjf(-s). 

II. Mathematical inconsistency between the FT 
and LT using present knowledge 

     The FT of U(t), the Unit Step Function, is now 
πδ(ω) + 1

jω [See ref. 2, p. 37].  

     Yet the DSLT of U(t) is given as 1
s, but at the s=jω 

it is simply 1
jω for FT. That is the delta term that is 

missing. In fact, the complex delta function πjδ(s) is 
the one absent. 
     The DSLT of U(t) is derived as follows: 
     The Unit Step Function U(t) is composed of two 
components: 
 

U(t) = 12 + sgn t
2  (1) 

     Therefore, to find the DSLT of U(t) one needs to 
find the DSLT of Unity and sgn t. 
 

The application of the Single Sided Laplace 
Transform and Fourier Transform embodied 
within Double Sided Laplace Transform by 

using generalized functions, eliminating 
regions of convergence restraints 

Roland Khera 

ABSTRACT—The Double-Sided Laplace Transform (DSLT) and the Fourier Transform (FT) are the same at s=jω, 
but the Unit Step function (Heaviside Function), U(t) does not have the same DSLT and FT at s=jω. This is now 
solved. It will be shown that the DSLT of f(t) sgn t

2   is the Single-Sided Laplace transform (SSLT) of f(t). With the use 
of generalized function (in particular the complex delta function and its derivatives), the DSLT can be used where 
ever SSLT and FT are used in engineering applications. The SSLT of an even rational function is shown to be odd, 
and visa-versa. The problem of the region of convergence in the “s” complex plane is eliminated by including the 
complex delta function for solving divergent DSLT integrals. The solution for solving divergent integrals are already 
well established for solving divergent integrals for FT by using the real delta function. An example is provided for 
solving the Phase Retrieval problem exactly by measuring the signal's even and odd components autocorrelation 
functions. This has not been possible with the use of the SSLT because one is then only considers cases for time 
greater than zero, whereas an even and odd function in time needs to be both positive and negative. 
 

I. Introduction 
     The DSLT F(s) of a function f(t) and it's FT are one 
and the same at s=jω and yet the DSLT and FT of the 
Unit Step function (Heaviside Function) are different 
at s=jω. As stated by Professor Bracewell on page 219 
of reference 1, "there is a profound difference in 
application between the two transforms." That is why 
the Fourier Transform (FT) and the Laplace Transform 
(LT) are taught as independent separate subjects in 
universities. This paper unifies the two subjects under 
one subject, the Double-Sided Laplace Function 
(DSLT). This was not possible up to now because the 
complex delta function is not all that well appreciated. 
[Ref 6. Appendix B, Vol. 1. page 370] The complex 
delta function makes it possible to solve divergent 
integrals. The solution for solving divergent integrals 
is already well established in Fourier transforms using 
the real delta function. This is now carried over to the 
DSLT by including the complex delta function, which 
has not been fully appreciated for its applications. 
     At present FT had more functions that could be 
transformed than LTs, but now with this inclusion of 
the complex delta function, all functions that have FT 
will also have DSLT, simply by replacing “s” with jω 
and vice-versa. 

     Under present knowledge, there was no LT for 
F(t)—the inverse LT—where as in FT, the inverse for 
FT is 2πF (-ω). The theory of symmetry [Ref 2. p 14] 
is now carried over to DSLT where it will be shown 
that the DSLT of F(t) is 2πjf(-s). 

II. Mathematical inconsistency between the FT 
and LT using present knowledge 

     The FT of U(t), the Unit Step Function, is now 
πδ(ω) + 1

jω [See ref. 2, p. 37].  

     Yet the DSLT of U(t) is given as 1
s, but at the s=jω 

it is simply 1
jω for FT. That is the delta term that is 

missing. In fact, the complex delta function πjδ(s) is 
the one absent. 
     The DSLT of U(t) is derived as follows: 
     The Unit Step Function U(t) is composed of two 
components: 
 

U(t) = 12 + sgn t
2  (1) 

     Therefore, to find the DSLT of U(t) one needs to 
find the DSLT of Unity and sgn t. 
 

The application of the Single Sided Laplace 
Transform and Fourier Transform embodied 
within Double Sided Laplace Transform by 

using generalized functions, eliminating 
regions of convergence restraints 

Roland Khera 

ABSTRACT—The Double-Sided Laplace Transform (DSLT) and the Fourier Transform (FT) are the same at s=jω, 
but the Unit Step function (Heaviside Function), U(t) does not have the same DSLT and FT at s=jω. This is now 
solved. It will be shown that the DSLT of f(t) sgn t

2   is the Single-Sided Laplace transform (SSLT) of f(t). With the use 
of generalized function (in particular the complex delta function and its derivatives), the DSLT can be used where 
ever SSLT and FT are used in engineering applications. The SSLT of an even rational function is shown to be odd, 
and visa-versa. The problem of the region of convergence in the “s” complex plane is eliminated by including the 
complex delta function for solving divergent DSLT integrals. The solution for solving divergent integrals are already 
well established for solving divergent integrals for FT by using the real delta function. An example is provided for 
solving the Phase Retrieval problem exactly by measuring the signal's even and odd components autocorrelation 
functions. This has not been possible with the use of the SSLT because one is then only considers cases for time 
greater than zero, whereas an even and odd function in time needs to be both positive and negative. 
 

I. Introduction 
     The DSLT F(s) of a function f(t) and it's FT are one 
and the same at s=jω and yet the DSLT and FT of the 
Unit Step function (Heaviside Function) are different 
at s=jω. As stated by Professor Bracewell on page 219 
of reference 1, "there is a profound difference in 
application between the two transforms." That is why 
the Fourier Transform (FT) and the Laplace Transform 
(LT) are taught as independent separate subjects in 
universities. This paper unifies the two subjects under 
one subject, the Double-Sided Laplace Function 
(DSLT). This was not possible up to now because the 
complex delta function is not all that well appreciated. 
[Ref 6. Appendix B, Vol. 1. page 370] The complex 
delta function makes it possible to solve divergent 
integrals. The solution for solving divergent integrals 
is already well established in Fourier transforms using 
the real delta function. This is now carried over to the 
DSLT by including the complex delta function, which 
has not been fully appreciated for its applications. 
     At present FT had more functions that could be 
transformed than LTs, but now with this inclusion of 
the complex delta function, all functions that have FT 
will also have DSLT, simply by replacing “s” with jω 
and vice-versa. 

     Under present knowledge, there was no LT for 
F(t)—the inverse LT—where as in FT, the inverse for 
FT is 2πF (-ω). The theory of symmetry [Ref 2. p 14] 
is now carried over to DSLT where it will be shown 
that the DSLT of F(t) is 2πjf(-s). 

II. Mathematical inconsistency between the FT 
and LT using present knowledge 

     The FT of U(t), the Unit Step Function, is now 
πδ(ω) + 1

jω [See ref. 2, p. 37].  

     Yet the DSLT of U(t) is given as 1
s, but at the s=jω 

it is simply 1
jω for FT. That is the delta term that is 

missing. In fact, the complex delta function πjδ(s) is 
the one absent. 
     The DSLT of U(t) is derived as follows: 
     The Unit Step Function U(t) is composed of two 
components: 
 

U(t) = 12 + sgn t
2  (1) 

     Therefore, to find the DSLT of U(t) one needs to 
find the DSLT of Unity and sgn t. 
 III. DSLT of Unity 

     The DSLT of unity is given by: 

F(s) = ∫ 1. e−st∞
−∞ dt = lim

R→∞
∫ e−stR

−R dt = 
 

(2) 

lim
R→∞

esR−e−sR

s  =  2 lim
R→∞

sinh (sR)
s  =  

 

 

2 lim
R→∞

sin(js)R
(js)  

 

 

     Let js = s1 so that (2) is equal to: 
 

2 lim
𝑅𝑅→∞

sin(s1R)
s1

 
(3) 

 
 
     But (3) is equal to 2πδ(s1). Here δ(s1) is the Dirac 
delta function as evidenced by [ref. 2, p. 280 and ref 6, 
p. 38].  
     Therefore, the DSLT of unity is 2πδ(js), an even 
function. In fact similar to the above method, it can be 
shown that F(s) = F(-s). Also, there is no restraint on 
“s” in the complex plane for the integral to exist. 

IV. It will now be shown that jδ(js) = δ(s) 
     The definition of the 1generalized Dirac Delta 
Function is given in (4) below [Ref 2, P. 272]. 

∫ δ(t)Ø
∞

−∞
(t)dt =  Ø(0) 

 

(4) 

     Where Ø(t) is a smooth test function having all 
derivatives. This definition is unaltered if one also 
defines it as (5) below: 

∫ δ(t)Ø
∞

−∞
(jt)dt =  Ø(ο) 

 

(5) 

     The purpose of (5) is to show that the integral result 
is unaltered if one integrates instead along the 
imaginary axis where the authors of reference 6 state 
that generalized function may be invariant with respect 
to all rotation [See 6, p. 9]. 
     Also, all generalized functions can be expressed as 
derivatives of the delta function [Ref. 6, p 209].       
     Now transforming (5) so that one integrates along 
the imaginary axis use the property of Integration by 
putting variable jt = t1. 

                                                             
1 For generalized function see reference 4 to 7, as 
well as reference 2 and 3. 

     Therefore (5) is equal to: (δ(t), is an even function, 
therefore δ(-t) = δ(t)).  
 

ϕ (o) =  ∫ δ(jt1)ϕ(t1)(−j)dt1
−jω

+jω   =   
 

∫ δ(jt1)ϕ(t1)dt1(+j)
jω

−jω
 

 

(6) 

Therefore, one has: 
 

jδ(jt1) = δ(t1) (7) 

V. DSLT of sgn t 
     Now to find the DSLT of sgn t

2  one will use the 
derivative property of generalized functions.  
     Namely [ref. 2 p. 273].  
 

∫ f(t)
∞

−∞
ϕ′(t)dt =  − ∫ f ′(t)ϕ(t)dt

∞

−∞
 

(8) 

 
     And in general, one has: 
 

∫ f(t)
∞

−∞
ϕ(n)(t)dt = (−1)n ∫ f (n)(t)ϕ(t)dt

∞

−∞
 

(9) 

 
      Where ϕ(t) is a smooth test function. Also, one 
will use the two properties of the Dirac delta 
function, namely: 
     δ(t) = d

dt (sgn t
2 ) and (8) above.  

 
     Therefore, one has: 
 

∫ sgn t
2

∞
−∞ e−stdt =  ∫ sgn t

2
d
dt

∞
−∞ (e−st

−s ) dt = 
 

(10) 

1
s ∫ d

dt
∞

−∞ (sgn t
2 ) e−stdt = 

 

 

1
s ∫ δ(t)e−stdt =  1

s
∞

−∞    

 
     See (4) for the last step. 
     Again, there is no restraint on "s" in the complex 
plane.  
     Here (10) is the same result obtained for finding the 
Single Sided Laplace Transform (SSLT) of U(T) In 
fact, in general, the results obtained for finding the 
SSLT of a function f(t), is in fact the same as obtaining 
the DSLT of f(t).  
     Here the DSLT of U(t) is: 
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This will require a correction to the book by van de Pol, B. and 
Bremmer. R.: "Operational Calculus based on the Two-Sided 
Laplace Integral" [11]. 

 One might now wonder if there is an inconsistency when on the 
one hand the DSLT of         , whereas the SSLT of unity is    

The inconsistency shows up as follows: Given that   is the inverse 
of DSLT of f(t), then one has: 

 
     (12) 
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The DSLT of                . That is, the SSLT of U(t) is the DSLT of  

One can generalize this for finding the DSLT of f(t)       For 
example, to find the DSLT of f(t) = t, use property (4) for 
generalized function as well as the delta property f(t)δ(t) = f(0)
δ(t) for (t) continuous at t = 0, and also (8); and one then has: 
 

      
 

Here (14) is the same as the SSLT of “t” with no restraints in “s” 
complex plane. 
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That is why in SSLT for f(t) being even/odd it’s SSLT is odd/
even for f(t) being rational. 

The integrals have been solved with no restraint on “s” in the 
complex plane, similar to the case for ω in the Fourier transforms. 
In fact, the use of generalized functions makes it possible to 
solve integrals that otherwise were divergent. See example 5 in 
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Derivatives of f (t)      
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2 . For example, to find the DSLT of f(t) = t, use 
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     Since sgn t is an odd function, then if f(t) is an even 
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DSLT of f(t) sgn t is an even function. That is why in 
SSLT for f(t) being even/odd it’s SSLT is odd/even for 
f(t) being rational. 
     The integrals have been solved with no restraint on 
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or complex) is given by: 
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and from (4) one has (17) equal to 1

s−a which is the 
SSLT of eat with no restraints of “s” in the complex 
plane.  
     In general, one can show that the nth derivative of 
(17) with respect to “s” will provide the DSLT of 
tneat.  sgn t

2  as 1
(s−a)n+1 which is the SSLT of tneat. 

VII. The DLST of F(t) where F(s) is the LT of f(t) 
     In the introduction it was mentioned that under 
present knowledge there was no LT for F(t) where F(s) 
is the LT of f(t). This is because with present 
knowledge the F(s) was always real when “s” is real, 
whereas for F(t) to have a LT, its LT has to be 
imaginary when “s” is real. 
     It will be shown that the DSLT of F(t) is 2πjf (-s), 
which is imaginary for “s” being real. The approach is 
similar to the one used for FT where if f(ω) is the FT 
of f(t), then the FT of FT of F(t) is 2πf(-ω) [See ref. 2, 
p. 14]. The author calls it the Theorem of Symmetry. 
     As mentioned previously, the region of the 
convergence is eliminated with the use of generalized 
functions. That means the exponential sign for the LT 
integral can be either positive or negative, and its 
inverse integral term has an opposite exponential sign. 
Present convention has it given below. 
 

F(s) = ∫ f(τ)e−sτdτ∞
−∞   (18) 

 
     The inverse of (18) is: 

f(t) = 1
2πj ∫ F(τ)etτdτ∞

−∞   (19) 

 
     For the inverse of LT integral (19) is usually written 
as having integral limits 𝜎𝜎 ± j∞ in order for the 

integral to be within the region of convergence, but 
this is now not necessary as already mentioned. Also 
“t” and “s” are usually used as integral variables, but 
the "τ” variable is preferred by the author because it 
provides a cleared understanding. 
     Equation (19) will be rewritten as (20) below so 
that it appears the same as equation (18) by replacing 
“t” with “-s”, but with its integral limits unaltered. 
Generalized functions are invariant with respects to 
rotation. [see ref. 6, p 9]. That is for generalized 
functions such as δ(t), sgn t, etc. The DSLT result 
remain unaltered whether one integrates along either 
axis, real or imaginary. 
 

2πjf(−s) =  ∫ F(τ)e−sτdτj∞
−j∞   (20) 

 
     From (20) one has the DSLT of F(t) as  2πjf(-s) with 
no restraints on the region of convergence for integral 
to exist.  
     Put s=jω (20) to represent the FT case, [Ref. 2, p 
14] and one has 2πjf(−jω) = 2πf(−ω) (See equation 
(7)). 

In general, all ordinary functions can be represented 
by generalized functions. As an example, e−t2  is the 
same as e - t2(U(t) + U(-t)). Note that U(t) = 12 + sgn t

2 . 
Generalized function can be expressed as derivatives 
of the delta function. [See Ref 6, P 209] 
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For the inverse of LT integral (19) is usually written as having 
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And d
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π(jsgn(ω)). [See Ref. 2, p 37] for the FT of sgnt; and 
for the FT of  1t , use the Theory of Symmetry. [Ref. 2, 
p 14]. 
     Having established the DSLT 1

t is -πjsgn ω  
(or –πjsgn(jω)), then use the time differentiation of 
inverse DSLT equation (19) for DSLT of 1
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−j∞  =   

 
−1
2 ∫ τnsgn τetτdτ

j∞

−j∞
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(−1)n
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complex plan for solving a divergent integral.  
     To find the DSLT of 1

(t+k)n, n > 0,   
and -∞< k < ∞ (called Time Shifting), then the DSLT 
equation (18) becomes: 
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X. Phase Retrieval Problem 
    There are many situations in experimental physics 
and other areas of engineering where the observable 
quantity is F(s)F(-s) and from which one needs to 
extract the original signal. If a mechanism can be 
found to first convert the unknown signal into its even 
and odd components prior to measuring the quantity 
F(s)F(-s), then one can extract the even and odd 
components of the desired original signal exactly, and 
them sum the two. Up to now 2N ambiguities needed 
to be tackled in order to recover the original image, 
and the N large, the problem becomes enormous. N is 
the number of zeros in F(s), the DSLT of image. 

Alternatively, 2n is the number of different images all 
having the same autocorrelation function, since only 
F(s)F(-s) (the DSLT of the autocorrelation function 
Ψ(t)) is known, See reference 8. 
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Interchanging the order of integration, one has: 
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For the DSLT of f (-t) one has: 

and with the transformation t = −t1, (25) becomes F(-s). 
Therefore for f(t) as an even or odd function, its DSLT is F(s) 
and         respectively, and the DSLT of its autocorrelation 
function is F2(s) and   respectively. Therefore no other function 
other than f(t) odd will have the same autocorrelation function. 
In terms of the zeros of F(s) this is the equivalent of them lying 
symmetrically with the respect to both the real and the imaginary 
axes of the “s” complex plane. It would not be possible to solve 
the retrieval problem with SSLT because one only considerers 
t > 0. Also, there should also not be any restraint in “s” in the 
complex plane, so as to be able to handle both F(s) and F (-s). 

Conclusion      
The DSLT of f(t)             is the SSLT of f(t). Since          is an 
odd function, and if f(t)        is a rational even then function, then 
f(t)  is an odd function. Therefore the SSLT of F(s) is an odd 
function. Similarly if f(t) is an odd rational function, its SSLT is 
an even function [15-19].    

The region of convergence for “s” in the complex plane is 
eliminated. In fact, one could just as well define the DSLT 
with a positive exponential term instead of the current negative 
exponential term. Even though “s” can be complex, the 
condition for F(s) to be even or odd i.e., F(s) = F(-s) or F(s) = 
-F(-s)  remains the same. That is, if s = Rejθ and −1 = eπj, then for 
F(s) even one has F(Rejθ) = F(Rej(ϑ+π)), and for F(s) odd one has 
F(Rejϑ) = −F(Rej(ϑ+π)). 
     
Furthering our discussion, a unit pulse of duration 

T is given by     Therefore, (26) represents: 
 
        (26) 
 
For f(t) = 0 for t < 0 and t  >  T, and f(t) for  
0 < t < T. The SSLT of f(t) is then given by the DSLT of (26).   
     
For the FT replace “s” with jω. The Phase Retrieval problem 
is an example where it can be solved using DSLT but not the 
conventional SSLT that only handles cases or positive time 
whereas the handling of even and odd function of time requires 
including both positive and negative time. 
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X. Phase Retrieval Problem 
    There are many situations in experimental physics 
and other areas of engineering where the observable 
quantity is F(s)F(-s) and from which one needs to 
extract the original signal. If a mechanism can be 
found to first convert the unknown signal into its even 
and odd components prior to measuring the quantity 
F(s)F(-s), then one can extract the even and odd 
components of the desired original signal exactly, and 
them sum the two. Up to now 2N ambiguities needed 
to be tackled in order to recover the original image, 
and the N large, the problem becomes enormous. N is 
the number of zeros in F(s), the DSLT of image. 

Alternatively, 2n is the number of different images all 
having the same autocorrelation function, since only 
F(s)F(-s) (the DSLT of the autocorrelation function 
Ψ(t)) is known, See reference 8. 
      It will be shown that if the unknown signal can first 
be broken up into its even and odd components prior 
to measuring F(s)F(-s), then it will be possible to find 
the original signal with just two measurements and 
have no ambiguity of results. This is similar to the way 
a function can be multiplied by eaz in order to recover 
the original signal, as has been proposed by various 
authors. See references (9) and (10). Here instead the 
function and its mirror image is added and subtracted 
from one another to obtain its even and odd 
components respectively. 
     Then autocorrelation function of f(t) is defined as: 
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restraint for “s” in the complex plane. 
     For the DSLT of f(-t) one has: 
 

∫ f(−t)e−stdt∞
−∞   (25) 

 
     and with the transformation t = −t1, (25) becomes 
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DSLT is F(s) and -F(s) respectively,  and the DSLT of 
its autocorrelation function is F2(s) and −F(s)

2 (s) 
respectively. Therefore no other function other than 
f(t) odd will have the same autocorrelation function. In 
terms of the zeros of F(s) this is the equivalent of them 
lying symmetrically with the respect to both the real 
and the imaginary axes of the “s” complex plane. 
     It would not be possible to solve the retrieval 
problem with SSLT because one only considerers  
t > 0. Also, there should also not be any restraint in “s” 
in the complex plane, so as to be able to handle both 
F(s) and F(-s). 

XI. CONCLUSION 
     The DSLT of f(t)sgn t

2  is the SSLT of f(t). Since sgn t
2  

is an odd function, and if f(t) is a rational even then 
function, then f(t) sgn t

2  is an odd function. Therefore 
the SSLT of F(s) is an odd function. Similarly if f(t) is 
an odd rational function, its SSLT is an even function. 
     The region of convergence for “s” in the complex 
plane is eliminated. In fact, one could just as well 
define the DSLT with a positive exponential term 
instead of the current negative exponential term. Even 
though “s” can be complex, the condition for F(s) to 
be even or odd i.e., F(s) = F(-s) or F(s) = -F(-s)  
remains the same. That is, if s = Rejθ and −1 =  eπj, 
then for F(s) even one has F(Rejθ) = F(Rej(ϑ+π)), and 
for F(s) odd one has F(Rejϑ) = −F(Rej(ϑ+π)). 
     Furthering our discussion, a unit pulse of duration 
T is given by sgn t

2 −  sgn(t−T)
2 . Therefore, (26) 

represents: 
 

F(t) (sgn t
2 −  sgn(t−T)

2 )  (26) 

 
     For f(t) = 0 for t < 0 and t  >  T, and f(t) for  
0 < t < T. The SSLT of f(t) is then given by the DSLT 
of (26).   
     For the FT replace “s” with jω. 
     The Phase Retrieval problem is an example where 
it can be solved using DSLT but not the conventional 
SSLT that only handles cases or positive time whereas 
the handling of even and odd function of time requires 
including both positive and negative time. 
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DSLT is F(s) and -F(s) respectively,  and the DSLT of 
its autocorrelation function is F2(s) and −F(s)

2 (s) 
respectively. Therefore no other function other than 
f(t) odd will have the same autocorrelation function. In 
terms of the zeros of F(s) this is the equivalent of them 
lying symmetrically with the respect to both the real 
and the imaginary axes of the “s” complex plane. 
     It would not be possible to solve the retrieval 
problem with SSLT because one only considerers  
t > 0. Also, there should also not be any restraint in “s” 
in the complex plane, so as to be able to handle both 
F(s) and F(-s). 

XI. CONCLUSION 
     The DSLT of f(t)sgn t

2  is the SSLT of f(t). Since sgn t
2  

is an odd function, and if f(t) is a rational even then 
function, then f(t) sgn t

2  is an odd function. Therefore 
the SSLT of F(s) is an odd function. Similarly if f(t) is 
an odd rational function, its SSLT is an even function. 
     The region of convergence for “s” in the complex 
plane is eliminated. In fact, one could just as well 
define the DSLT with a positive exponential term 
instead of the current negative exponential term. Even 
though “s” can be complex, the condition for F(s) to 
be even or odd i.e., F(s) = F(-s) or F(s) = -F(-s)  
remains the same. That is, if s = Rejθ and −1 =  eπj, 
then for F(s) even one has F(Rejθ) = F(Rej(ϑ+π)), and 
for F(s) odd one has F(Rejϑ) = −F(Rej(ϑ+π)). 
     Furthering our discussion, a unit pulse of duration 
T is given by sgn t

2 −  sgn(t−T)
2 . Therefore, (26) 

represents: 
 

F(t) (sgn t
2 −  sgn(t−T)

2 )  (26) 

 
     For f(t) = 0 for t < 0 and t  >  T, and f(t) for  
0 < t < T. The SSLT of f(t) is then given by the DSLT 
of (26).   
     For the FT replace “s” with jω. 
     The Phase Retrieval problem is an example where 
it can be solved using DSLT but not the conventional 
SSLT that only handles cases or positive time whereas 
the handling of even and odd function of time requires 
including both positive and negative time. 
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