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Abstract 
Robotic manipulators have besides static positioning problems, but besides static we have in the robot its speeds and 
forces applied in any kind of movement. one of the show important activities of robot motion control is the definition of 
its movements in the workspace. to perform these moves its joints need I ‘m moving and to define these positions in the 
spaces we need to calculate the direct kinematics and the opposite we call the inverse kinematics. The main objective 
of this paper is to present a study on velocity analysis, known as the Jacobian matrix. The methodology employed in 
this exploratory scientific research will ok developed from experimental tests, bibliographic references and case studies 
applied at the Advanced robotics Institute (IAR). the robot under study is the YASKAWA-MOTOMAN-GP7 present at the 
robotics Laboratory of the IAR. The work brings as contribution the implementation of the Denavit-Hartenberg notation 
and the validation of the Jacobian matrix of the robot. The results are the determination of the equations of the inverse 
kinematics using the method based on the inverse Jacobian matrix. The code was implemented in MATLAB© software 
capable of proving the developed mathematical model, which is applicable in industrial robots.
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Introduction
The new technological pattern of industries directs them towards 
a new production paradigm, leveraging productivity, increasing 
profitability, performing costs and process quality. the history of 
industrial automation is characterized by periods of quick tech-
nological change, the result of this has been the development of 
automata capable of performing the show complex tasks with the 
highest possible level of sophistication and precision. It was ex-
actly in this context that industrial robotic manipulators emerged 
[1]. The Denavit-Hartenberg (D-H) notation for describing a se-
rial link the geometry of the mechanism is the fundamental tool 
of the roboticist. given such a description of a manipulator, we 
can make use of algorithms and techniques to find kinematic, 
Jacobian, dynamical, motion planning and simulation solutions, 
for example [1,2].

The manipulator robots are considered an indispensable part in 
modern factories, due to their capacity to perform the show va-
riety types of tasks of high level of complexity and danger, in an 
efficient and reliable way, with an unquestionable cost

benefit relation. Aiming at the study and the different practical 
applications, in the projects of manipulator robots two lines of 
research can ok addressed, the kinematics and dynamics. Kine-
matics deals with the movement without considering the static 

forces that cause this movement, the study of “ accelerations, 
velocities and inertias “ are part of dynamics. in the literature, 
the kinematics of manipulator robots is approached by means of 
two models, that of direct and inverse kinematics _ The direct 
kinematics consists in finding the orientation and position of the 
end effector from the vector of joint angles and the geometric 
parameters of the model. According to the matrix method is pro-
posed for modeling and stock solving problems that use the di-
rect kinematics technique [3]. 

The inverse kinematics is considered an effective technique for 
controlling a robotic arm, consisting in finding the vector of joint 
angles from the orientation and position of the terminal effector. 
It presents great challenges due to the nonlinearity of the equa-
tions and multiple solutions for manipulators with many degrees 
of freedom [4,5]. The development of a numerical algorithm to 
find the angular positions for a work defined with respect to its 
terminal element in Cartesian space, contains the solution of 
the inverse kinematic problem through the recursive numerical 
method that uses the kinematic model and the inverse Jacobian 
matrix of the manipulator. The Gauss Elimination method was 
used for the inversion of the Jacobian matrix [6,7].
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Literature Revision
Direct Kinematics
Kinematics in robotics is a form of representation referring to 
the geometric explanation of the structure of a robot. From the 
geometric equation, it is possible to obtain the connection be-
tween the concept of spatial geometry of joints and the theory of 
end-effector coordinates to figure the position of an object [6]. 
The purpose of studying kinematics is to determine the relative 
position of a frame in relation to its original coordinates. For-
ward kinematics is transforming the joint variable to the end-ef-
fector position. Also, inverse kinematics is to transform the posi-
tion of the final effector to the joint variable. Denavit-Hartenberg 
parameters (also called D-H parameters) are the four parameters 
related to a particular convention for delimiting frames of refer-
ence to links in a spatial chain [8].

Denavit-Hartenberg (D-H) Notation
Denavit and Hartenberg proposed a systematic notation for 
assigning an orthonormal coordinate system according to the 
“right-hand rule”, one for each link in an open kinematic chain 
of links. Once these coordinate systems fixed to the link are as-
signed, transformations between adjacent coordinate systems 
can be represented by a homogeneous coordinate transformation 
matrix [8].

According to in the original D-H representation, the joint axis 
is associated with the z axis and each matrix is represented by 
the product of four basic transformations involving rotations and 
translations, as we can see in Equation (1) [9].

Figure 1 shows the D-H parameters with a graphical represen-
tation [1].

Figure 1: Representation of D-H parameters [1].

Table 1 shows that any homogeneous transformation matrix can 
be described from four basic transformations.

Table 1: Basic Denavit-Hartenberg Transformations [5].
SYMBOL MEANING
Rx,θ Rotation around the z axis by an angle θ
Tz,d Translation along the z axis for a distance d
Tx,α Translation along the x axis for a distance a
Rx,α Rotation around the x axis by an angle α

To obtain the homogeneous transformation matrix (2) that goes 
from the base to the end of the end effector, we have to multiply 
all the transformation matrices obtained by the D-H algorithm, 
that is, the resulting matrix can be considered as the solution to 
the problem of direct kinematics (3).

In the case of composite rotations around two or more axes, the 
rotation component (orientation) of the transformation matrix 
will be more complex than that of the simple rotations indicated 
above. The geometric, homogeneous transformation matrix has, 
in addition to rotations and translation, four more terms (the last 
line). Figure 2 shows the components of the 3D transformation 
matrix.

Figure 2: Components of the 3D transformation matrix [8].

Inverse kinematics
Inverse kinematics is considered an effective technique for con-
trolling a robotic arm, consisting in finding the vector of joint 
angles, based on the orientation and position of the end-effector. 
It presents great challenges due to nonlinearities of coupling of 
the equations of motion for manipulators with many degrees of 
freedom [10,11]. Traditional methods can be used to calculate 
the inverse kinematics of robotic manipulators, such as geomet-
ric, numerical-iterative and algebraic ones, considered laborious 
if the geometric structure of the manipulator is very complex 
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Industrial Robotic Manipulators are normally positioned in joint variable space, however the objects to 
be manipulated are normally expressed in global coordinate systems. In order to control the position and 
orientation of a terminal element of a robot to reach its object, the inverse kinematics solution is the 
most important. In other words, we give the position and orientation of the terminal element of a robotic 
arm with i axes as 0 T i and its joint and link parameters, from there we want to find the joint angles q = 
(q1, q2, ..., qi) T of the robot so that the terminal element can be positioned as desired. The inverse 
kinematics problem, in general, can be solved using several methods, including the inverse 
transformation the “screw” algebra the doubles the interactive and geometric approximations 
[8,12,13,14,15]. According to Pieper (1968) he presented the kinematics solution for any manipulator of 
6 (six) degrees of freedom in which there are revolutes or prismatics for the first 3 (three) joints the joint 
axes of the remaining 3 (three) joints intersect at a point, presented an inverse transformation technique 
using the 4 X 4 homogeneous transformation matrices in solving the kinematics solution for the same 
class of simple manipulators as discussed by Pieper [12]. Although the resulting solution is correct, it 
suffers from the fact that the solution does not have a clear indication of how to select the most 
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[5]. Solving problems dealing with the direct kinematics of ma-
nipulators is considered simple, if compared to the inverse way 
[11]. In inverse kinematics the angles between the joints can be 
determined by the parameters of the links and the position of the 
effector in the working volume. Figure 3 presents a diagram that 
illustrates the relationships between forward and inverse kine-
matics.

Figure 3: Representation of the relations between the robot ki-
nematics.
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ment can be positioned as desired. The inverse kinematics prob-
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the inverse transformation the “screw” algebra the doubles the 
interactive and geometric approximations [8,12,13,14,15]. Ac-
cording to Pieper (1968) he presented the kinematics solution 
for any manipulator of 6 (six) degrees of freedom in which there 
are revolutes or prismatics for the first 3 (three) joints the joint 
axes of the remaining 3 (three) joints intersect at a point, present-
ed an inverse transformation technique using the 4 X 4 homoge-
neous transformation matrices in solving the kinematics solution 
for the same class of simple manipulators as discussed by Pieper 
[12]. Although the resulting solution is correct, it suffers from 
the fact that the solution does not have a clear indication of how 
to select the most appropriate solution from the many possible 
solutions for a particular engine configuration. Once the homo-
geneous transformation matrix has been defined for the robot 
under study, its inverse matrix is defined, as shown in Figure 4.
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Having these global results in hand, we proceed to the analysis 
of each of the links, according to the observations of the D-H 
parameters for the system in question. The first step is to multi-
ply the inverse transformation matrix of the link by the homo-
geneous transformation matrix of the mechanism under study. 
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transformation matrix, as shown in Figure 5.
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defined, as shown in Figure 4. 
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The dimension of the Jacobian Matrix is m x n, where m is the number of rows, which is equal to the 
number of degrees of freedom of the robot's working field and n is the number of columns, which is 
equal to the number of robot joints. For a robot working in space, m will be at most equal to 6 and for a 
robot working in the plane, m will be at most equal to 3. The 6 degrees of freedom of space correspond 
to the three positioning degrees of freedom and the three orientations of a rigid body. For the plane there 
are two positioning degrees of freedom and only one orientation degree of freedom, since in the plane 
only velocity or angular position is defined around the axis perpendicular to the plane. Thus, it is 
observed that the number of columns of the Jacobian matrix is not fixed and must be defined by the 
interest of the problem and mainly, in terms of what the robot is capable of accomplishing. 
 
Methodological Procedure 
The methodology used in this exploratory scientific research will be developed from experimental tests, 
bibliographic references and a case study applied at the Advanced Institute of Robotics (IAR). The robot 
under study is the YASKAWA MOTOMAN - GP7, from the IAR Robotics laboratory. This model was 
chosen because it is the articulated type that is widely used in industries in general. The articulated type 
of manipulator has a configuration similar to that of a human arm, due to its set of 6 rotational joints, 
which can be separated into two groups that make up the wrist and those that correspond to the 
movement of the arm. Figure 6 shows the technical specifications of the robot, with the dimensions of its 
structure in millimeters. 
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The dimension of the Jacobian Matrix is m x n, where m is the 
number of rows, which is equal to the number of degrees of free-
dom of the robot’s working field and n is the number of columns, 
which is equal to the number of robot joints. For a robot working 
in space, m will be at most equal to 6 and for a robot working in 
the plane, m will be at most equal to 3. The 6 degrees of freedom 
of space correspond to the three positioning degrees of freedom 
and the three orientations of a rigid body. For the plane there 
are two positioning degrees of freedom and only one orientation 
degree of freedom, since in the plane only velocity or angular 
position is defined around the axis perpendicular to the plane. 
Thus, it is observed that the number of columns of the Jacobian 
matrix is not fixed and must be defined by the interest of the 
problem and mainly, in terms of what the robot is capable of 
accomplishing.

Methodological Procedure
The methodology used in this exploratory scientific research will 
be developed from experimental tests, bibliographic references 
and a case study applied at the Advanced Institute of Robotics 
(IAR). The robot under study is the YASKAWA MOTOMAN - 
GP7, from the IAR Robotics laboratory. This model was chosen 
because it is the articulated type that is widely used in industries 
in general. The articulated type of manipulator has a configura-
tion similar to that of a human arm, due to its set of 6 rotational 
joints, which can be separated into two groups that make up the 
wrist and those that correspond to the movement of the arm. 
Figure 6 shows the technical specifications of the robot, with the 
dimensions of its structure in millimeters.

Figure 6: Technical Specifications of the Motoman-GP robot 
[8].

One of the features that differs this YASKAWA-MOTO-
MAN-GP7 robot model from the standard is the misalignment 
of the center of the base with the center of the end of the manip-
ulator. This misalignment can be seen in Figure 6, which clearly 
shows that the link where the wrist is located 40 mm to the right 
with respect to the center of the robot base [16].

To identify the respective joints of the YASKAWA-MOTO-
MAN-GP7 robot, figure 7 shows the joints j1, j2, j3, j4, j5 and 
j6 in a schematic way.

Figure 7: Schematic drawing of the YASKAWA MOTOMAN - 
GP7 robot with the identification of their respective joints.

The approach adopted to determine the direct kinematics of this 
robot starts from the preliminary analysis of the possible move-
ments and recognition of the types of links and joints that are 
components of the system. Then, based on the information ac-
quired, coordinate systems are adopted for the axes to be studied 
in order to determine the Denavit-Hartenberg parameters of the 
robotic arm under study. It follows the formation of the transfor-
mation matrices for each joint and the consequent composition 
of the robot’s transformation matrix. The inverse kinematics is 
determined through a specific calculation method, based on the 
Cartesian coordinates found in the calculation of the forward ki-
nematics. Among the various possibilities, the Jacobian inverse 
transformation method was chosen [17].

Direct Position Kinematics
To calculate the direct kinematics of position, the literal table 
is assembled with the parameters of D-H. The D-H parameters 
require a schematic model of the robot, as well as its character-
istics, reference system and joint variables according to conven-
tion and Denavit-Hartenberg. Figure 8 shows the model devel-
oped for this case study.
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Figure 8 : Schematic Model of the Robot under study.

From the schematic model, the Denavit-Hartenberg numerical 
table is defined, according to table 2. The units used are millime-
ters for length and deg for angles.

Table 2: Denavit-Hartenberg Numerical Table.

From the schematic model, the Denavit-Hartenberg literary ta-
ble is defined, according to table 3.

Table 3 :Denavit-Hartenberg Literary Table.

MATLAB©
MATLAB©, short for Matrix Laboratory, is a simple and 
straight forward language software used to perform mathemat-
ical calculations, which has high computational performance 
and a wide library of pre-defined mathematical functions. These 
features allow programming problems to be solved in a simpler 
way than in other computer languages [6]. The software used to 
demonstrate and mathematically prove the Denavit-Hartenberg 
algorithm was created in a simulation in MATLAB©, R2021a 
from the company MathWorks, software frequently used by re-
searchers to perform calculations and systems in general [18].

 The first step was to define the Denavit-Hartenberg parameters 
for each link joint, substituting the real values of the angular 
relationship between one joint to another and the translation 
(in millimeters) between joints of the YASKAWA-MOTO-
MAN-GP7 robot. The values were obtained from the manufac-
turer’s datasheet [8]. Then, by multiplying these matrices, we 
obtain the homogeneous transformation matrix, which provides 
the mapping of the coordinates from the base to the end of the 
tool. In MATLAB© each link ‘L’ is defined from 1 to 6 and then 
the object YASKAWA-MOTOMAN-GP7 that will represent the 
robot with the connection of its links in series, as we can see in 
Table for D-H literary.

Validation
For validation, a test of code calculated in Robot were per-
formed using the robot available at Advance Robotics Institute 
(IAR) carried out.

Figure 9: Fanuc LR Mate 200ID.

Figure 10: Fanuc LR Mate 200ID Specifications [19].
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manufacturer's datasheet [8]. Then, by multiplying these matrices, we obtain the homogeneous 
transformation matrix, which provides the mapping of the coordinates from the base to the end of the 
tool. In MATLAB© each link 'L' is defined from 1 to 6 and then the object YASKAWA-MOTOMAN-
GP7 that will represent the robot with the connection of its links in series, as we can see in Table for D-
H literary. 
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For validation, a test of code calculated in Robot were performed using the robot available at Advance 
Robotics Institute (IAR) carried out. 
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Results and Discursion 
The methodology used to obtain the results regarding the forward kinematics and the inverse kinematics 
pointed to the initial analysis of the YASKAWA-MOTOMAN-GP7 Robot structure and to the 
relationship of the Denavit-Hartenberg parameters for each robot axis. Then, these values were related 
through transformation matrices for the same axes. Finally, these matrices were summed, resulting in a 
final transformation matrix of the robot, whose positioning at point T refers to the sum of the others (six 
links). 
The representation of D-H results in obtaining a homogeneous 4x4 transformation matrix, representing 
that transforms the coordinates of the system of link i to the system i-1 of the previous link. With this, it 
is possible to express the transformation of coordinates from the “i” system to the “i-1” system. Then, 
the kinematic modeling is ready to be applied in the controller for the accomplishment of experimental 
tests and simulations of control of the system. By calculating the forward kinematics, it is possible to 
determine the x and y coordinates, once the joint coordinates are known. The resulting matrix can be 
considered as the solution of the forward kinematics problem according to figure 11, that is, the product 
of all transformation matrices obtained by D-H results in the forward kinematics solution. 
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Results and Discursion
The methodology used to obtain the results regarding the for-
ward kinematics and the inverse kinematics pointed to the initial 
analysis of the YASKAWA-MOTOMAN-GP7 Robot structure 
and to the relationship of the Denavit-Hartenberg parameters for 
each robot axis. Then, these values were related through trans-
formation matrices for the same axes. Finally, these matrices 
were summed, resulting in a final transformation matrix of the 
robot, whose positioning at point T refers to the sum of the oth-
ers (six links).

The representation of D-H results in obtaining a homogeneous 
4x4 transformation matrix, representing that transforms the co-
ordinates of the system of link i to the system i-1 of the previ-
ous link. With this, it is possible to express the transformation 
of coordinates from the “i” system to the “i-1” system. Then, 
the kinematic modeling is ready to be applied in the controller 
for the accomplishment of experimental tests and simulations of 
control of the system. By calculating the forward kinematics, it 
is possible to determine the x and y coordinates, once the joint 
coordinates are known. The resulting matrix can be considered 
as the solution of the forward kinematics problem according to 
figure 11, that is, the product of all transformation matrices ob-
tained by D-H results in the forward kinematics solution.

Figure 11: Result of the transformation matrices obtained by 
D-H.

Figure 12 shows the result of the mathematical calculations per-
formed with the MATLAB © software for the values established 
by the robot under study.

Figure 12: Resolution numeric of Mathematical Calculations.

Figure 13: Resolution numeric of Mathematical Calculations.

Figure 14 shows the product of the multiplication of the transfor-
mation matrices, that is, the resultant of the product of the ma-
trices, in this case the solution for the robot’s direct kinematics.

Figure 14: Product of the multiplication of the transformation 
matrices.
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Using a mathematic method on MATLAB© was calculated the Jacobian matrix 6x6. The numeric matrix 
result for the Jacobian is shown in the Figure 15. The Figure 16 shows the resulted found for the 
Jacobian, one matrix 6x6. The Jacobian matrix represent the 6 axes of the GP7 with the linear velocity 
and angular velocity, these details are presented in Figure 17 
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Using a mathematic method on MATLAB© was calculated the 
Jacobian matrix 6x6. The numeric matrix result for the Jacobi-
an is shown in the Figure 15. The Figure 16 shows the resulted 
found for the Jacobian, one matrix 6x6. The Jacobian matrix rep-
resent the 6 axes of the GP7 with the linear velocity and angular 
velocity, these details are presented in Figure 17

Figure 15: Jacobian matrix 6x6 resulted from Mathematical 
Calculations on MATLAB©

Figure 16: Jacobian matrix 6x6

Figure 17: Jacobian description, Axis 1-6, linear velocity and 
angular velocity.

The Jacobian literal has been resolved and is presented in the 
attached file, developed in MATLAB©.

Results of Validation
During the validation were checked the D-H and Jacobian for 
the robot Fanuc us present on item 3.3, the table 4 present the 
D-H numerical, the results of the Kinematic direct is shown in 
Figure 18 and Jacobian results from MATLAB©, shown in Fig-
ure 19 and Jacobian matrix with Axis and Linear and Angular 
velocity, shown in Figure 20. 

Figure 18: Fanuc resolution numeric of kinematics direct.

Figure 19: Jacobian resolution numeric of Mathematical Cal-
culations.

Figure 20: Fanuc Jacobian matrix with axis and velocity’s.

Conclusion
To conclude the study, we carried out the development of the 
equations of the forward and inverse kinematics of the robot 
YASKAWA MOTOMAN - GP7, equations that are part of the 
Denavit-Hartenberg theorem “D-H” in order to reach the Jacobi-
an matrix equation of the manipulator in question.With the mul-
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Conclusion 
To conclude the study, we carried out the development of the equations of the forward and inverse 
kinematics of the robot YASKAWA MOTOMAN - GP7, equations that are part of the Denavit-
Hartenberg theorem "D-H" in order to reach the Jacobian matrix equation of the manipulator in 
question.With the multiplication of the DH matrices, we obtained the homogeneous transformation 
matrix, which provides the mapping of the coordinates from the base to the end of the tool. Then we 
arrive at the Jacobian matrices to perform the calculations of angular and linear velocities. The study 
shows that through the calculations performed, we obtained a satisfactory performance, similar to the 
results obtained in real tests carried out in the robotic manipulator of the FANUC brand located in the 
mobile unit of the IAR. All results are within the oscillation limits, knowing that in both situations the 
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Figure 19: Jacobian resolution numeric of Mathematical Calculations. 
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