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Abstract
Published experimental results and analytic developments indicate the possibility of achieving stronger correlations 
of physical events with independent photons rather than with entangled ones. The probability of coincident detections 
of quantum events should not be confused with the correlation of mixed states. The theoretical requirements for 
implementing the quantum nonlocality theory are not present in the experimental configurations purporting to prove 
Bohr’s or Bell’s nonlocality because of the quantum Rayleigh scattering of single photons. By means of a normalization 
factor corresponding to the total number of initiated events, the detection probabilities obtained experimentally are 
too small to enable any violation of a Bell inequality. Correlations between independent states of qubits can easily 
outperform those calculated with entangled photons. Additionally, the quantum joint probability for a Bell state can be 
factorized enabling a local detection of the alleged quantum nonlocality, if it existed. 
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1. Introduction
In a recent spotlight article in Nature, the following paragraph 
can be found: “In fact, all quantum computers could be described 
as terrible [1]. Decades of research have yet to yield a machine 
that can kick off the promised revolution in computing”. This is 
not surprising in light of many and varied physical contradictions 
and inconsistencies which are outlined in this article identifying 
physical processes hindering the implementation of the 
mathematical formalism of quantum non-locality in the context 
of photonic systems, as well as outlining feasible methods for 
the manipulation of state vectors on the Poincaré sphere for 
qubit data processing.

Over the last four decades or so, a narrative has been gradually 
entrenched in the field of quantum physics stating that the 
quantum environment of very low levels of energy associated 
with single photons, features a remarkable property of contact-
free, remote influence by one act of detection or measurement on 
a second measurement of the other entangled pair-photon [2-4]. 
The resultant correlations are meant to constitute a fundamental 
resource in quantum computing, and would require single-
photon sources and photodetectors. Nevertheless, experimental 
results and analytic developments have identified the possibility 
of achieving quantum-strong correlations with independent and 
multi-photon states [5-8].

A basic principle of scientific methodology is the reproducibility 
of experimental results, namely, identical physical systems 
operated under identical conditions will yield identical 
distributions of measured outcomes. This principle of 
scientific research has been ignored when dealing with 
quantum correlations between separate measurements which 
have been touted as a technological resource for the practical 
implementation of quantum computers [2-4]. The benchmark for 
quantum correlations takes the form of Bell-inequalities which 
should be violated only by quantum probabilities calculated as 
the expectation values of a product of operators in the context of 
wavefunctions describing, in our case, polarization- entangled 
single photons.

The effect of quantum nonlocality is meant to synchronize the 
detections recorded at the two locations A and B for polarization-
entangled states of photons. In the caption to Figure 1 of ref 9, 
on its second page, one reads: “…if both polarizers are aligned 
along the same direction (a=b), then the results of A and B will 
be either (+1; +1) or (-1; -1) but never (+1; -1) or (-1; +1.); this 
is a total correlation as can be determined by measuring the four 
rates with the fourfold detection circuit [9]”. Yet, the quantum 
correlation is supposed to take place at the level of each pair 
of entangled photons rather than between averaged values 
of the two distributions; but such an outcome has never been 
reported. The maximal, experimentally measured probability 
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of coincident counts reported in the landmark experiments of 
refs 10, 11 is 2x10-4 (or 0.0002) which was achieved with highly 
non-entangled states and is indicative of the non-existence of the 
mythical Bohr’s nonlocality [10,11].

Additionally, the Bell parameter S = 〈a0 b0〉 + 〈a0 b1〉 + 
〈a1 b0〉 − 〈a1 b1〉 of eq. (4) in [3] would actually vanish as 
〈𝑎1 𝑏1〉=〈𝑎0 𝑏0〉=−1 and 〈𝑎1 𝑏0〉=〈𝑎0 𝑏1〉=0 according to the 
expectation values [3, p. 422] of 〈𝑎𝑥 𝑏𝑦〉 = −𝑥 ∙ 𝑦 , for detection 
settings 𝑥0;1∥𝑦0;1, and 𝑥0;1⊥𝑦 1;0 of the polarization states for 
coincident detections. Thus, 𝑆=0, failing to violate the CSHS 
inequality despite involving the strongest quantum correlations. 
This fact should have rung alarm bells about the irrelevance of 
the Bell-type inequalities as an indicator of strong correlations 
between the same order elements of two sequences. This 
shortcoming will be elaborated upon in this article.

However, from an experimental perspective, the correlation 
probability of simultaneous detections 𝑝𝑐(𝑎,𝑏) is evaluated from 
a third sequential distribution 𝑣𝐶(𝑎;𝑏) calculated as the temporal 
vector or dot product of the two initial sequences 𝑣(𝑎,𝑥)={𝑎𝑚} 
and 𝑣(𝑏,𝑦)={𝑏𝑚} leading to 𝑝𝑐(𝑎,𝑏)= (Σ𝑚=1

 a𝑚 𝑏𝑚)/𝑁 where 𝑎,𝑏=0
𝑜𝑟 1 are assigned binary values for no-detection or detection of 
an event, respectively. For any ensemble of measurements, the 
values of the correlation or joint probability 𝑝𝑐(𝑎,𝑏) will depend 
on the sequential orders of the two separate ensembles at locations 
A and B. Therefore, as the quantum formalism does not provide 
any information about those sequential orders, any artificial 
boundary such as Bell-inequalities are physically meaningless, 
because for the same values of the local probabilities, 𝑝𝐴(𝑎) 𝑎𝑛𝑑 
𝑝𝐵( 𝑏), the higher values of 𝑝𝑐(𝑎,𝑏) will lead to a violation of the 
Bell inequality in the classical regime. Bell inequalities can be 
easily violated with independent photons [5-7].

Equally, the experimental results of ref. [4] alleging propagation 
of single photons through the atmosphere over a distance of more 
than 100 km are physically impossible because of the quantum 
Rayleigh scattering [12] of single photons which will prevent 
synchronized detections. A physically meaningful explanation 
was presented in refs. [13-14] and can be summarized as follows. 
The spontaneously emitted photons in the nonlinear crystal 
undergo parametric amplification forming a group of identical 
photons. This group of photons can overcome the quantum 
Rayleigh scattering through quantum Rayleigh stimulated 
emission. This is illustrated in Figure 1 and detailed in refs. [13-
14].

Additionally, a sub-section of ref. [3] headlined “More nonlocality 
with less entanglement” leads one to the anomaly of nonlocality. 
“Astonishingly, it turns out that in certain cases, and depending 
on which measure of nonlocality is adopted, less entanglement 
can lead to more nonlocality.” [3, p.442]. “Remarkably, it turns 
out that this threshold efficiency can be lowered by considering 
partially entangled states. ….This astonishing result was the first 
demonstration that sometimes less entanglement leads to more 
nonlocality “ [3, p. 464].

“Since it is expressed in terms of the probabilities for the possible 
measurement outcomes in an experiment, a Bell inequality is 
formally a constraint on the expected or average behavior of a 
local model. In an actual experimental test, however, the Bell 
expression is estimated only from a finite set of data and one 
must take into account the possibility of statistical deviations 
from the average behaviour” [3, p. 466]. For a distinction 
between probability and frequency of occurrence, the reader is 
directed to ref. [15]

It is claimed that “…quantum correlations cannot be 
reproduced using no-signalling theories which make more 
accurate predictions of individual properties compared to 
quantum theory [3, p. 469]”. Equally, “Quantum correlation 
is a fundamental aspect of quantum mechanics and serves as 
the crucial link between quantum and classical physics. When 
quantum correlations between subsystems for a system reach 
a certain threshold, the system is entangled, which has diverse 
applications in quantum information processing”. Nevertheless, 
experimental results of quantum-strong correlations have been 
achieved with independent, non-entangled photons [5,6].

Figure 1: Schematic of one photon being randomly scattered 
inside a dielectric medium, while a group of identical photons 
propagates in a Straight-line [9].

These statements will be disproved in Section 1.1 by identifying 
physical probabilities evaluated with independent photons that 
outperform the quantum correlations based on entangled photons. 
Correlations of coincident detections of independent photons 
are derived in Section 2, while control of such correlations is 
presented in Section 3. The complete derivation of the quantum 
joint probability in the context of the collapse upon a first 
measurement of the entangled state of photons is presented in 
Section 4 leading to a factorization of local probabilities, thereby 
enabling a local test of the quantum nonlocality without the 
need for an arbitrary Bell inequality. Further contradictions and 
omissions are listed in Section 5.

2. Probabilities of Detecting Independent Photons Exceeding 
Those of Entangled Photons
2.1. Normalization with the Number of Initiated Events
The quantum correlation function 𝐸𝑐(1;1|𝛼;𝛽) for detecting one 
photon at location A and its pair-photon at location B, is defined 
in terms of four probabilities between two orthonormal detection-
settings at each of the two locations A and B, for eigenvalues +1 
𝑜𝑟−1, respectively, of local settings 𝛼 𝑜𝑟 𝛼′ , and 𝛽 𝑜𝑟 𝛽′ leading 
to the linear combination of probabilities 𝑃𝑖𝑗 [2], [4]:
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Fig. 1. Schematic of one photon being randomly scattered 

inside a dielectric medium, while a group of 
identical photons propagates in a straight-line. 

 
quantum correlations between subsystems for a system reach a 
certain threshold, the system is entangled, which has diverse 
applications in quantum information processing.” Nevertheless,  
experimental results of quantum-strong correlations have been 
achieved with independent, non-entangled photons [5-6]. 

These statements will be disproved in Section II by 
identifying physical probabilities evaluated with independent 
photons that outperform the quantum correlations based on 
entangled photons. Correlations of coincident detections of 
independent photons are derived in Section III, while control of 
such correlations is presented in Section IV. The complete 
derivation of the quantum joint probability in the context of the 
collapse upon a first measurement of the entangled state of 
photons is presented in Section V leading to a factorization of 
local probabilities, thereby enabling a local test of the quantum 
nonlocality without the need for an arbitrary Bell inequality.  
Further contradictions and omissions are listed in Section VI. 
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detection-settings at each of the two locations A and B, for 
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and  𝛽𝛽 𝑜𝑜𝑜𝑜 𝛽𝛽′ leading to the linear combination of probabilities 
𝑃𝑃𝑖𝑖𝑖𝑖  [2], [4]: 

 
𝐸𝐸𝑐𝑐(1; 1|𝛼𝛼; 𝛽𝛽) = 𝑃𝑃++(𝛼𝛼; 𝛽𝛽) + 𝑃𝑃−−(𝛼𝛼′; 𝛽𝛽′) − 
 

−𝑃𝑃+−(𝛼𝛼; 𝛽𝛽′) − 𝑃𝑃−+(𝛼𝛼′; 𝛽𝛽)                             (1) 
 
where 𝛼𝛼′ = 𝛼𝛼 + 𝜋𝜋/2 and 𝛽𝛽′ = 𝛽𝛽 + 𝜋𝜋/2 . Fluctuations in the 
number of detections would give rise to a spread in the values 
of 𝑃𝑃𝑖𝑖𝑖𝑖  and  𝐸𝐸𝑐𝑐(1; 1|𝛼𝛼; 𝛽𝛽). This correlation function is normally 
linked to the polarimetric Stokes measurements or the quantum 
Pauli vector operators and has the same form in both the 
quantum and classical regimes [7], so that its use in the Clauser-
Horne-Shimony-Holt (CHSH) inequality cannot discriminate 
between quantum and classical outcomes.   
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where 𝛼′=𝛼+𝜋/2 and 𝛽′=𝛽+𝜋/2  . Fluctuations in the number 
of detections would give rise to a spread in the values of 𝑃𝑖𝑗 
and 𝐸𝑐(1;1|𝛼;𝛽). This correlation function is normally linked 
to the polarimetric Stokes measurements or the quantum Pauli 
vector operators and has the same form in both the quantum 
and classical regimes [7], so that its use in the Clauser-Horne-
Shimony-Holt (CHSH) inequality cannot discriminate between 
quantum and classical outcomes.

For the CHSH inequality [4], the correlation probability is 
𝑃++(𝛼;𝛽)=𝑁++(𝛼;𝛽)/ 𝑁𝑛𝑜𝑟𝑚 where 𝑁++ is the number of coincident 
counts of photons and 𝑁𝑛𝑜𝑟𝑚 is the number of all coincident 
detections for all four settings 𝑁𝑛𝑜𝑟𝑚 = 𝑁++(𝛼; 𝛽) + 𝑁− −(𝛼′; 𝛽′) + 
𝑁+ −(𝛼; 𝛽′) + 𝑁− +(𝛼′; 𝛽).

However, this normalization is mathematical because the 
physical number 𝑁𝑛𝑜𝑟𝑚=𝑁𝑖𝑛 of initiated photon-pairs is very 
much larger as photons are lost between the source and the 
photodetectors, for various reasons, thereby throwing doubt 
about the real statistics. This normalization makes a violation of 
the CHSC impossible as 𝑁++/𝑁𝑖𝑛≪0.1.

The Clauser-Horne (CH) inequality has arbitrary values 
for the two measurement settings, i.e., 𝛼 𝑎𝑛𝑑 𝛼′ as well as 𝛽
𝑎𝑛𝑑 𝛽′ are set separately. The CH inequality also contains 
correlations between ‘1’s and ‘0’s, so that, in terms of binary-
valued probabilities  p(1,1; α,β) and similar forms, [10-11], the 
inequality is written as:

with the normalization factor 𝑁𝑖𝑛 of initiated events being used. 
But, as only one term of the four terms is measured in any given 
run, the linear combination would relate the maximal values 
on the left-hand side to the minimal values on the right-hand 
side. With such probabilities for all four terms, the opposite 
requirements of the inequality for the coincident detections of 
(1;1) on the left-hand side, and for only one-location detection 
(1;0) or (0;1) on the right-hand side, make a violation impossible, 
mathematically, unless arbitrary values are selected from 
various data sets. In this case, the inequality becomes physically 
meaningless.

For an input of multi-photon states, loss effects may not 
annihilate all the input photons, so that the number of detections 
increases regardless of the projective probability 𝑝(𝛼)=𝑐𝑜𝑠2 𝛼 
which provides a mathematical average. For a single-photon 
input, the density distribution per solid angle ΔΩ of the mixed 
quantum state arising from spontaneous emission that follows 
the radiation pattern of an oscillating dipole is [16-17]:

where the solid angle of emission is ΔΩ , the polar angle 
between the electric dipole vector and the polarization vector of 
the emitted photon is 𝜃, and 𝜑 is the azimuthal angle in the plane 
perpendicular to the dipole [16-17]. It is this distribution of the 
Rayleigh spontaneously emitted photons over the range {−𝜋,𝜋}, 
that randomly rotates the polarization state of the absorbed 
photons.

Physically, however, one single photon is scattered randomly 
by quantum Rayleigh photon-dipole interactions. By contrast, a 
group of identical photons can propagate in a straight line inside 
a dielectric medium through quantum Rayleigh stimulated 
emission. This process of stimulated emission can also amplify 
a spontaneously emitted photon with a rotated polarization, 
particularly so if the polarization modulator and analyser enable 
a lossless mode to propagate [13-14].

2.2. Linking Projective Measurements to the Theoretical 
Correlation Function
Quantum correlations are evaluated as the expectation values 
of a product of operators [2-3]. For the projective operators 
𝛱(𝛼)=|𝐻𝛼⟩⟨𝐻𝛼|𝑎𝑛𝑑 𝛱(𝛽)=|𝐻𝛽⟩⟨𝐻𝛽| corresponding to the 
polarization filters with one detection setting at each of the two 
locations A and B, respectively, the probability of coincident 
detections has the form, cf. [3, eq. 13]:

with |𝐻𝛼⟩ and |𝐻𝛽⟩ identifying the states of the polarization filters, 
and ⟨𝛷𝛼|=⟨𝜓𝑖𝑛|𝛱(𝛼) for the Hermitian conjugate state. For the 
polarization-entangled photons, the outcomes consist of the 
overlap between two state vectors rotated on the Poincaré sphere 
and are defined as the correlation function 𝐶(𝛼;𝛽) between two 
(mixed) states; by contrast, experimentally, the probability of 
coincident detections is calculated from the sum of products 
of overlapping terms, i.e., 𝑝𝑐(𝑎,𝑏)=(Σ𝑚=1

 a𝑚 𝑏𝑚)/𝑁 , as defined 
in the Introduction, and identifies the fraction of simultaneous 
detections at the level of each quantum event. This discrepancy 
is part of the disconnect between theory and measurement.

For the basis states |𝐻⟩ 𝑎𝑛𝑑 |𝑉⟩ of the shared measurement 
Hilbert space, the projective amplitudes are ⟨𝐻𝛼|𝐻𝐴⟩=𝑐𝑜𝑠𝛼,
⟨𝐻𝛼|𝑉𝐴⟩=𝑠𝑖𝑛𝛼, ⟨𝐻𝛽|𝐻𝐵⟩=𝑐𝑜𝑠𝛽 and ⟨𝐻𝛽|𝑉𝐵⟩=𝑠𝑖𝑛𝛽. The 
correlation function 𝐶(𝛼;𝛽) of magnitude |𝐶(𝛼;𝛽)|= 𝑝 (1,1;𝛼,𝛽)
between filter polarization states and for independent states of 
photons |𝜓𝑖𝑛⟩ becomes:

2 
> REPLACE THIS LINE WITH YOUR MANUSCRIPT ID NUMBER (DOUBLE-CLICK HERE TO EDIT) < 
 

2 
 

elements of two sequences. This shortcoming will be elaborated 
upon in this article.    

However, from an experimental perspective, the correlation 
probability of simultaneous detections  𝑝𝑝𝑐𝑐(𝑎𝑎, 𝑏𝑏) is evaluated 
from a third sequential distribution 𝑣𝑣𝐶𝐶(𝑎𝑎; 𝑏𝑏) calculated as the 
temporal vector or dot product of the two initial sequences 
𝑣𝑣(𝑎𝑎, 𝑥𝑥) = {𝑎𝑎𝑚𝑚} and 𝑣𝑣(𝑏𝑏, 𝑦𝑦) = {𝑏𝑏𝑚𝑚} leading to   𝑝𝑝𝑐𝑐(𝑎𝑎, 𝑏𝑏) =
(∑ 𝑎𝑎𝑚𝑚

𝑁𝑁
𝑚𝑚=1  𝑏𝑏𝑚𝑚)/𝑁𝑁  where 𝑎𝑎, 𝑏𝑏 = 0 𝑜𝑜𝑜𝑜 1 are assigned binary 

values for no-detection or detection of an event, respectively.  
For any ensemble of measurements, the values of the 
correlation or joint probability   𝑝𝑝𝑐𝑐(𝑎𝑎, 𝑏𝑏) will depend on the 
sequential orders of the two separate ensembles at locations A 
and B. Therefore, as the quantum formalism does not provide 
any information about those sequential orders, any artificial 
boundary such as Bell-inequalities are physically meaningless, 
because for the same values of the local probabilities, 
 𝑝𝑝𝐴𝐴(𝑎𝑎) 𝑎𝑎𝑎𝑎𝑎𝑎  𝑝𝑝𝐵𝐵( 𝑏𝑏), the higher values of   𝑝𝑝𝑐𝑐(𝑎𝑎, 𝑏𝑏) will lead to 
a violation of the Bell inequality in the classical regime. Bell 
inequalities can be easily violated with independent photons [5-
7]. 

Equally, the experimental results of ref. [4] alleging 
propagation of single photons through the atmosphere over a 
distance of more than 100 km are physically impossible because 
of the quantum Rayleigh scattering [12] of single photons 
which will prevent synchronized detections. A physically 
meaningful explanation was presented in refs. [13-14] and can 
be summarized as follows. The spontaneously emitted photons 
in the nonlinear crystal undergo parametric amplification 
forming a group of identical photons. This group of photons can 
overcome the quantum Rayleigh scattering through quantum 
Rayleigh stimulated emission. This is illustrated in Figure 1 and 
detailed in refs. [13-14]. 

Additionally, a sub-section of ref. [3] headlined “More 
nonlocality with less entanglement” leads one to the anomaly 
of nonlocality. “Astonishingly, it turns out that in certain cases, 
and depending on which measure of nonlocality is adopted, less 
entanglement can lead to more nonlocality.” [3, p.442].  
“Remarkably, it turns out that this threshold efficiency can be 
lowered by considering partially entangled states. ….This 
astonishing result was the first demonstration that sometimes 
less entanglement leads to more nonlocality “ [3, p. 464]. 

“Since it is expressed in terms of the probabilities for the 
possible measurement outcomes in an experiment, a Bell 
inequality is formally a constraint on the expected or average 
behavior of a local model. In an actual experimental test, 
however, the Bell expression is estimated only from a finite set 
of data and one must take into account the possibility of 
statistical deviations from the average behaviour” [3, p. 466]. 
For a distinction between probability and frequency of 
occurrence, the reader is directed to ref. [15] 

It is claimed that “…quantum correlations cannot be 
reproduced using no-signalling theories which make more 
accurate predictions of individual properties compared to 
quantum theory” [3, p. 469]. Equally, “Quantum correlation is 
a fundamental aspect of quantum mechanics and serves as the 
crucial link between quantum and classical physics. When  
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Fig. 1. Schematic of one photon being randomly scattered 

inside a dielectric medium, while a group of 
identical photons propagates in a straight-line. 

 
quantum correlations between subsystems for a system reach a 
certain threshold, the system is entangled, which has diverse 
applications in quantum information processing.” Nevertheless,  
experimental results of quantum-strong correlations have been 
achieved with independent, non-entangled photons [5-6]. 

These statements will be disproved in Section II by 
identifying physical probabilities evaluated with independent 
photons that outperform the quantum correlations based on 
entangled photons. Correlations of coincident detections of 
independent photons are derived in Section III, while control of 
such correlations is presented in Section IV. The complete 
derivation of the quantum joint probability in the context of the 
collapse upon a first measurement of the entangled state of 
photons is presented in Section V leading to a factorization of 
local probabilities, thereby enabling a local test of the quantum 
nonlocality without the need for an arbitrary Bell inequality.  
Further contradictions and omissions are listed in Section VI. 

 

II. PROBABILITIES OF DETECTING INDEPENDENT PHOTONS 
EXCEEDING THOSE OF ENTANGLED PHOTONS 

A. Normalization with the number of initiated events 
The quantum correlation function 𝐸𝐸𝑐𝑐(1; 1|𝛼𝛼; 𝛽𝛽) for detecting 

one photon at location A and its pair-photon at location B, is 
defined in terms of four probabilities between two orthonormal 
detection-settings at each of the two locations A and B, for 
eigenvalues  +1 𝑜𝑜𝑜𝑜 − 1, respectively, of local settings 𝛼𝛼 𝑜𝑜𝑜𝑜 𝛼𝛼′ , 
and  𝛽𝛽 𝑜𝑜𝑜𝑜 𝛽𝛽′ leading to the linear combination of probabilities 
𝑃𝑃𝑖𝑖𝑖𝑖  [2], [4]: 

 
𝐸𝐸𝑐𝑐(1; 1|𝛼𝛼; 𝛽𝛽) = 𝑃𝑃++(𝛼𝛼; 𝛽𝛽) + 𝑃𝑃−−(𝛼𝛼′; 𝛽𝛽′) − 
 

−𝑃𝑃+−(𝛼𝛼; 𝛽𝛽′) − 𝑃𝑃−+(𝛼𝛼′; 𝛽𝛽)                             (1) 
 
where 𝛼𝛼′ = 𝛼𝛼 + 𝜋𝜋/2 and 𝛽𝛽′ = 𝛽𝛽 + 𝜋𝜋/2 . Fluctuations in the 
number of detections would give rise to a spread in the values 
of 𝑃𝑃𝑖𝑖𝑖𝑖  and  𝐸𝐸𝑐𝑐(1; 1|𝛼𝛼; 𝛽𝛽). This correlation function is normally 
linked to the polarimetric Stokes measurements or the quantum 
Pauli vector operators and has the same form in both the 
quantum and classical regimes [7], so that its use in the Clauser-
Horne-Shimony-Holt (CHSH) inequality cannot discriminate 
between quantum and classical outcomes.   

For the CHSH inequality [4], the correlation probability is 
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𝑃𝑃++(𝛼𝛼; 𝛽𝛽) = 𝑁𝑁++(𝛼𝛼; 𝛽𝛽)/ 𝑁𝑁𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 where 𝑁𝑁++ is the number of 
coincident counts of photons and  𝑁𝑁𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 is the number of all 
coincident detections for all four settings 𝑁𝑁𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 =
𝑁𝑁++(𝛼𝛼; 𝛽𝛽) + 𝑁𝑁−−(𝛼𝛼′; 𝛽𝛽′) + 𝑁𝑁+−(𝛼𝛼; 𝛽𝛽′) + 𝑁𝑁−+(𝛼𝛼′; 𝛽𝛽). 
However, this normalization is mathematical because the 
physical number 𝑁𝑁𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 = 𝑁𝑁𝑖𝑖𝑛𝑛 of initiated photon-pairs is very 
much larger as photons are lost between the source and the 
photodetectors, for various reasons, thereby throwing doubt 
about the real statistics. This normalization makes a violation 
of the CHSC impossible as  𝑁𝑁++/𝑁𝑁𝑖𝑖𝑛𝑛 ≪ 0.1.  

The Clauser-Horne (CH) inequality has arbitrary values for the 
two measurement settings, i.e., 𝛼𝛼 𝑎𝑎𝑎𝑎𝑎𝑎 𝛼𝛼′ as well as  𝛽𝛽 𝑎𝑎𝑎𝑎𝑎𝑎 𝛽𝛽′  
are set separately. The CH inequality also contains correlations 
between ‘1’s and ‘0’s, so that, in terms of binary-valued 
probabilities  𝑝𝑝 (1,1; 𝛼𝛼, 𝛽𝛽) and similar forms, [10-11], the 
inequality is written as: 

 
𝑝𝑝 (1,1; 𝛼𝛼, 𝛽𝛽) −  𝑝𝑝 (1,1; 𝛼𝛼′,  𝛽𝛽′) ≤            

         ≤ 𝑝𝑝 (1, 0; 𝛼𝛼, 𝛽𝛽′) + 𝑝𝑝 (0,1; 𝛼𝛼′, 𝛽𝛽)     (2) 
 
with the normalization factor 𝑁𝑁𝑖𝑖𝑛𝑛 of initiated events being used. 
But, as only one term of the four terms is measured in any given 
run, the linear combination would relate the maximal values on 
the left-hand side to the minimal values on the right-hand side. 
With such probabilities for all four terms, the opposite 
requirements of the inequality for the coincident detections of 
(1;1) on the left-hand side, and for only one-location detection 
(1;0) or (0;1) on the right-hand side, make a violation 
impossible, mathematically, unless arbitrary values are selected 
from various data sets. In this case, the inequality becomes 
physically meaningless. 

For an input of multi-photon states, loss effects may not 
annihilate all the input photons, so that the number of detections 
increases regardless of the projective probability 𝑝𝑝(𝛼𝛼) = 𝑐𝑐𝑜𝑜𝑜𝑜2 𝛼𝛼 
which provides a mathematical average. For a single-photon 
input, the density distribution per solid angle ∆Ω  of the mixed 
quantum state arising from spontaneous emission that follows 
the radiation pattern of an oscillating dipole is [16-17]: 

 

𝑝𝑝(𝜃𝜃)∆Ω = 𝑐𝑐𝑜𝑜𝑜𝑜2 𝜃𝜃 ∆𝜃𝜃 ∆𝜑𝜑
2𝜋𝜋 ∫ 𝑐𝑐𝑜𝑜𝑜𝑜2 𝜃𝜃  𝑎𝑎𝜃𝜃𝜋𝜋

−𝜋𝜋
                                   (3) 

 
where the solid angle of emission is ∆Ω , the polar angle between 
the electric dipole vector and the polarization vector of the 
emitted photon is 𝜃𝜃, and 𝜑𝜑 is the azimuthal angle in the plane 
perpendicular to the dipole [16-17]. It is this distribution of the 
Rayleigh spontaneously emitted photons over the range 
{−𝜋𝜋, 𝜋𝜋}, that randomly rotates the polarization state of the 
absorbed photons. 

Physically, however, one single photon is scattered randomly 
by quantum Rayleigh photon-dipole interactions. By contrast, a 
group of identical photons can propagate in a straight line inside 
a dielectric medium through quantum Rayleigh stimulated 
emission. This process of stimulated emission can also amplify 
a spontaneously emitted photon with a rotated polarization, 
particularly so if the polarization modulator and analyser enable 
a lossless mode to propagate [13-14].  

B. Linking projective measurements to the theoretical 
correlation function  

 
Quantum correlations are evaluated as the expectation values 

of a product of operators [2-3]. For the projective operators  
�̂�𝛱(𝛼𝛼) = |𝐻𝐻𝛼𝛼⟩ ⟨𝐻𝐻𝛼𝛼| 𝑎𝑎𝑎𝑎𝑎𝑎 �̂�𝛱(𝛽𝛽) = |𝐻𝐻𝛽𝛽⟩ ⟨𝐻𝐻𝛽𝛽|  corresponding to 
the polarization filters with one detection setting at each of the 
two locations A and B, respectively, the probability of 
coincident detections has the form, cf. [3, eq. 13]: 

 
𝑝𝑝 (1,1; 𝛼𝛼, 𝛽𝛽) = |(⟨𝜓𝜓𝑖𝑖𝑛𝑛|�̂�𝛱(𝛼𝛼)) (�̂�𝛱(𝛽𝛽) |𝜓𝜓𝑖𝑖𝑛𝑛⟩)|

= |⟨Φ𝛼𝛼|Φ𝛽𝛽⟩|                                                (4) 

with |𝐻𝐻𝛼𝛼⟩ and |𝐻𝐻𝛽𝛽⟩  identifying the states of the polarization 
filters, and ⟨𝛷𝛷𝛼𝛼| = ⟨𝜓𝜓𝑖𝑖𝑛𝑛|�̂�𝛱(𝛼𝛼) for the Hermitian conjugate 
state.  For the polarization-entangled photons, the outcomes 
consist of the overlap between two state vectors rotated on the 
Poincaré sphere and are defined as the correlation function 
𝐶𝐶(𝛼𝛼; 𝛽𝛽) between two (mixed) states; by contrast, 
experimentally, the probability of coincident detections is 
calculated from the sum  of products of overlapping terms, i.e., 
 𝑝𝑝𝑐𝑐(𝑎𝑎, 𝑏𝑏) = (∑ 𝑎𝑎𝑛𝑛

𝑁𝑁
𝑛𝑛=1  𝑏𝑏𝑛𝑛)/𝑁𝑁 , as defined in the Introduction, 

and identifies the fraction of simultaneous detections at the 
level of each quantum event. This discrepancy is part of the 
disconnect between theory and measurement. 

For the basis states |𝐻𝐻⟩ 𝑎𝑎𝑎𝑎𝑎𝑎 |𝑉𝑉⟩ of the shared measurement 
Hilbert space, the projective amplitudes are ⟨𝐻𝐻𝛼𝛼|𝐻𝐻𝐴𝐴⟩ = 𝑐𝑐𝑜𝑜𝑜𝑜 𝛼𝛼, 
⟨𝐻𝐻𝛼𝛼|𝑉𝑉𝐴𝐴⟩ = 𝑜𝑜𝑠𝑠𝑎𝑎 𝛼𝛼,  ⟨𝐻𝐻𝛽𝛽|𝐻𝐻𝐵𝐵⟩ = 𝑐𝑐𝑜𝑜𝑜𝑜 𝛽𝛽 and  ⟨𝐻𝐻𝛽𝛽|𝑉𝑉𝐵𝐵⟩ = 𝑜𝑜𝑠𝑠𝑎𝑎 𝛽𝛽. The 
correlation function 𝐶𝐶(𝛼𝛼; 𝛽𝛽) of magnitude |𝐶𝐶(𝛼𝛼; 𝛽𝛽)| =
 𝑝𝑝 (1,1; 𝛼𝛼, 𝛽𝛽) between filter polarization states and for 
independent states of photons |𝜓𝜓𝑖𝑖𝑛𝑛⟩ becomes:  

𝐶𝐶(𝛼𝛼; 𝛽𝛽) = ⟨𝛷𝛷𝛼𝛼|𝛷𝛷𝛽𝛽⟩ = ⟨𝜓𝜓𝑖𝑖𝑛𝑛|𝐻𝐻𝛼𝛼⟩ ⟨𝐻𝐻𝛼𝛼|𝐻𝐻𝛽𝛽⟩⟨𝐻𝐻𝛽𝛽|𝜓𝜓𝑖𝑖𝑛𝑛⟩            (5𝑎𝑎) 

|𝜓𝜓𝑖𝑖𝑛𝑛⟩ = ( |𝐻𝐻⟩  + |𝑉𝑉⟩ )/ √2                                                      (5𝑏𝑏) 
 
  |𝐻𝐻𝛼𝛼⟩ = cos 𝛼𝛼 |𝐻𝐻⟩ + sin 𝛼𝛼  |𝑉𝑉⟩; |𝐻𝐻𝛽𝛽⟩ = cos 𝛽𝛽 |𝐻𝐻⟩ + sin 𝛽𝛽  |𝑉𝑉⟩ 

 (5c) 
𝐶𝐶(𝛼𝛼; 𝛽𝛽) = 0.5[𝑐𝑐𝑜𝑜𝑜𝑜 𝛼𝛼 + sin 𝛼𝛼] [𝑐𝑐𝑜𝑜𝑜𝑜(𝛼𝛼 − 𝛽𝛽)]  ×
                                                            ×  [𝑐𝑐𝑜𝑜𝑜𝑜 𝛽𝛽 +  𝑜𝑜𝑠𝑠𝑎𝑎 𝛽𝛽] =  

=  0.5 cos(𝛼𝛼 − 𝛽𝛽)[cos(𝛼𝛼 − 𝛽𝛽) + sin(𝛼𝛼 + 𝛽𝛽)]       (5𝑎𝑎) 
 

This correlation of eq. (5d) is composed of three terms indicated 
in the first equality. The projections of the input states onto the 
respective filters are given by the sum of the sine and cosine 
functions, while the term 𝑐𝑐𝑜𝑜𝑜𝑜(𝛼𝛼 − 𝛽𝛽)  indicates the overlap 
between the two filters. The magnitude of this correlation 
function or probability of coincident detections can reach a peak 
of unity for the symmetric case of  𝛼𝛼 = 𝛽𝛽 = 𝜋𝜋/4 𝑜𝑜𝑜𝑜 𝜋𝜋/4 ± 𝜋𝜋 , 
outperforming the coincidence values of 0.5 obtained with 
entangled states of photons as presented in Section V. 
 

III. CORRELATED OR COINCIDENT DETECTIONS OF 
INDEPENDENT PHOTONS 

A series or an ensemble of detection measurements is 
mathematically cast into a temporal vector 𝑣𝑣(𝛼𝛼, 𝜃𝜃𝐴𝐴) along 
polarization output angle 𝜃𝜃𝐴𝐴, and for a polarization input setting  
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𝑃𝑃++(𝛼𝛼; 𝛽𝛽) = 𝑁𝑁++(𝛼𝛼; 𝛽𝛽)/ 𝑁𝑁𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 where 𝑁𝑁++ is the number of 
coincident counts of photons and  𝑁𝑁𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 is the number of all 
coincident detections for all four settings 𝑁𝑁𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 =
𝑁𝑁++(𝛼𝛼; 𝛽𝛽) + 𝑁𝑁−−(𝛼𝛼′; 𝛽𝛽′) + 𝑁𝑁+−(𝛼𝛼; 𝛽𝛽′) + 𝑁𝑁−+(𝛼𝛼′; 𝛽𝛽). 
However, this normalization is mathematical because the 
physical number 𝑁𝑁𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 = 𝑁𝑁𝑖𝑖𝑛𝑛 of initiated photon-pairs is very 
much larger as photons are lost between the source and the 
photodetectors, for various reasons, thereby throwing doubt 
about the real statistics. This normalization makes a violation 
of the CHSC impossible as  𝑁𝑁++/𝑁𝑁𝑖𝑖𝑛𝑛 ≪ 0.1.  

The Clauser-Horne (CH) inequality has arbitrary values for the 
two measurement settings, i.e., 𝛼𝛼 𝑎𝑎𝑎𝑎𝑎𝑎 𝛼𝛼′ as well as  𝛽𝛽 𝑎𝑎𝑎𝑎𝑎𝑎 𝛽𝛽′  
are set separately. The CH inequality also contains correlations 
between ‘1’s and ‘0’s, so that, in terms of binary-valued 
probabilities  𝑝𝑝 (1,1; 𝛼𝛼, 𝛽𝛽) and similar forms, [10-11], the 
inequality is written as: 

 
𝑝𝑝 (1,1; 𝛼𝛼, 𝛽𝛽) −  𝑝𝑝 (1,1; 𝛼𝛼′,  𝛽𝛽′) ≤            

         ≤ 𝑝𝑝 (1, 0; 𝛼𝛼, 𝛽𝛽′) + 𝑝𝑝 (0,1; 𝛼𝛼′, 𝛽𝛽)     (2) 
 
with the normalization factor 𝑁𝑁𝑖𝑖𝑛𝑛 of initiated events being used. 
But, as only one term of the four terms is measured in any given 
run, the linear combination would relate the maximal values on 
the left-hand side to the minimal values on the right-hand side. 
With such probabilities for all four terms, the opposite 
requirements of the inequality for the coincident detections of 
(1;1) on the left-hand side, and for only one-location detection 
(1;0) or (0;1) on the right-hand side, make a violation 
impossible, mathematically, unless arbitrary values are selected 
from various data sets. In this case, the inequality becomes 
physically meaningless. 

For an input of multi-photon states, loss effects may not 
annihilate all the input photons, so that the number of detections 
increases regardless of the projective probability 𝑝𝑝(𝛼𝛼) = 𝑐𝑐𝑜𝑜𝑜𝑜2 𝛼𝛼 
which provides a mathematical average. For a single-photon 
input, the density distribution per solid angle ∆Ω  of the mixed 
quantum state arising from spontaneous emission that follows 
the radiation pattern of an oscillating dipole is [16-17]: 

 

𝑝𝑝(𝜃𝜃)∆Ω = 𝑐𝑐𝑜𝑜𝑜𝑜2 𝜃𝜃 ∆𝜃𝜃 ∆𝜑𝜑
2𝜋𝜋 ∫ 𝑐𝑐𝑜𝑜𝑜𝑜2 𝜃𝜃  𝑎𝑎𝜃𝜃𝜋𝜋

−𝜋𝜋
                                   (3) 

 
where the solid angle of emission is ∆Ω , the polar angle between 
the electric dipole vector and the polarization vector of the 
emitted photon is 𝜃𝜃, and 𝜑𝜑 is the azimuthal angle in the plane 
perpendicular to the dipole [16-17]. It is this distribution of the 
Rayleigh spontaneously emitted photons over the range 
{−𝜋𝜋, 𝜋𝜋}, that randomly rotates the polarization state of the 
absorbed photons. 

Physically, however, one single photon is scattered randomly 
by quantum Rayleigh photon-dipole interactions. By contrast, a 
group of identical photons can propagate in a straight line inside 
a dielectric medium through quantum Rayleigh stimulated 
emission. This process of stimulated emission can also amplify 
a spontaneously emitted photon with a rotated polarization, 
particularly so if the polarization modulator and analyser enable 
a lossless mode to propagate [13-14].  

B. Linking projective measurements to the theoretical 
correlation function  

 
Quantum correlations are evaluated as the expectation values 

of a product of operators [2-3]. For the projective operators  
�̂�𝛱(𝛼𝛼) = |𝐻𝐻𝛼𝛼⟩ ⟨𝐻𝐻𝛼𝛼| 𝑎𝑎𝑎𝑎𝑎𝑎 �̂�𝛱(𝛽𝛽) = |𝐻𝐻𝛽𝛽⟩ ⟨𝐻𝐻𝛽𝛽|  corresponding to 
the polarization filters with one detection setting at each of the 
two locations A and B, respectively, the probability of 
coincident detections has the form, cf. [3, eq. 13]: 

 
𝑝𝑝 (1,1; 𝛼𝛼, 𝛽𝛽) = |(⟨𝜓𝜓𝑖𝑖𝑛𝑛|�̂�𝛱(𝛼𝛼)) (�̂�𝛱(𝛽𝛽) |𝜓𝜓𝑖𝑖𝑛𝑛⟩)|

= |⟨Φ𝛼𝛼|Φ𝛽𝛽⟩|                                                (4) 

with |𝐻𝐻𝛼𝛼⟩ and |𝐻𝐻𝛽𝛽⟩  identifying the states of the polarization 
filters, and ⟨𝛷𝛷𝛼𝛼| = ⟨𝜓𝜓𝑖𝑖𝑛𝑛|�̂�𝛱(𝛼𝛼) for the Hermitian conjugate 
state.  For the polarization-entangled photons, the outcomes 
consist of the overlap between two state vectors rotated on the 
Poincaré sphere and are defined as the correlation function 
𝐶𝐶(𝛼𝛼; 𝛽𝛽) between two (mixed) states; by contrast, 
experimentally, the probability of coincident detections is 
calculated from the sum  of products of overlapping terms, i.e., 
 𝑝𝑝𝑐𝑐(𝑎𝑎, 𝑏𝑏) = (∑ 𝑎𝑎𝑛𝑛

𝑁𝑁
𝑛𝑛=1  𝑏𝑏𝑛𝑛)/𝑁𝑁 , as defined in the Introduction, 

and identifies the fraction of simultaneous detections at the 
level of each quantum event. This discrepancy is part of the 
disconnect between theory and measurement. 

For the basis states |𝐻𝐻⟩ 𝑎𝑎𝑎𝑎𝑎𝑎 |𝑉𝑉⟩ of the shared measurement 
Hilbert space, the projective amplitudes are ⟨𝐻𝐻𝛼𝛼|𝐻𝐻𝐴𝐴⟩ = 𝑐𝑐𝑜𝑜𝑜𝑜 𝛼𝛼, 
⟨𝐻𝐻𝛼𝛼|𝑉𝑉𝐴𝐴⟩ = 𝑜𝑜𝑠𝑠𝑎𝑎 𝛼𝛼,  ⟨𝐻𝐻𝛽𝛽|𝐻𝐻𝐵𝐵⟩ = 𝑐𝑐𝑜𝑜𝑜𝑜 𝛽𝛽 and  ⟨𝐻𝐻𝛽𝛽|𝑉𝑉𝐵𝐵⟩ = 𝑜𝑜𝑠𝑠𝑎𝑎 𝛽𝛽. The 
correlation function 𝐶𝐶(𝛼𝛼; 𝛽𝛽) of magnitude |𝐶𝐶(𝛼𝛼; 𝛽𝛽)| =
 𝑝𝑝 (1,1; 𝛼𝛼, 𝛽𝛽) between filter polarization states and for 
independent states of photons |𝜓𝜓𝑖𝑖𝑛𝑛⟩ becomes:  

𝐶𝐶(𝛼𝛼; 𝛽𝛽) = ⟨𝛷𝛷𝛼𝛼|𝛷𝛷𝛽𝛽⟩ = ⟨𝜓𝜓𝑖𝑖𝑛𝑛|𝐻𝐻𝛼𝛼⟩ ⟨𝐻𝐻𝛼𝛼|𝐻𝐻𝛽𝛽⟩⟨𝐻𝐻𝛽𝛽|𝜓𝜓𝑖𝑖𝑛𝑛⟩            (5𝑎𝑎) 

|𝜓𝜓𝑖𝑖𝑛𝑛⟩ = ( |𝐻𝐻⟩  + |𝑉𝑉⟩ )/ √2                                                      (5𝑏𝑏) 
 
  |𝐻𝐻𝛼𝛼⟩ = cos 𝛼𝛼 |𝐻𝐻⟩ + sin 𝛼𝛼  |𝑉𝑉⟩; |𝐻𝐻𝛽𝛽⟩ = cos 𝛽𝛽 |𝐻𝐻⟩ + sin 𝛽𝛽  |𝑉𝑉⟩ 

 (5c) 
𝐶𝐶(𝛼𝛼; 𝛽𝛽) = 0.5[𝑐𝑐𝑜𝑜𝑜𝑜 𝛼𝛼 + sin 𝛼𝛼] [𝑐𝑐𝑜𝑜𝑜𝑜(𝛼𝛼 − 𝛽𝛽)]  ×
                                                            ×  [𝑐𝑐𝑜𝑜𝑜𝑜 𝛽𝛽 +  𝑜𝑜𝑠𝑠𝑎𝑎 𝛽𝛽] =  

=  0.5 cos(𝛼𝛼 − 𝛽𝛽)[cos(𝛼𝛼 − 𝛽𝛽) + sin(𝛼𝛼 + 𝛽𝛽)]       (5𝑎𝑎) 
 

This correlation of eq. (5d) is composed of three terms indicated 
in the first equality. The projections of the input states onto the 
respective filters are given by the sum of the sine and cosine 
functions, while the term 𝑐𝑐𝑜𝑜𝑜𝑜(𝛼𝛼 − 𝛽𝛽)  indicates the overlap 
between the two filters. The magnitude of this correlation 
function or probability of coincident detections can reach a peak 
of unity for the symmetric case of  𝛼𝛼 = 𝛽𝛽 = 𝜋𝜋/4 𝑜𝑜𝑜𝑜 𝜋𝜋/4 ± 𝜋𝜋 , 
outperforming the coincidence values of 0.5 obtained with 
entangled states of photons as presented in Section V. 
 

III. CORRELATED OR COINCIDENT DETECTIONS OF 
INDEPENDENT PHOTONS 

A series or an ensemble of detection measurements is 
mathematically cast into a temporal vector 𝑣𝑣(𝛼𝛼, 𝜃𝜃𝐴𝐴) along 
polarization output angle 𝜃𝜃𝐴𝐴, and for a polarization input setting  
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𝑃𝑃++(𝛼𝛼; 𝛽𝛽) = 𝑁𝑁++(𝛼𝛼; 𝛽𝛽)/ 𝑁𝑁𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 where 𝑁𝑁++ is the number of 
coincident counts of photons and  𝑁𝑁𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 is the number of all 
coincident detections for all four settings 𝑁𝑁𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 =
𝑁𝑁++(𝛼𝛼; 𝛽𝛽) + 𝑁𝑁−−(𝛼𝛼′; 𝛽𝛽′) + 𝑁𝑁+−(𝛼𝛼; 𝛽𝛽′) + 𝑁𝑁−+(𝛼𝛼′; 𝛽𝛽). 
However, this normalization is mathematical because the 
physical number 𝑁𝑁𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 = 𝑁𝑁𝑖𝑖𝑛𝑛 of initiated photon-pairs is very 
much larger as photons are lost between the source and the 
photodetectors, for various reasons, thereby throwing doubt 
about the real statistics. This normalization makes a violation 
of the CHSC impossible as  𝑁𝑁++/𝑁𝑁𝑖𝑖𝑛𝑛 ≪ 0.1.  

The Clauser-Horne (CH) inequality has arbitrary values for the 
two measurement settings, i.e., 𝛼𝛼 𝑎𝑎𝑎𝑎𝑎𝑎 𝛼𝛼′ as well as  𝛽𝛽 𝑎𝑎𝑎𝑎𝑎𝑎 𝛽𝛽′  
are set separately. The CH inequality also contains correlations 
between ‘1’s and ‘0’s, so that, in terms of binary-valued 
probabilities  𝑝𝑝 (1,1; 𝛼𝛼, 𝛽𝛽) and similar forms, [10-11], the 
inequality is written as: 

 
𝑝𝑝 (1,1; 𝛼𝛼, 𝛽𝛽) −  𝑝𝑝 (1,1; 𝛼𝛼′,  𝛽𝛽′) ≤            

         ≤ 𝑝𝑝 (1, 0; 𝛼𝛼, 𝛽𝛽′) + 𝑝𝑝 (0,1; 𝛼𝛼′, 𝛽𝛽)     (2) 
 
with the normalization factor 𝑁𝑁𝑖𝑖𝑛𝑛 of initiated events being used. 
But, as only one term of the four terms is measured in any given 
run, the linear combination would relate the maximal values on 
the left-hand side to the minimal values on the right-hand side. 
With such probabilities for all four terms, the opposite 
requirements of the inequality for the coincident detections of 
(1;1) on the left-hand side, and for only one-location detection 
(1;0) or (0;1) on the right-hand side, make a violation 
impossible, mathematically, unless arbitrary values are selected 
from various data sets. In this case, the inequality becomes 
physically meaningless. 

For an input of multi-photon states, loss effects may not 
annihilate all the input photons, so that the number of detections 
increases regardless of the projective probability 𝑝𝑝(𝛼𝛼) = 𝑐𝑐𝑜𝑜𝑜𝑜2 𝛼𝛼 
which provides a mathematical average. For a single-photon 
input, the density distribution per solid angle ∆Ω  of the mixed 
quantum state arising from spontaneous emission that follows 
the radiation pattern of an oscillating dipole is [16-17]: 

 

𝑝𝑝(𝜃𝜃)∆Ω = 𝑐𝑐𝑜𝑜𝑜𝑜2 𝜃𝜃 ∆𝜃𝜃 ∆𝜑𝜑
2𝜋𝜋 ∫ 𝑐𝑐𝑜𝑜𝑜𝑜2 𝜃𝜃  𝑎𝑎𝜃𝜃𝜋𝜋

−𝜋𝜋
                                   (3) 

 
where the solid angle of emission is ∆Ω , the polar angle between 
the electric dipole vector and the polarization vector of the 
emitted photon is 𝜃𝜃, and 𝜑𝜑 is the azimuthal angle in the plane 
perpendicular to the dipole [16-17]. It is this distribution of the 
Rayleigh spontaneously emitted photons over the range 
{−𝜋𝜋, 𝜋𝜋}, that randomly rotates the polarization state of the 
absorbed photons. 

Physically, however, one single photon is scattered randomly 
by quantum Rayleigh photon-dipole interactions. By contrast, a 
group of identical photons can propagate in a straight line inside 
a dielectric medium through quantum Rayleigh stimulated 
emission. This process of stimulated emission can also amplify 
a spontaneously emitted photon with a rotated polarization, 
particularly so if the polarization modulator and analyser enable 
a lossless mode to propagate [13-14].  

B. Linking projective measurements to the theoretical 
correlation function  

 
Quantum correlations are evaluated as the expectation values 

of a product of operators [2-3]. For the projective operators  
�̂�𝛱(𝛼𝛼) = |𝐻𝐻𝛼𝛼⟩ ⟨𝐻𝐻𝛼𝛼| 𝑎𝑎𝑎𝑎𝑎𝑎 �̂�𝛱(𝛽𝛽) = |𝐻𝐻𝛽𝛽⟩ ⟨𝐻𝐻𝛽𝛽|  corresponding to 
the polarization filters with one detection setting at each of the 
two locations A and B, respectively, the probability of 
coincident detections has the form, cf. [3, eq. 13]: 

 
𝑝𝑝 (1,1; 𝛼𝛼, 𝛽𝛽) = |(⟨𝜓𝜓𝑖𝑖𝑛𝑛|�̂�𝛱(𝛼𝛼)) (�̂�𝛱(𝛽𝛽) |𝜓𝜓𝑖𝑖𝑛𝑛⟩)|

= |⟨Φ𝛼𝛼|Φ𝛽𝛽⟩|                                                (4) 

with |𝐻𝐻𝛼𝛼⟩ and |𝐻𝐻𝛽𝛽⟩  identifying the states of the polarization 
filters, and ⟨𝛷𝛷𝛼𝛼| = ⟨𝜓𝜓𝑖𝑖𝑛𝑛|�̂�𝛱(𝛼𝛼) for the Hermitian conjugate 
state.  For the polarization-entangled photons, the outcomes 
consist of the overlap between two state vectors rotated on the 
Poincaré sphere and are defined as the correlation function 
𝐶𝐶(𝛼𝛼; 𝛽𝛽) between two (mixed) states; by contrast, 
experimentally, the probability of coincident detections is 
calculated from the sum  of products of overlapping terms, i.e., 
 𝑝𝑝𝑐𝑐(𝑎𝑎, 𝑏𝑏) = (∑ 𝑎𝑎𝑛𝑛

𝑁𝑁
𝑛𝑛=1  𝑏𝑏𝑛𝑛)/𝑁𝑁 , as defined in the Introduction, 

and identifies the fraction of simultaneous detections at the 
level of each quantum event. This discrepancy is part of the 
disconnect between theory and measurement. 

For the basis states |𝐻𝐻⟩ 𝑎𝑎𝑎𝑎𝑎𝑎 |𝑉𝑉⟩ of the shared measurement 
Hilbert space, the projective amplitudes are ⟨𝐻𝐻𝛼𝛼|𝐻𝐻𝐴𝐴⟩ = 𝑐𝑐𝑜𝑜𝑜𝑜 𝛼𝛼, 
⟨𝐻𝐻𝛼𝛼|𝑉𝑉𝐴𝐴⟩ = 𝑜𝑜𝑠𝑠𝑎𝑎 𝛼𝛼,  ⟨𝐻𝐻𝛽𝛽|𝐻𝐻𝐵𝐵⟩ = 𝑐𝑐𝑜𝑜𝑜𝑜 𝛽𝛽 and  ⟨𝐻𝐻𝛽𝛽|𝑉𝑉𝐵𝐵⟩ = 𝑜𝑜𝑠𝑠𝑎𝑎 𝛽𝛽. The 
correlation function 𝐶𝐶(𝛼𝛼; 𝛽𝛽) of magnitude |𝐶𝐶(𝛼𝛼; 𝛽𝛽)| =
 𝑝𝑝 (1,1; 𝛼𝛼, 𝛽𝛽) between filter polarization states and for 
independent states of photons |𝜓𝜓𝑖𝑖𝑛𝑛⟩ becomes:  

𝐶𝐶(𝛼𝛼; 𝛽𝛽) = ⟨𝛷𝛷𝛼𝛼|𝛷𝛷𝛽𝛽⟩ = ⟨𝜓𝜓𝑖𝑖𝑛𝑛|𝐻𝐻𝛼𝛼⟩ ⟨𝐻𝐻𝛼𝛼|𝐻𝐻𝛽𝛽⟩⟨𝐻𝐻𝛽𝛽|𝜓𝜓𝑖𝑖𝑛𝑛⟩            (5𝑎𝑎) 

|𝜓𝜓𝑖𝑖𝑛𝑛⟩ = ( |𝐻𝐻⟩  + |𝑉𝑉⟩ )/ √2                                                      (5𝑏𝑏) 
 
  |𝐻𝐻𝛼𝛼⟩ = cos 𝛼𝛼 |𝐻𝐻⟩ + sin 𝛼𝛼  |𝑉𝑉⟩; |𝐻𝐻𝛽𝛽⟩ = cos 𝛽𝛽 |𝐻𝐻⟩ + sin 𝛽𝛽  |𝑉𝑉⟩ 

 (5c) 
𝐶𝐶(𝛼𝛼; 𝛽𝛽) = 0.5[𝑐𝑐𝑜𝑜𝑜𝑜 𝛼𝛼 + sin 𝛼𝛼] [𝑐𝑐𝑜𝑜𝑜𝑜(𝛼𝛼 − 𝛽𝛽)]  ×
                                                            ×  [𝑐𝑐𝑜𝑜𝑜𝑜 𝛽𝛽 +  𝑜𝑜𝑠𝑠𝑎𝑎 𝛽𝛽] =  

=  0.5 cos(𝛼𝛼 − 𝛽𝛽)[cos(𝛼𝛼 − 𝛽𝛽) + sin(𝛼𝛼 + 𝛽𝛽)]       (5𝑎𝑎) 
 

This correlation of eq. (5d) is composed of three terms indicated 
in the first equality. The projections of the input states onto the 
respective filters are given by the sum of the sine and cosine 
functions, while the term 𝑐𝑐𝑜𝑜𝑜𝑜(𝛼𝛼 − 𝛽𝛽)  indicates the overlap 
between the two filters. The magnitude of this correlation 
function or probability of coincident detections can reach a peak 
of unity for the symmetric case of  𝛼𝛼 = 𝛽𝛽 = 𝜋𝜋/4 𝑜𝑜𝑜𝑜 𝜋𝜋/4 ± 𝜋𝜋 , 
outperforming the coincidence values of 0.5 obtained with 
entangled states of photons as presented in Section V. 
 

III. CORRELATED OR COINCIDENT DETECTIONS OF 
INDEPENDENT PHOTONS 

A series or an ensemble of detection measurements is 
mathematically cast into a temporal vector 𝑣𝑣(𝛼𝛼, 𝜃𝜃𝐴𝐴) along 
polarization output angle 𝜃𝜃𝐴𝐴, and for a polarization input setting  
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𝑃𝑃++(𝛼𝛼; 𝛽𝛽) = 𝑁𝑁++(𝛼𝛼; 𝛽𝛽)/ 𝑁𝑁𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 where 𝑁𝑁++ is the number of 
coincident counts of photons and  𝑁𝑁𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 is the number of all 
coincident detections for all four settings 𝑁𝑁𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 =
𝑁𝑁++(𝛼𝛼; 𝛽𝛽) + 𝑁𝑁−−(𝛼𝛼′; 𝛽𝛽′) + 𝑁𝑁+−(𝛼𝛼; 𝛽𝛽′) + 𝑁𝑁−+(𝛼𝛼′; 𝛽𝛽). 
However, this normalization is mathematical because the 
physical number 𝑁𝑁𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 = 𝑁𝑁𝑖𝑖𝑛𝑛 of initiated photon-pairs is very 
much larger as photons are lost between the source and the 
photodetectors, for various reasons, thereby throwing doubt 
about the real statistics. This normalization makes a violation 
of the CHSC impossible as  𝑁𝑁++/𝑁𝑁𝑖𝑖𝑛𝑛 ≪ 0.1.  

The Clauser-Horne (CH) inequality has arbitrary values for the 
two measurement settings, i.e., 𝛼𝛼 𝑎𝑎𝑎𝑎𝑎𝑎 𝛼𝛼′ as well as  𝛽𝛽 𝑎𝑎𝑎𝑎𝑎𝑎 𝛽𝛽′  
are set separately. The CH inequality also contains correlations 
between ‘1’s and ‘0’s, so that, in terms of binary-valued 
probabilities  𝑝𝑝 (1,1; 𝛼𝛼, 𝛽𝛽) and similar forms, [10-11], the 
inequality is written as: 

 
𝑝𝑝 (1,1; 𝛼𝛼, 𝛽𝛽) −  𝑝𝑝 (1,1; 𝛼𝛼′,  𝛽𝛽′) ≤            

         ≤ 𝑝𝑝 (1, 0; 𝛼𝛼, 𝛽𝛽′) + 𝑝𝑝 (0,1; 𝛼𝛼′, 𝛽𝛽)     (2) 
 
with the normalization factor 𝑁𝑁𝑖𝑖𝑛𝑛 of initiated events being used. 
But, as only one term of the four terms is measured in any given 
run, the linear combination would relate the maximal values on 
the left-hand side to the minimal values on the right-hand side. 
With such probabilities for all four terms, the opposite 
requirements of the inequality for the coincident detections of 
(1;1) on the left-hand side, and for only one-location detection 
(1;0) or (0;1) on the right-hand side, make a violation 
impossible, mathematically, unless arbitrary values are selected 
from various data sets. In this case, the inequality becomes 
physically meaningless. 

For an input of multi-photon states, loss effects may not 
annihilate all the input photons, so that the number of detections 
increases regardless of the projective probability 𝑝𝑝(𝛼𝛼) = 𝑐𝑐𝑜𝑜𝑜𝑜2 𝛼𝛼 
which provides a mathematical average. For a single-photon 
input, the density distribution per solid angle ∆Ω  of the mixed 
quantum state arising from spontaneous emission that follows 
the radiation pattern of an oscillating dipole is [16-17]: 

 

𝑝𝑝(𝜃𝜃)∆Ω = 𝑐𝑐𝑜𝑜𝑜𝑜2 𝜃𝜃 ∆𝜃𝜃 ∆𝜑𝜑
2𝜋𝜋 ∫ 𝑐𝑐𝑜𝑜𝑜𝑜2 𝜃𝜃  𝑎𝑎𝜃𝜃𝜋𝜋

−𝜋𝜋
                                   (3) 

 
where the solid angle of emission is ∆Ω , the polar angle between 
the electric dipole vector and the polarization vector of the 
emitted photon is 𝜃𝜃, and 𝜑𝜑 is the azimuthal angle in the plane 
perpendicular to the dipole [16-17]. It is this distribution of the 
Rayleigh spontaneously emitted photons over the range 
{−𝜋𝜋, 𝜋𝜋}, that randomly rotates the polarization state of the 
absorbed photons. 

Physically, however, one single photon is scattered randomly 
by quantum Rayleigh photon-dipole interactions. By contrast, a 
group of identical photons can propagate in a straight line inside 
a dielectric medium through quantum Rayleigh stimulated 
emission. This process of stimulated emission can also amplify 
a spontaneously emitted photon with a rotated polarization, 
particularly so if the polarization modulator and analyser enable 
a lossless mode to propagate [13-14].  

B. Linking projective measurements to the theoretical 
correlation function  

 
Quantum correlations are evaluated as the expectation values 

of a product of operators [2-3]. For the projective operators  
�̂�𝛱(𝛼𝛼) = |𝐻𝐻𝛼𝛼⟩ ⟨𝐻𝐻𝛼𝛼| 𝑎𝑎𝑎𝑎𝑎𝑎 �̂�𝛱(𝛽𝛽) = |𝐻𝐻𝛽𝛽⟩ ⟨𝐻𝐻𝛽𝛽|  corresponding to 
the polarization filters with one detection setting at each of the 
two locations A and B, respectively, the probability of 
coincident detections has the form, cf. [3, eq. 13]: 

 
𝑝𝑝 (1,1; 𝛼𝛼, 𝛽𝛽) = |(⟨𝜓𝜓𝑖𝑖𝑛𝑛|�̂�𝛱(𝛼𝛼)) (�̂�𝛱(𝛽𝛽) |𝜓𝜓𝑖𝑖𝑛𝑛⟩)|

= |⟨Φ𝛼𝛼|Φ𝛽𝛽⟩|                                                (4) 

with |𝐻𝐻𝛼𝛼⟩ and |𝐻𝐻𝛽𝛽⟩  identifying the states of the polarization 
filters, and ⟨𝛷𝛷𝛼𝛼| = ⟨𝜓𝜓𝑖𝑖𝑛𝑛|�̂�𝛱(𝛼𝛼) for the Hermitian conjugate 
state.  For the polarization-entangled photons, the outcomes 
consist of the overlap between two state vectors rotated on the 
Poincaré sphere and are defined as the correlation function 
𝐶𝐶(𝛼𝛼; 𝛽𝛽) between two (mixed) states; by contrast, 
experimentally, the probability of coincident detections is 
calculated from the sum  of products of overlapping terms, i.e., 
 𝑝𝑝𝑐𝑐(𝑎𝑎, 𝑏𝑏) = (∑ 𝑎𝑎𝑛𝑛

𝑁𝑁
𝑛𝑛=1  𝑏𝑏𝑛𝑛)/𝑁𝑁 , as defined in the Introduction, 

and identifies the fraction of simultaneous detections at the 
level of each quantum event. This discrepancy is part of the 
disconnect between theory and measurement. 

For the basis states |𝐻𝐻⟩ 𝑎𝑎𝑎𝑎𝑎𝑎 |𝑉𝑉⟩ of the shared measurement 
Hilbert space, the projective amplitudes are ⟨𝐻𝐻𝛼𝛼|𝐻𝐻𝐴𝐴⟩ = 𝑐𝑐𝑜𝑜𝑜𝑜 𝛼𝛼, 
⟨𝐻𝐻𝛼𝛼|𝑉𝑉𝐴𝐴⟩ = 𝑜𝑜𝑠𝑠𝑎𝑎 𝛼𝛼,  ⟨𝐻𝐻𝛽𝛽|𝐻𝐻𝐵𝐵⟩ = 𝑐𝑐𝑜𝑜𝑜𝑜 𝛽𝛽 and  ⟨𝐻𝐻𝛽𝛽|𝑉𝑉𝐵𝐵⟩ = 𝑜𝑜𝑠𝑠𝑎𝑎 𝛽𝛽. The 
correlation function 𝐶𝐶(𝛼𝛼; 𝛽𝛽) of magnitude |𝐶𝐶(𝛼𝛼; 𝛽𝛽)| =
 𝑝𝑝 (1,1; 𝛼𝛼, 𝛽𝛽) between filter polarization states and for 
independent states of photons |𝜓𝜓𝑖𝑖𝑛𝑛⟩ becomes:  

𝐶𝐶(𝛼𝛼; 𝛽𝛽) = ⟨𝛷𝛷𝛼𝛼|𝛷𝛷𝛽𝛽⟩ = ⟨𝜓𝜓𝑖𝑖𝑛𝑛|𝐻𝐻𝛼𝛼⟩ ⟨𝐻𝐻𝛼𝛼|𝐻𝐻𝛽𝛽⟩⟨𝐻𝐻𝛽𝛽|𝜓𝜓𝑖𝑖𝑛𝑛⟩            (5𝑎𝑎) 

|𝜓𝜓𝑖𝑖𝑛𝑛⟩ = ( |𝐻𝐻⟩  + |𝑉𝑉⟩ )/ √2                                                      (5𝑏𝑏) 
 
  |𝐻𝐻𝛼𝛼⟩ = cos 𝛼𝛼 |𝐻𝐻⟩ + sin 𝛼𝛼  |𝑉𝑉⟩; |𝐻𝐻𝛽𝛽⟩ = cos 𝛽𝛽 |𝐻𝐻⟩ + sin 𝛽𝛽  |𝑉𝑉⟩ 

 (5c) 
𝐶𝐶(𝛼𝛼; 𝛽𝛽) = 0.5[𝑐𝑐𝑜𝑜𝑜𝑜 𝛼𝛼 + sin 𝛼𝛼] [𝑐𝑐𝑜𝑜𝑜𝑜(𝛼𝛼 − 𝛽𝛽)]  ×
                                                            ×  [𝑐𝑐𝑜𝑜𝑜𝑜 𝛽𝛽 +  𝑜𝑜𝑠𝑠𝑎𝑎 𝛽𝛽] =  

=  0.5 cos(𝛼𝛼 − 𝛽𝛽)[cos(𝛼𝛼 − 𝛽𝛽) + sin(𝛼𝛼 + 𝛽𝛽)]       (5𝑎𝑎) 
 

This correlation of eq. (5d) is composed of three terms indicated 
in the first equality. The projections of the input states onto the 
respective filters are given by the sum of the sine and cosine 
functions, while the term 𝑐𝑐𝑜𝑜𝑜𝑜(𝛼𝛼 − 𝛽𝛽)  indicates the overlap 
between the two filters. The magnitude of this correlation 
function or probability of coincident detections can reach a peak 
of unity for the symmetric case of  𝛼𝛼 = 𝛽𝛽 = 𝜋𝜋/4 𝑜𝑜𝑜𝑜 𝜋𝜋/4 ± 𝜋𝜋 , 
outperforming the coincidence values of 0.5 obtained with 
entangled states of photons as presented in Section V. 
 

III. CORRELATED OR COINCIDENT DETECTIONS OF 
INDEPENDENT PHOTONS 

A series or an ensemble of detection measurements is 
mathematically cast into a temporal vector 𝑣𝑣(𝛼𝛼, 𝜃𝜃𝐴𝐴) along 
polarization output angle 𝜃𝜃𝐴𝐴, and for a polarization input setting  
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𝑃𝑃++(𝛼𝛼; 𝛽𝛽) = 𝑁𝑁++(𝛼𝛼; 𝛽𝛽)/ 𝑁𝑁𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 where 𝑁𝑁++ is the number of 
coincident counts of photons and  𝑁𝑁𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 is the number of all 
coincident detections for all four settings 𝑁𝑁𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 =
𝑁𝑁++(𝛼𝛼; 𝛽𝛽) + 𝑁𝑁−−(𝛼𝛼′; 𝛽𝛽′) + 𝑁𝑁+−(𝛼𝛼; 𝛽𝛽′) + 𝑁𝑁−+(𝛼𝛼′; 𝛽𝛽). 
However, this normalization is mathematical because the 
physical number 𝑁𝑁𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 = 𝑁𝑁𝑖𝑖𝑛𝑛 of initiated photon-pairs is very 
much larger as photons are lost between the source and the 
photodetectors, for various reasons, thereby throwing doubt 
about the real statistics. This normalization makes a violation 
of the CHSC impossible as  𝑁𝑁++/𝑁𝑁𝑖𝑖𝑛𝑛 ≪ 0.1.  

The Clauser-Horne (CH) inequality has arbitrary values for the 
two measurement settings, i.e., 𝛼𝛼 𝑎𝑎𝑎𝑎𝑎𝑎 𝛼𝛼′ as well as  𝛽𝛽 𝑎𝑎𝑎𝑎𝑎𝑎 𝛽𝛽′  
are set separately. The CH inequality also contains correlations 
between ‘1’s and ‘0’s, so that, in terms of binary-valued 
probabilities  𝑝𝑝 (1,1; 𝛼𝛼, 𝛽𝛽) and similar forms, [10-11], the 
inequality is written as: 

 
𝑝𝑝 (1,1; 𝛼𝛼, 𝛽𝛽) −  𝑝𝑝 (1,1; 𝛼𝛼′,  𝛽𝛽′) ≤            

         ≤ 𝑝𝑝 (1, 0; 𝛼𝛼, 𝛽𝛽′) + 𝑝𝑝 (0,1; 𝛼𝛼′, 𝛽𝛽)     (2) 
 
with the normalization factor 𝑁𝑁𝑖𝑖𝑛𝑛 of initiated events being used. 
But, as only one term of the four terms is measured in any given 
run, the linear combination would relate the maximal values on 
the left-hand side to the minimal values on the right-hand side. 
With such probabilities for all four terms, the opposite 
requirements of the inequality for the coincident detections of 
(1;1) on the left-hand side, and for only one-location detection 
(1;0) or (0;1) on the right-hand side, make a violation 
impossible, mathematically, unless arbitrary values are selected 
from various data sets. In this case, the inequality becomes 
physically meaningless. 

For an input of multi-photon states, loss effects may not 
annihilate all the input photons, so that the number of detections 
increases regardless of the projective probability 𝑝𝑝(𝛼𝛼) = 𝑐𝑐𝑜𝑜𝑜𝑜2 𝛼𝛼 
which provides a mathematical average. For a single-photon 
input, the density distribution per solid angle ∆Ω  of the mixed 
quantum state arising from spontaneous emission that follows 
the radiation pattern of an oscillating dipole is [16-17]: 

 

𝑝𝑝(𝜃𝜃)∆Ω = 𝑐𝑐𝑜𝑜𝑜𝑜2 𝜃𝜃 ∆𝜃𝜃 ∆𝜑𝜑
2𝜋𝜋 ∫ 𝑐𝑐𝑜𝑜𝑜𝑜2 𝜃𝜃  𝑎𝑎𝜃𝜃𝜋𝜋

−𝜋𝜋
                                   (3) 

 
where the solid angle of emission is ∆Ω , the polar angle between 
the electric dipole vector and the polarization vector of the 
emitted photon is 𝜃𝜃, and 𝜑𝜑 is the azimuthal angle in the plane 
perpendicular to the dipole [16-17]. It is this distribution of the 
Rayleigh spontaneously emitted photons over the range 
{−𝜋𝜋, 𝜋𝜋}, that randomly rotates the polarization state of the 
absorbed photons. 

Physically, however, one single photon is scattered randomly 
by quantum Rayleigh photon-dipole interactions. By contrast, a 
group of identical photons can propagate in a straight line inside 
a dielectric medium through quantum Rayleigh stimulated 
emission. This process of stimulated emission can also amplify 
a spontaneously emitted photon with a rotated polarization, 
particularly so if the polarization modulator and analyser enable 
a lossless mode to propagate [13-14].  

B. Linking projective measurements to the theoretical 
correlation function  

 
Quantum correlations are evaluated as the expectation values 

of a product of operators [2-3]. For the projective operators  
�̂�𝛱(𝛼𝛼) = |𝐻𝐻𝛼𝛼⟩ ⟨𝐻𝐻𝛼𝛼| 𝑎𝑎𝑎𝑎𝑎𝑎 �̂�𝛱(𝛽𝛽) = |𝐻𝐻𝛽𝛽⟩ ⟨𝐻𝐻𝛽𝛽|  corresponding to 
the polarization filters with one detection setting at each of the 
two locations A and B, respectively, the probability of 
coincident detections has the form, cf. [3, eq. 13]: 

 
𝑝𝑝 (1,1; 𝛼𝛼, 𝛽𝛽) = |(⟨𝜓𝜓𝑖𝑖𝑛𝑛|�̂�𝛱(𝛼𝛼)) (�̂�𝛱(𝛽𝛽) |𝜓𝜓𝑖𝑖𝑛𝑛⟩)|

= |⟨Φ𝛼𝛼|Φ𝛽𝛽⟩|                                                (4) 

with |𝐻𝐻𝛼𝛼⟩ and |𝐻𝐻𝛽𝛽⟩  identifying the states of the polarization 
filters, and ⟨𝛷𝛷𝛼𝛼| = ⟨𝜓𝜓𝑖𝑖𝑛𝑛|�̂�𝛱(𝛼𝛼) for the Hermitian conjugate 
state.  For the polarization-entangled photons, the outcomes 
consist of the overlap between two state vectors rotated on the 
Poincaré sphere and are defined as the correlation function 
𝐶𝐶(𝛼𝛼; 𝛽𝛽) between two (mixed) states; by contrast, 
experimentally, the probability of coincident detections is 
calculated from the sum  of products of overlapping terms, i.e., 
 𝑝𝑝𝑐𝑐(𝑎𝑎, 𝑏𝑏) = (∑ 𝑎𝑎𝑛𝑛

𝑁𝑁
𝑛𝑛=1  𝑏𝑏𝑛𝑛)/𝑁𝑁 , as defined in the Introduction, 

and identifies the fraction of simultaneous detections at the 
level of each quantum event. This discrepancy is part of the 
disconnect between theory and measurement. 

For the basis states |𝐻𝐻⟩ 𝑎𝑎𝑎𝑎𝑎𝑎 |𝑉𝑉⟩ of the shared measurement 
Hilbert space, the projective amplitudes are ⟨𝐻𝐻𝛼𝛼|𝐻𝐻𝐴𝐴⟩ = 𝑐𝑐𝑜𝑜𝑜𝑜 𝛼𝛼, 
⟨𝐻𝐻𝛼𝛼|𝑉𝑉𝐴𝐴⟩ = 𝑜𝑜𝑠𝑠𝑎𝑎 𝛼𝛼,  ⟨𝐻𝐻𝛽𝛽|𝐻𝐻𝐵𝐵⟩ = 𝑐𝑐𝑜𝑜𝑜𝑜 𝛽𝛽 and  ⟨𝐻𝐻𝛽𝛽|𝑉𝑉𝐵𝐵⟩ = 𝑜𝑜𝑠𝑠𝑎𝑎 𝛽𝛽. The 
correlation function 𝐶𝐶(𝛼𝛼; 𝛽𝛽) of magnitude |𝐶𝐶(𝛼𝛼; 𝛽𝛽)| =
 𝑝𝑝 (1,1; 𝛼𝛼, 𝛽𝛽) between filter polarization states and for 
independent states of photons |𝜓𝜓𝑖𝑖𝑛𝑛⟩ becomes:  

𝐶𝐶(𝛼𝛼; 𝛽𝛽) = ⟨𝛷𝛷𝛼𝛼|𝛷𝛷𝛽𝛽⟩ = ⟨𝜓𝜓𝑖𝑖𝑛𝑛|𝐻𝐻𝛼𝛼⟩ ⟨𝐻𝐻𝛼𝛼|𝐻𝐻𝛽𝛽⟩⟨𝐻𝐻𝛽𝛽|𝜓𝜓𝑖𝑖𝑛𝑛⟩            (5𝑎𝑎) 

|𝜓𝜓𝑖𝑖𝑛𝑛⟩ = ( |𝐻𝐻⟩  + |𝑉𝑉⟩ )/ √2                                                      (5𝑏𝑏) 
 
  |𝐻𝐻𝛼𝛼⟩ = cos 𝛼𝛼 |𝐻𝐻⟩ + sin 𝛼𝛼  |𝑉𝑉⟩; |𝐻𝐻𝛽𝛽⟩ = cos 𝛽𝛽 |𝐻𝐻⟩ + sin 𝛽𝛽  |𝑉𝑉⟩ 

 (5c) 
𝐶𝐶(𝛼𝛼; 𝛽𝛽) = 0.5[𝑐𝑐𝑜𝑜𝑜𝑜 𝛼𝛼 + sin 𝛼𝛼] [𝑐𝑐𝑜𝑜𝑜𝑜(𝛼𝛼 − 𝛽𝛽)]  ×
                                                            ×  [𝑐𝑐𝑜𝑜𝑜𝑜 𝛽𝛽 +  𝑜𝑜𝑠𝑠𝑎𝑎 𝛽𝛽] =  

=  0.5 cos(𝛼𝛼 − 𝛽𝛽)[cos(𝛼𝛼 − 𝛽𝛽) + sin(𝛼𝛼 + 𝛽𝛽)]       (5𝑎𝑎) 
 

This correlation of eq. (5d) is composed of three terms indicated 
in the first equality. The projections of the input states onto the 
respective filters are given by the sum of the sine and cosine 
functions, while the term 𝑐𝑐𝑜𝑜𝑜𝑜(𝛼𝛼 − 𝛽𝛽)  indicates the overlap 
between the two filters. The magnitude of this correlation 
function or probability of coincident detections can reach a peak 
of unity for the symmetric case of  𝛼𝛼 = 𝛽𝛽 = 𝜋𝜋/4 𝑜𝑜𝑜𝑜 𝜋𝜋/4 ± 𝜋𝜋 , 
outperforming the coincidence values of 0.5 obtained with 
entangled states of photons as presented in Section V. 
 

III. CORRELATED OR COINCIDENT DETECTIONS OF 
INDEPENDENT PHOTONS 

A series or an ensemble of detection measurements is 
mathematically cast into a temporal vector 𝑣𝑣(𝛼𝛼, 𝜃𝜃𝐴𝐴) along 
polarization output angle 𝜃𝜃𝐴𝐴, and for a polarization input setting  
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𝑃𝑃++(𝛼𝛼; 𝛽𝛽) = 𝑁𝑁++(𝛼𝛼; 𝛽𝛽)/ 𝑁𝑁𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 where 𝑁𝑁++ is the number of 
coincident counts of photons and  𝑁𝑁𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 is the number of all 
coincident detections for all four settings 𝑁𝑁𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 =
𝑁𝑁++(𝛼𝛼; 𝛽𝛽) + 𝑁𝑁−−(𝛼𝛼′; 𝛽𝛽′) + 𝑁𝑁+−(𝛼𝛼; 𝛽𝛽′) + 𝑁𝑁−+(𝛼𝛼′; 𝛽𝛽). 
However, this normalization is mathematical because the 
physical number 𝑁𝑁𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 = 𝑁𝑁𝑖𝑖𝑛𝑛 of initiated photon-pairs is very 
much larger as photons are lost between the source and the 
photodetectors, for various reasons, thereby throwing doubt 
about the real statistics. This normalization makes a violation 
of the CHSC impossible as  𝑁𝑁++/𝑁𝑁𝑖𝑖𝑛𝑛 ≪ 0.1.  

The Clauser-Horne (CH) inequality has arbitrary values for the 
two measurement settings, i.e., 𝛼𝛼 𝑎𝑎𝑎𝑎𝑎𝑎 𝛼𝛼′ as well as  𝛽𝛽 𝑎𝑎𝑎𝑎𝑎𝑎 𝛽𝛽′  
are set separately. The CH inequality also contains correlations 
between ‘1’s and ‘0’s, so that, in terms of binary-valued 
probabilities  𝑝𝑝 (1,1; 𝛼𝛼, 𝛽𝛽) and similar forms, [10-11], the 
inequality is written as: 

 
𝑝𝑝 (1,1; 𝛼𝛼, 𝛽𝛽) −  𝑝𝑝 (1,1; 𝛼𝛼′,  𝛽𝛽′) ≤            

         ≤ 𝑝𝑝 (1, 0; 𝛼𝛼, 𝛽𝛽′) + 𝑝𝑝 (0,1; 𝛼𝛼′, 𝛽𝛽)     (2) 
 
with the normalization factor 𝑁𝑁𝑖𝑖𝑛𝑛 of initiated events being used. 
But, as only one term of the four terms is measured in any given 
run, the linear combination would relate the maximal values on 
the left-hand side to the minimal values on the right-hand side. 
With such probabilities for all four terms, the opposite 
requirements of the inequality for the coincident detections of 
(1;1) on the left-hand side, and for only one-location detection 
(1;0) or (0;1) on the right-hand side, make a violation 
impossible, mathematically, unless arbitrary values are selected 
from various data sets. In this case, the inequality becomes 
physically meaningless. 

For an input of multi-photon states, loss effects may not 
annihilate all the input photons, so that the number of detections 
increases regardless of the projective probability 𝑝𝑝(𝛼𝛼) = 𝑐𝑐𝑜𝑜𝑜𝑜2 𝛼𝛼 
which provides a mathematical average. For a single-photon 
input, the density distribution per solid angle ∆Ω  of the mixed 
quantum state arising from spontaneous emission that follows 
the radiation pattern of an oscillating dipole is [16-17]: 

 

𝑝𝑝(𝜃𝜃)∆Ω = 𝑐𝑐𝑜𝑜𝑜𝑜2 𝜃𝜃 ∆𝜃𝜃 ∆𝜑𝜑
2𝜋𝜋 ∫ 𝑐𝑐𝑜𝑜𝑜𝑜2 𝜃𝜃  𝑎𝑎𝜃𝜃𝜋𝜋

−𝜋𝜋
                                   (3) 

 
where the solid angle of emission is ∆Ω , the polar angle between 
the electric dipole vector and the polarization vector of the 
emitted photon is 𝜃𝜃, and 𝜑𝜑 is the azimuthal angle in the plane 
perpendicular to the dipole [16-17]. It is this distribution of the 
Rayleigh spontaneously emitted photons over the range 
{−𝜋𝜋, 𝜋𝜋}, that randomly rotates the polarization state of the 
absorbed photons. 

Physically, however, one single photon is scattered randomly 
by quantum Rayleigh photon-dipole interactions. By contrast, a 
group of identical photons can propagate in a straight line inside 
a dielectric medium through quantum Rayleigh stimulated 
emission. This process of stimulated emission can also amplify 
a spontaneously emitted photon with a rotated polarization, 
particularly so if the polarization modulator and analyser enable 
a lossless mode to propagate [13-14].  

B. Linking projective measurements to the theoretical 
correlation function  

 
Quantum correlations are evaluated as the expectation values 

of a product of operators [2-3]. For the projective operators  
�̂�𝛱(𝛼𝛼) = |𝐻𝐻𝛼𝛼⟩ ⟨𝐻𝐻𝛼𝛼| 𝑎𝑎𝑎𝑎𝑎𝑎 �̂�𝛱(𝛽𝛽) = |𝐻𝐻𝛽𝛽⟩ ⟨𝐻𝐻𝛽𝛽|  corresponding to 
the polarization filters with one detection setting at each of the 
two locations A and B, respectively, the probability of 
coincident detections has the form, cf. [3, eq. 13]: 

 
𝑝𝑝 (1,1; 𝛼𝛼, 𝛽𝛽) = |(⟨𝜓𝜓𝑖𝑖𝑛𝑛|�̂�𝛱(𝛼𝛼)) (�̂�𝛱(𝛽𝛽) |𝜓𝜓𝑖𝑖𝑛𝑛⟩)|

= |⟨Φ𝛼𝛼|Φ𝛽𝛽⟩|                                                (4) 

with |𝐻𝐻𝛼𝛼⟩ and |𝐻𝐻𝛽𝛽⟩  identifying the states of the polarization 
filters, and ⟨𝛷𝛷𝛼𝛼| = ⟨𝜓𝜓𝑖𝑖𝑛𝑛|�̂�𝛱(𝛼𝛼) for the Hermitian conjugate 
state.  For the polarization-entangled photons, the outcomes 
consist of the overlap between two state vectors rotated on the 
Poincaré sphere and are defined as the correlation function 
𝐶𝐶(𝛼𝛼; 𝛽𝛽) between two (mixed) states; by contrast, 
experimentally, the probability of coincident detections is 
calculated from the sum  of products of overlapping terms, i.e., 
 𝑝𝑝𝑐𝑐(𝑎𝑎, 𝑏𝑏) = (∑ 𝑎𝑎𝑛𝑛

𝑁𝑁
𝑛𝑛=1  𝑏𝑏𝑛𝑛)/𝑁𝑁 , as defined in the Introduction, 

and identifies the fraction of simultaneous detections at the 
level of each quantum event. This discrepancy is part of the 
disconnect between theory and measurement. 

For the basis states |𝐻𝐻⟩ 𝑎𝑎𝑎𝑎𝑎𝑎 |𝑉𝑉⟩ of the shared measurement 
Hilbert space, the projective amplitudes are ⟨𝐻𝐻𝛼𝛼|𝐻𝐻𝐴𝐴⟩ = 𝑐𝑐𝑜𝑜𝑜𝑜 𝛼𝛼, 
⟨𝐻𝐻𝛼𝛼|𝑉𝑉𝐴𝐴⟩ = 𝑜𝑜𝑠𝑠𝑎𝑎 𝛼𝛼,  ⟨𝐻𝐻𝛽𝛽|𝐻𝐻𝐵𝐵⟩ = 𝑐𝑐𝑜𝑜𝑜𝑜 𝛽𝛽 and  ⟨𝐻𝐻𝛽𝛽|𝑉𝑉𝐵𝐵⟩ = 𝑜𝑜𝑠𝑠𝑎𝑎 𝛽𝛽. The 
correlation function 𝐶𝐶(𝛼𝛼; 𝛽𝛽) of magnitude |𝐶𝐶(𝛼𝛼; 𝛽𝛽)| =
 𝑝𝑝 (1,1; 𝛼𝛼, 𝛽𝛽) between filter polarization states and for 
independent states of photons |𝜓𝜓𝑖𝑖𝑛𝑛⟩ becomes:  

𝐶𝐶(𝛼𝛼; 𝛽𝛽) = ⟨𝛷𝛷𝛼𝛼|𝛷𝛷𝛽𝛽⟩ = ⟨𝜓𝜓𝑖𝑖𝑛𝑛|𝐻𝐻𝛼𝛼⟩ ⟨𝐻𝐻𝛼𝛼|𝐻𝐻𝛽𝛽⟩⟨𝐻𝐻𝛽𝛽|𝜓𝜓𝑖𝑖𝑛𝑛⟩            (5𝑎𝑎) 

|𝜓𝜓𝑖𝑖𝑛𝑛⟩ = ( |𝐻𝐻⟩  + |𝑉𝑉⟩ )/ √2                                                      (5𝑏𝑏) 
 
  |𝐻𝐻𝛼𝛼⟩ = cos 𝛼𝛼 |𝐻𝐻⟩ + sin 𝛼𝛼  |𝑉𝑉⟩; |𝐻𝐻𝛽𝛽⟩ = cos 𝛽𝛽 |𝐻𝐻⟩ + sin 𝛽𝛽  |𝑉𝑉⟩ 

 (5c) 
𝐶𝐶(𝛼𝛼; 𝛽𝛽) = 0.5[𝑐𝑐𝑜𝑜𝑜𝑜 𝛼𝛼 + sin 𝛼𝛼] [𝑐𝑐𝑜𝑜𝑜𝑜(𝛼𝛼 − 𝛽𝛽)]  ×
                                                            ×  [𝑐𝑐𝑜𝑜𝑜𝑜 𝛽𝛽 +  𝑜𝑜𝑠𝑠𝑎𝑎 𝛽𝛽] =  

=  0.5 cos(𝛼𝛼 − 𝛽𝛽)[cos(𝛼𝛼 − 𝛽𝛽) + sin(𝛼𝛼 + 𝛽𝛽)]       (5𝑎𝑎) 
 

This correlation of eq. (5d) is composed of three terms indicated 
in the first equality. The projections of the input states onto the 
respective filters are given by the sum of the sine and cosine 
functions, while the term 𝑐𝑐𝑜𝑜𝑜𝑜(𝛼𝛼 − 𝛽𝛽)  indicates the overlap 
between the two filters. The magnitude of this correlation 
function or probability of coincident detections can reach a peak 
of unity for the symmetric case of  𝛼𝛼 = 𝛽𝛽 = 𝜋𝜋/4 𝑜𝑜𝑜𝑜 𝜋𝜋/4 ± 𝜋𝜋 , 
outperforming the coincidence values of 0.5 obtained with 
entangled states of photons as presented in Section V. 
 

III. CORRELATED OR COINCIDENT DETECTIONS OF 
INDEPENDENT PHOTONS 

A series or an ensemble of detection measurements is 
mathematically cast into a temporal vector 𝑣𝑣(𝛼𝛼, 𝜃𝜃𝐴𝐴) along 
polarization output angle 𝜃𝜃𝐴𝐴, and for a polarization input setting  
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𝑃𝑃++(𝛼𝛼; 𝛽𝛽) = 𝑁𝑁++(𝛼𝛼; 𝛽𝛽)/ 𝑁𝑁𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 where 𝑁𝑁++ is the number of 
coincident counts of photons and  𝑁𝑁𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 is the number of all 
coincident detections for all four settings 𝑁𝑁𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 =
𝑁𝑁++(𝛼𝛼; 𝛽𝛽) + 𝑁𝑁−−(𝛼𝛼′; 𝛽𝛽′) + 𝑁𝑁+−(𝛼𝛼; 𝛽𝛽′) + 𝑁𝑁−+(𝛼𝛼′; 𝛽𝛽). 
However, this normalization is mathematical because the 
physical number 𝑁𝑁𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 = 𝑁𝑁𝑖𝑖𝑛𝑛 of initiated photon-pairs is very 
much larger as photons are lost between the source and the 
photodetectors, for various reasons, thereby throwing doubt 
about the real statistics. This normalization makes a violation 
of the CHSC impossible as  𝑁𝑁++/𝑁𝑁𝑖𝑖𝑛𝑛 ≪ 0.1.  

The Clauser-Horne (CH) inequality has arbitrary values for the 
two measurement settings, i.e., 𝛼𝛼 𝑎𝑎𝑎𝑎𝑎𝑎 𝛼𝛼′ as well as  𝛽𝛽 𝑎𝑎𝑎𝑎𝑎𝑎 𝛽𝛽′  
are set separately. The CH inequality also contains correlations 
between ‘1’s and ‘0’s, so that, in terms of binary-valued 
probabilities  𝑝𝑝 (1,1; 𝛼𝛼, 𝛽𝛽) and similar forms, [10-11], the 
inequality is written as: 

 
𝑝𝑝 (1,1; 𝛼𝛼, 𝛽𝛽) −  𝑝𝑝 (1,1; 𝛼𝛼′,  𝛽𝛽′) ≤            

         ≤ 𝑝𝑝 (1, 0; 𝛼𝛼, 𝛽𝛽′) + 𝑝𝑝 (0,1; 𝛼𝛼′, 𝛽𝛽)     (2) 
 
with the normalization factor 𝑁𝑁𝑖𝑖𝑛𝑛 of initiated events being used. 
But, as only one term of the four terms is measured in any given 
run, the linear combination would relate the maximal values on 
the left-hand side to the minimal values on the right-hand side. 
With such probabilities for all four terms, the opposite 
requirements of the inequality for the coincident detections of 
(1;1) on the left-hand side, and for only one-location detection 
(1;0) or (0;1) on the right-hand side, make a violation 
impossible, mathematically, unless arbitrary values are selected 
from various data sets. In this case, the inequality becomes 
physically meaningless. 

For an input of multi-photon states, loss effects may not 
annihilate all the input photons, so that the number of detections 
increases regardless of the projective probability 𝑝𝑝(𝛼𝛼) = 𝑐𝑐𝑜𝑜𝑜𝑜2 𝛼𝛼 
which provides a mathematical average. For a single-photon 
input, the density distribution per solid angle ∆Ω  of the mixed 
quantum state arising from spontaneous emission that follows 
the radiation pattern of an oscillating dipole is [16-17]: 

 

𝑝𝑝(𝜃𝜃)∆Ω = 𝑐𝑐𝑜𝑜𝑜𝑜2 𝜃𝜃 ∆𝜃𝜃 ∆𝜑𝜑
2𝜋𝜋 ∫ 𝑐𝑐𝑜𝑜𝑜𝑜2 𝜃𝜃  𝑎𝑎𝜃𝜃𝜋𝜋

−𝜋𝜋
                                   (3) 

 
where the solid angle of emission is ∆Ω , the polar angle between 
the electric dipole vector and the polarization vector of the 
emitted photon is 𝜃𝜃, and 𝜑𝜑 is the azimuthal angle in the plane 
perpendicular to the dipole [16-17]. It is this distribution of the 
Rayleigh spontaneously emitted photons over the range 
{−𝜋𝜋, 𝜋𝜋}, that randomly rotates the polarization state of the 
absorbed photons. 

Physically, however, one single photon is scattered randomly 
by quantum Rayleigh photon-dipole interactions. By contrast, a 
group of identical photons can propagate in a straight line inside 
a dielectric medium through quantum Rayleigh stimulated 
emission. This process of stimulated emission can also amplify 
a spontaneously emitted photon with a rotated polarization, 
particularly so if the polarization modulator and analyser enable 
a lossless mode to propagate [13-14].  

B. Linking projective measurements to the theoretical 
correlation function  

 
Quantum correlations are evaluated as the expectation values 

of a product of operators [2-3]. For the projective operators  
�̂�𝛱(𝛼𝛼) = |𝐻𝐻𝛼𝛼⟩ ⟨𝐻𝐻𝛼𝛼| 𝑎𝑎𝑎𝑎𝑎𝑎 �̂�𝛱(𝛽𝛽) = |𝐻𝐻𝛽𝛽⟩ ⟨𝐻𝐻𝛽𝛽|  corresponding to 
the polarization filters with one detection setting at each of the 
two locations A and B, respectively, the probability of 
coincident detections has the form, cf. [3, eq. 13]: 

 
𝑝𝑝 (1,1; 𝛼𝛼, 𝛽𝛽) = |(⟨𝜓𝜓𝑖𝑖𝑛𝑛|�̂�𝛱(𝛼𝛼)) (�̂�𝛱(𝛽𝛽) |𝜓𝜓𝑖𝑖𝑛𝑛⟩)|

= |⟨Φ𝛼𝛼|Φ𝛽𝛽⟩|                                                (4) 

with |𝐻𝐻𝛼𝛼⟩ and |𝐻𝐻𝛽𝛽⟩  identifying the states of the polarization 
filters, and ⟨𝛷𝛷𝛼𝛼| = ⟨𝜓𝜓𝑖𝑖𝑛𝑛|�̂�𝛱(𝛼𝛼) for the Hermitian conjugate 
state.  For the polarization-entangled photons, the outcomes 
consist of the overlap between two state vectors rotated on the 
Poincaré sphere and are defined as the correlation function 
𝐶𝐶(𝛼𝛼; 𝛽𝛽) between two (mixed) states; by contrast, 
experimentally, the probability of coincident detections is 
calculated from the sum  of products of overlapping terms, i.e., 
 𝑝𝑝𝑐𝑐(𝑎𝑎, 𝑏𝑏) = (∑ 𝑎𝑎𝑛𝑛

𝑁𝑁
𝑛𝑛=1  𝑏𝑏𝑛𝑛)/𝑁𝑁 , as defined in the Introduction, 

and identifies the fraction of simultaneous detections at the 
level of each quantum event. This discrepancy is part of the 
disconnect between theory and measurement. 

For the basis states |𝐻𝐻⟩ 𝑎𝑎𝑎𝑎𝑎𝑎 |𝑉𝑉⟩ of the shared measurement 
Hilbert space, the projective amplitudes are ⟨𝐻𝐻𝛼𝛼|𝐻𝐻𝐴𝐴⟩ = 𝑐𝑐𝑜𝑜𝑜𝑜 𝛼𝛼, 
⟨𝐻𝐻𝛼𝛼|𝑉𝑉𝐴𝐴⟩ = 𝑜𝑜𝑠𝑠𝑎𝑎 𝛼𝛼,  ⟨𝐻𝐻𝛽𝛽|𝐻𝐻𝐵𝐵⟩ = 𝑐𝑐𝑜𝑜𝑜𝑜 𝛽𝛽 and  ⟨𝐻𝐻𝛽𝛽|𝑉𝑉𝐵𝐵⟩ = 𝑜𝑜𝑠𝑠𝑎𝑎 𝛽𝛽. The 
correlation function 𝐶𝐶(𝛼𝛼; 𝛽𝛽) of magnitude |𝐶𝐶(𝛼𝛼; 𝛽𝛽)| =
 𝑝𝑝 (1,1; 𝛼𝛼, 𝛽𝛽) between filter polarization states and for 
independent states of photons |𝜓𝜓𝑖𝑖𝑛𝑛⟩ becomes:  

𝐶𝐶(𝛼𝛼; 𝛽𝛽) = ⟨𝛷𝛷𝛼𝛼|𝛷𝛷𝛽𝛽⟩ = ⟨𝜓𝜓𝑖𝑖𝑛𝑛|𝐻𝐻𝛼𝛼⟩ ⟨𝐻𝐻𝛼𝛼|𝐻𝐻𝛽𝛽⟩⟨𝐻𝐻𝛽𝛽|𝜓𝜓𝑖𝑖𝑛𝑛⟩            (5𝑎𝑎) 

|𝜓𝜓𝑖𝑖𝑛𝑛⟩ = ( |𝐻𝐻⟩  + |𝑉𝑉⟩ )/ √2                                                      (5𝑏𝑏) 
 
  |𝐻𝐻𝛼𝛼⟩ = cos 𝛼𝛼 |𝐻𝐻⟩ + sin 𝛼𝛼  |𝑉𝑉⟩; |𝐻𝐻𝛽𝛽⟩ = cos 𝛽𝛽 |𝐻𝐻⟩ + sin 𝛽𝛽  |𝑉𝑉⟩ 

 (5c) 
𝐶𝐶(𝛼𝛼; 𝛽𝛽) = 0.5[𝑐𝑐𝑜𝑜𝑜𝑜 𝛼𝛼 + sin 𝛼𝛼] [𝑐𝑐𝑜𝑜𝑜𝑜(𝛼𝛼 − 𝛽𝛽)]  ×
                                                            ×  [𝑐𝑐𝑜𝑜𝑜𝑜 𝛽𝛽 +  𝑜𝑜𝑠𝑠𝑎𝑎 𝛽𝛽] =  

=  0.5 cos(𝛼𝛼 − 𝛽𝛽)[cos(𝛼𝛼 − 𝛽𝛽) + sin(𝛼𝛼 + 𝛽𝛽)]       (5𝑎𝑎) 
 

This correlation of eq. (5d) is composed of three terms indicated 
in the first equality. The projections of the input states onto the 
respective filters are given by the sum of the sine and cosine 
functions, while the term 𝑐𝑐𝑜𝑜𝑜𝑜(𝛼𝛼 − 𝛽𝛽)  indicates the overlap 
between the two filters. The magnitude of this correlation 
function or probability of coincident detections can reach a peak 
of unity for the symmetric case of  𝛼𝛼 = 𝛽𝛽 = 𝜋𝜋/4 𝑜𝑜𝑜𝑜 𝜋𝜋/4 ± 𝜋𝜋 , 
outperforming the coincidence values of 0.5 obtained with 
entangled states of photons as presented in Section V. 
 

III. CORRELATED OR COINCIDENT DETECTIONS OF 
INDEPENDENT PHOTONS 

A series or an ensemble of detection measurements is 
mathematically cast into a temporal vector 𝑣𝑣(𝛼𝛼, 𝜃𝜃𝐴𝐴) along 
polarization output angle 𝜃𝜃𝐴𝐴, and for a polarization input setting  

𝑁
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This correlation of eq. (5d) is composed of three terms indicated 
in the first equality. The projections of the input states onto the 
respective filters are given by the sum of the sine and cosine 
functions, while the term 𝑐𝑜𝑠(𝛼−𝛽) indicates the overlap between 
the two filters. The magnitude of this correlation function or 
probability of coincident detections can reach a peak of unity 
for the symmetric case of 𝛼=𝛽=𝜋/4 𝑜𝑟 𝜋/4 ±𝜋 , outperforming 
the coincidence values of 0.5 obtained with entangled states of 
photons as presented in Section 5.

3. Correlated or Coincident Detections of Independent 
Photons
A series or an ensemble of detection measurements is 
mathematically cast into a temporal vector 𝑣(𝛼,𝜃𝐴) along 
polarization output angle 𝜃𝐴, and for a polarization input setting 
𝛼. The elements of the data vector are 𝑐𝑚=1 𝑜𝑟 0 for a detection 
event or no detection, respectively, of the m-th order element. 
Thus, 𝑣(𝛼,𝜃𝐴) has the following averaged number of ‘1’ terms 
summed over the probing times 𝛿(𝑡−𝑡𝑚), for one photon of 
polarization H or V in the measurement frame of coordinates:

where 𝜂 specifies the quantum efficiency of cross-polarization 
coupling, 𝑁𝐻=𝑁𝑉=𝑁/2  , namely, the total number of events 
𝑁 is split equally between the two input polarizations H or V 
polarization, 𝜃𝐴 is the polarization angle of the analysing filter at 
location A, 𝛼 is a rotation setting of the electro-optic modulator, 
the probing times are 𝑡𝑚;𝐻(𝛼)≠ 𝑡𝑚;𝑉(𝛼) and 𝑃𝐻;𝑉(𝛼,𝜃𝐴) is the 
probability of detecting a pulse, for input H or V and polarization 
filter rotated by 𝛼. For input polarization V, orthogonal to H, 
the rotation angle is: 𝜋/2 −𝛼 and the probability of detection 
along 𝜃𝐴 is 𝑃𝑉(𝛼,𝜃𝐴)=𝑠𝑖𝑛2 (𝜃𝐴−𝛼). The average number of ‘0’s 
is found from the expression: 𝑣0 (𝛼,𝜃𝐴)=1−𝑣1 (𝛼,𝜃𝐴).

The correlation vector 𝑣𝐶(𝛼;𝛽) of simultaneous detections 
between two arbitrary and random series 𝑣(𝛼) and 𝑣(𝛽) or 
ensembles, at locations A and B, respectively, is expressed as 
the product of the two m-th order terms, of simultaneous or 
coincident detections 𝑣𝐶(𝛼;𝛽)=𝑣(𝛼)∙ 𝑣(𝛽) leading to an average 
𝑣𝐶(𝛼;𝛽) of ’1’s or joint probability of simultaneous detections:

By considering all possible combinations in Eq. (7), it is obvious 
that the order of the random distributions of the two sequences 
will determine the value of the joint probability of correlation 
𝑃(𝛼;𝛽) whose maximal value equals the lowest of the two local 
probabilities 𝑃(𝛼) 𝑎𝑛𝑑 𝑃(𝛽). The values of 𝑃(𝛼;𝛽) may exceed 

the definition of the local condition for independent probabilities 
[2-3], i.e., 𝑃(𝛼;𝛽)=𝑃(𝛼) 𝑃(𝛽). These analytic results modelling 
lossless systems would produce, as explained in the Introduction, 
correlation values larger than 0.25 which cannot be achieved 
experimentally because of the presence of the quantum Rayleigh 
scattering of photons [12].

A distinction needs to be made between the probability of 
coincident events at the level of each individual event, and 
the product of probabilities of ‘1’s in each ensemble of 
measurements which is, in fact, the product of the averaged 
values of polarization states.

From a physical perspective, identical systems operated in 
identical ways will yield identical distributions of outcomes, 
which is critical in the reproduction of experimental results. Given 
the low quantum efficiencies of ‘single-photon’ detections, the 
performance of correlated outputs can be significantly increased 
by launching, into the two systems, groups of identical photons 
as generated by the parametric amplification in the original 
crystal [13-14], or externally controlled number of photons 
[5-6]. In such circumstances, the likelihood of a few photons 
reaching the output photodetectors simultaneously will be even 
larger than the probability of Eq. (6).

4. Polarization-Controlled Output of Multi-Photon States
With multiple photons propagating in both input orthogonal 
states of polarization H and V, one can control the output 
intensity through interference of the intrinsic fields [14] of 
groups of identical photons coupled onto the filter’s polarization 
state of rotation angle 𝜃𝐴. Following the results of [13-14] 
that identified dynamic and coherent number states |Ψn(𝜔,𝑡)⟩=
(|n(𝑡)⟩+ |n(𝑡)−1⟩ )/√2  and recalling the non-Hermicity of the 
field operators [14], we find that 𝑎̂ |n ⟩=√𝑛 𝑒−𝑖 𝜑|n−1 ⟩ , which 
provides a complex field amplitude [14], for the time-dependent 
evolutions of photonic beam fronts. The output intensity, for 
fluctuating numbers of photons 𝑁𝑝ℎ(𝜃𝐴,𝑡) and the expectation 
number 〈𝑁𝑝ℎ(𝜃𝐴,𝑡)〉 of the interference between pure states, take 
the forms:

where σ(𝑡, 𝜃𝐴)=𝑠𝑖𝑛 (2  𝜃𝐴)√𝑁𝐻(𝑡) 𝑁𝑉(𝑡)/ 𝑁𝑡𝑜𝑡(𝑡) is the visibility 
with 𝑁𝑡𝑜𝑡(𝑡)=𝑁𝐻(𝑡) 𝑐𝑜𝑠2 (𝜃𝐴)+𝑁𝑉(𝑡) 𝑠𝑖𝑛2 (𝜃𝐴), and Γ(𝜏) is the 
temporal overlap between the intrinsic optical fields of the 
photons whose derivation is available in [14]. The time-varying 
phases of the two polarization states are 𝜉𝐻 𝑎𝑛𝑑 𝜉𝑉, and the time-
average is indicated by the angled brackets.

By varying parameters in eq. (9), the lowest number of photons 
is always larger than zero, which increases the probability of 
detection. Overall, the more photons are trapped in the system 
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𝛼𝛼. The elements of the data vector are 𝑐𝑐𝑚𝑚 = 1 𝑜𝑜𝑜𝑜 0 for a 
detection event or no detection, respectively, of the m-th order 
element. Thus, 𝑣𝑣(𝛼𝛼, 𝜃𝜃𝐴𝐴) has the following averaged number of 
‘1’ terms summed over the probing times 𝛿𝛿(𝑡𝑡 − 𝑡𝑡𝑚𝑚),  for one 
photon of polarization H or V in the measurement frame of 
coordinates:  

  𝑣𝑣 (𝛼𝛼; 𝜃𝜃𝐴𝐴) = 1
𝑁𝑁  ∑ 𝑐𝑐𝑚𝑚;𝐻𝐻(𝛼𝛼, 𝜃𝜃𝐴𝐴)

𝑁𝑁𝐻𝐻

𝑚𝑚=1
 𝛿𝛿 (𝑡𝑡 − 𝑡𝑡𝑚𝑚;𝐻𝐻(𝛼𝛼, 𝜃𝜃𝐴𝐴))

+ 1
𝑁𝑁  ∑ 𝑐𝑐𝑚𝑚;𝑉𝑉(𝛼𝛼, 𝜃𝜃𝐴𝐴)

𝑁𝑁𝑉𝑉

𝑚𝑚=1
 𝛿𝛿 (𝑡𝑡 − 𝑡𝑡𝑚𝑚;𝑉𝑉(𝛼𝛼, 𝜃𝜃𝐴𝐴)) = 

         =  𝑃𝑃𝐻𝐻(𝛼𝛼, 𝜃𝜃𝐴𝐴) + 𝑃𝑃𝑉𝑉(𝛼𝛼, 𝜃𝜃𝐴𝐴) = 

=  0.5 𝜂𝜂 [𝑐𝑐𝑜𝑜𝑐𝑐2  (𝜃𝜃𝐴𝐴 − 𝛼𝛼) +  𝑐𝑐𝑠𝑠𝑠𝑠2  (𝜃𝜃𝐴𝐴 − 𝛼𝛼)] =  1
2  𝜂𝜂     (6) 

 
where 𝜂𝜂 specifies the quantum efficiency of cross-polarization 
coupling,  𝑁𝑁𝐻𝐻 = 𝑁𝑁𝑉𝑉 = 𝑁𝑁/2 , namely, the total number of events 
𝑁𝑁 is split equally between the two input polarizations H or V 
polarization, 𝜃𝜃𝐴𝐴 is the polarization angle of the analysing filter 
at location A,  𝛼𝛼 is a rotation setting of the electro-optic 
modulator, the probing times are 𝑡𝑡𝑚𝑚;𝐻𝐻(𝛼𝛼) ≠  𝑡𝑡𝑚𝑚;𝑉𝑉(𝛼𝛼) and 
𝑃𝑃𝐻𝐻;𝑉𝑉(𝛼𝛼, 𝜃𝜃𝐴𝐴) is the probability of detecting a pulse, for input H 
or V and polarization filter rotated by 𝛼𝛼. For input polarization 
V, orthogonal to H, the rotation angle is:  𝜋𝜋/2 − 𝛼𝛼 and the 
probability of detection along 𝜃𝜃𝐴𝐴 is 𝑃𝑃𝑉𝑉(𝛼𝛼, 𝜃𝜃𝐴𝐴) = 𝑐𝑐𝑠𝑠𝑠𝑠2  (𝜃𝜃𝐴𝐴 − 𝛼𝛼).  
The average number of ‘0’s is found from the expression:  
𝑣𝑣0 (𝛼𝛼, 𝜃𝜃𝐴𝐴) = 1 − 𝑣𝑣1 (𝛼𝛼, 𝜃𝜃𝐴𝐴) . 

The correlation vector 𝑣𝑣𝐶𝐶(𝛼𝛼; 𝛽𝛽) of simultaneous detections 
between two arbitrary and random series 𝑣𝑣(𝛼𝛼)  and 𝑣𝑣(𝛽𝛽)  or 
ensembles, at locations A and B, respectively, is expressed as 
the product of the two m-th order terms, of simultaneous or 
coincident detections 𝑣𝑣𝐶𝐶(𝛼𝛼; 𝛽𝛽) = 𝑣𝑣(𝛼𝛼) ∙  𝑣𝑣(𝛽𝛽) leading to an 
average 𝑣𝑣𝐶𝐶(𝛼𝛼; 𝛽𝛽) of ’1’s or joint probability of simultaneous 
detections: 

𝑣𝑣𝐶𝐶(𝛼𝛼; 𝛽𝛽) = 𝑣𝑣(𝛼𝛼) ∙  𝑣𝑣(𝛽𝛽) ⇒ 𝑃𝑃(𝛼𝛼; 𝛽𝛽) 

𝑃𝑃(𝛼𝛼; 𝛽𝛽) = 1
𝑁𝑁 ∑ 𝑐𝑐𝑚𝑚(𝛼𝛼)

𝑁𝑁

𝑚𝑚=1
 𝑐𝑐𝑚𝑚(𝛽𝛽)                                   (7) 

 
By considering all possible combinations in Eq. (7), it is 
obvious that the order of the random distributions of the two 
sequences will determine the value of the joint probability of 
correlation 𝑃𝑃(𝛼𝛼; 𝛽𝛽) whose maximal value equals the lowest of 
the two local probabilities 𝑃𝑃(𝛼𝛼) 𝑎𝑎𝑠𝑠𝑎𝑎 𝑃𝑃(𝛽𝛽). The values of 
𝑃𝑃(𝛼𝛼; 𝛽𝛽) may exceed the definition of the local condition for 
independent probabilities [2-3], i.e., 𝑃𝑃(𝛼𝛼; 𝛽𝛽) = 𝑃𝑃(𝛼𝛼) 𝑃𝑃(𝛽𝛽). 
These analytic results modelling lossless systems would 
produce, as explained in the Introduction, correlation values 
larger than 0.25 which cannot be achieved experimentally 
because of the presence of the quantum Rayleigh scattering of 
photons [12]. 

A distinction needs to be made between the probability of 
coincident events at the level of each individual event, and the 
product of probabilities of ‘1’s in each ensemble of 
measurements which is, in fact, the product of the averaged 
values of polarization states.   

From a physical perspective, identical systems operated in 
identical ways will yield identical distributions of outcomes, 
which is critical in the reproduction of experimental results. 
Given the low quantum efficiencies of ‘single-photon’ 
detections, the performance of correlated outputs can be 
significantly increased by launching, into the two systems, 
groups of identical photons as generated by the parametric 
amplification in the original crystal [13-14], or externally 
controlled number of photons [5-6]. In such circumstances, the 
likelihood of a few photons reaching the output photodetectors 
simultaneously will be even larger than the probability of Eq. 
(6).  

IV. POLARIZATION-CONTROLLED OUTPUT OF MULTI-PHOTON 
STATES 

With multiple photons propagating in both input orthogonal 
states of polarization H and V, one can control the output 
intensity through interference of the intrinsic fields [14] of 
groups of identical photons coupled onto the filter’s 
polarization state of rotation angle 𝜃𝜃𝐴𝐴 . Following the results of 
[13-14] that identified dynamic and coherent number states 
|Ψn(𝜔𝜔, 𝑡𝑡)⟩ = ( |n(𝑡𝑡)⟩ +  |n(𝑡𝑡) − 1⟩ )/√2 and recalling the 
non-Hermicity of the field operators [14], we find that �̂�𝑎 |n ⟩ =
√𝑠𝑠 𝑒𝑒−𝑖𝑖 𝜑𝜑|n − 1 ⟩ , which provides a complex field amplitude 
[14], for the time-dependent evolutions of photonic beam 
fronts. The output intensity, for fluctuating numbers of photons 
 𝑁𝑁𝑝𝑝ℎ(𝜃𝜃𝐴𝐴, 𝑡𝑡) and the expectation number 〈𝑁𝑁𝑝𝑝ℎ(𝜃𝜃𝐴𝐴, 𝑡𝑡)〉 of the 
interference between pure states, take the forms: 
 
𝑁𝑁𝑝𝑝ℎ(𝜃𝜃𝐴𝐴, 𝑡𝑡) = 𝜂𝜂 0.5[ 𝑁𝑁𝐻𝐻(𝑡𝑡) 𝑐𝑐𝑜𝑜𝑐𝑐2(𝜃𝜃𝐴𝐴) +  𝑁𝑁𝑉𝑉(𝑡𝑡) 𝑐𝑐𝑠𝑠𝑠𝑠2(𝜃𝜃𝐴𝐴) + 
 
+2 Γ(𝜏𝜏)√𝑁𝑁𝐻𝐻(𝑡𝑡)𝑁𝑁𝑉𝑉(𝑡𝑡) 𝑐𝑐𝑠𝑠𝑠𝑠 (𝜃𝜃𝐴𝐴) 𝑐𝑐𝑜𝑜𝑐𝑐( 𝜃𝜃𝐴𝐴) 𝑐𝑐𝑜𝑜𝑐𝑐(𝜉𝜉𝐻𝐻(𝑡𝑡) − 𝜉𝜉𝑉𝑉(𝑡𝑡))] 

(8) 
 
〈𝑁𝑁𝑝𝑝ℎ(𝜃𝜃𝐴𝐴, 𝑡𝑡)〉 = η 0.5 ⟨ 𝑁𝑁𝑡𝑡𝑡𝑡𝑡𝑡(𝑡𝑡)  × 

 × [1 +  σ(𝑡𝑡,  𝜃𝜃𝐴𝐴) Γ(𝜏𝜏)  𝑐𝑐𝑜𝑜𝑐𝑐(𝜉𝜉𝐻𝐻(𝑡𝑡) − 𝜉𝜉𝑉𝑉(𝑡𝑡))] ⟩     (9) 
 
where σ(𝑡𝑡,  𝜃𝜃𝐴𝐴) = 𝑐𝑐𝑠𝑠𝑠𝑠 (2 𝜃𝜃𝐴𝐴)√ 𝑁𝑁𝐻𝐻(𝑡𝑡) 𝑁𝑁𝑉𝑉(𝑡𝑡)/ 𝑁𝑁𝑡𝑡𝑡𝑡𝑡𝑡(𝑡𝑡) is the 
visibility with  𝑁𝑁𝑡𝑡𝑡𝑡𝑡𝑡(𝑡𝑡) = 𝑁𝑁𝐻𝐻(𝑡𝑡) 𝑐𝑐𝑜𝑜𝑐𝑐2(𝜃𝜃𝐴𝐴) + 𝑁𝑁𝑉𝑉(𝑡𝑡) 𝑐𝑐𝑠𝑠𝑠𝑠2(𝜃𝜃𝐴𝐴) ) , 
and Γ(𝜏𝜏) is the temporal overlap between the intrinsic optical 
fields of the photons whose derivation is available in [14]. The 
time-varying phases of the two polarization states are 
𝜉𝜉𝐻𝐻 𝑎𝑎𝑠𝑠𝑎𝑎 𝜉𝜉𝑉𝑉, and the time-average is indicated by the angled 
brackets.  

By varying parameters in eq. (9), the lowest number of 
photons is always larger than zero, which increases the 
probability of detection. Overall, the more photons are trapped 
in the system through quantum Rayleigh spontaneous emission 
[13-14], the more likely it is for groups of identical photons to 
form through quantum Rayleigh stimulated emission [14]. As a 
result, single photons coalesce into groups of multi-photon 
states, thereby changing the statistical outcomes.  

V. THE WAVE FUNCTION COLLAPSE LEADING TO 
FACTORIZATION OF THE QUANTUM JOINT PROBABILITY  

A rigorous derivation based on the formalism of wave 
function collapse of a maximally entangled state will provide a 
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𝛼𝛼. The elements of the data vector are 𝑐𝑐𝑚𝑚 = 1 𝑜𝑜𝑜𝑜 0 for a 
detection event or no detection, respectively, of the m-th order 
element. Thus, 𝑣𝑣(𝛼𝛼, 𝜃𝜃𝐴𝐴) has the following averaged number of 
‘1’ terms summed over the probing times 𝛿𝛿(𝑡𝑡 − 𝑡𝑡𝑚𝑚),  for one 
photon of polarization H or V in the measurement frame of 
coordinates:  

  𝑣𝑣 (𝛼𝛼; 𝜃𝜃𝐴𝐴) = 1
𝑁𝑁  ∑ 𝑐𝑐𝑚𝑚;𝐻𝐻(𝛼𝛼, 𝜃𝜃𝐴𝐴)

𝑁𝑁𝐻𝐻

𝑚𝑚=1
 𝛿𝛿 (𝑡𝑡 − 𝑡𝑡𝑚𝑚;𝐻𝐻(𝛼𝛼, 𝜃𝜃𝐴𝐴))

+ 1
𝑁𝑁  ∑ 𝑐𝑐𝑚𝑚;𝑉𝑉(𝛼𝛼, 𝜃𝜃𝐴𝐴)

𝑁𝑁𝑉𝑉

𝑚𝑚=1
 𝛿𝛿 (𝑡𝑡 − 𝑡𝑡𝑚𝑚;𝑉𝑉(𝛼𝛼, 𝜃𝜃𝐴𝐴)) = 

         =  𝑃𝑃𝐻𝐻(𝛼𝛼, 𝜃𝜃𝐴𝐴) + 𝑃𝑃𝑉𝑉(𝛼𝛼, 𝜃𝜃𝐴𝐴) = 

=  0.5 𝜂𝜂 [𝑐𝑐𝑜𝑜𝑐𝑐2  (𝜃𝜃𝐴𝐴 − 𝛼𝛼) +  𝑐𝑐𝑠𝑠𝑠𝑠2  (𝜃𝜃𝐴𝐴 − 𝛼𝛼)] =  1
2  𝜂𝜂     (6) 

 
where 𝜂𝜂 specifies the quantum efficiency of cross-polarization 
coupling,  𝑁𝑁𝐻𝐻 = 𝑁𝑁𝑉𝑉 = 𝑁𝑁/2 , namely, the total number of events 
𝑁𝑁 is split equally between the two input polarizations H or V 
polarization, 𝜃𝜃𝐴𝐴 is the polarization angle of the analysing filter 
at location A,  𝛼𝛼 is a rotation setting of the electro-optic 
modulator, the probing times are 𝑡𝑡𝑚𝑚;𝐻𝐻(𝛼𝛼) ≠  𝑡𝑡𝑚𝑚;𝑉𝑉(𝛼𝛼) and 
𝑃𝑃𝐻𝐻;𝑉𝑉(𝛼𝛼, 𝜃𝜃𝐴𝐴) is the probability of detecting a pulse, for input H 
or V and polarization filter rotated by 𝛼𝛼. For input polarization 
V, orthogonal to H, the rotation angle is:  𝜋𝜋/2 − 𝛼𝛼 and the 
probability of detection along 𝜃𝜃𝐴𝐴 is 𝑃𝑃𝑉𝑉(𝛼𝛼, 𝜃𝜃𝐴𝐴) = 𝑐𝑐𝑠𝑠𝑠𝑠2  (𝜃𝜃𝐴𝐴 − 𝛼𝛼).  
The average number of ‘0’s is found from the expression:  
𝑣𝑣0 (𝛼𝛼, 𝜃𝜃𝐴𝐴) = 1 − 𝑣𝑣1 (𝛼𝛼, 𝜃𝜃𝐴𝐴) . 

The correlation vector 𝑣𝑣𝐶𝐶(𝛼𝛼; 𝛽𝛽) of simultaneous detections 
between two arbitrary and random series 𝑣𝑣(𝛼𝛼)  and 𝑣𝑣(𝛽𝛽)  or 
ensembles, at locations A and B, respectively, is expressed as 
the product of the two m-th order terms, of simultaneous or 
coincident detections 𝑣𝑣𝐶𝐶(𝛼𝛼; 𝛽𝛽) = 𝑣𝑣(𝛼𝛼) ∙  𝑣𝑣(𝛽𝛽) leading to an 
average 𝑣𝑣𝐶𝐶(𝛼𝛼; 𝛽𝛽) of ’1’s or joint probability of simultaneous 
detections: 

𝑣𝑣𝐶𝐶(𝛼𝛼; 𝛽𝛽) = 𝑣𝑣(𝛼𝛼) ∙  𝑣𝑣(𝛽𝛽) ⇒ 𝑃𝑃(𝛼𝛼; 𝛽𝛽) 

𝑃𝑃(𝛼𝛼; 𝛽𝛽) = 1
𝑁𝑁 ∑ 𝑐𝑐𝑚𝑚(𝛼𝛼)

𝑁𝑁

𝑚𝑚=1
 𝑐𝑐𝑚𝑚(𝛽𝛽)                                   (7) 

 
By considering all possible combinations in Eq. (7), it is 
obvious that the order of the random distributions of the two 
sequences will determine the value of the joint probability of 
correlation 𝑃𝑃(𝛼𝛼; 𝛽𝛽) whose maximal value equals the lowest of 
the two local probabilities 𝑃𝑃(𝛼𝛼) 𝑎𝑎𝑠𝑠𝑎𝑎 𝑃𝑃(𝛽𝛽). The values of 
𝑃𝑃(𝛼𝛼; 𝛽𝛽) may exceed the definition of the local condition for 
independent probabilities [2-3], i.e., 𝑃𝑃(𝛼𝛼; 𝛽𝛽) = 𝑃𝑃(𝛼𝛼) 𝑃𝑃(𝛽𝛽). 
These analytic results modelling lossless systems would 
produce, as explained in the Introduction, correlation values 
larger than 0.25 which cannot be achieved experimentally 
because of the presence of the quantum Rayleigh scattering of 
photons [12]. 

A distinction needs to be made between the probability of 
coincident events at the level of each individual event, and the 
product of probabilities of ‘1’s in each ensemble of 
measurements which is, in fact, the product of the averaged 
values of polarization states.   

From a physical perspective, identical systems operated in 
identical ways will yield identical distributions of outcomes, 
which is critical in the reproduction of experimental results. 
Given the low quantum efficiencies of ‘single-photon’ 
detections, the performance of correlated outputs can be 
significantly increased by launching, into the two systems, 
groups of identical photons as generated by the parametric 
amplification in the original crystal [13-14], or externally 
controlled number of photons [5-6]. In such circumstances, the 
likelihood of a few photons reaching the output photodetectors 
simultaneously will be even larger than the probability of Eq. 
(6).  

IV. POLARIZATION-CONTROLLED OUTPUT OF MULTI-PHOTON 
STATES 

With multiple photons propagating in both input orthogonal 
states of polarization H and V, one can control the output 
intensity through interference of the intrinsic fields [14] of 
groups of identical photons coupled onto the filter’s 
polarization state of rotation angle 𝜃𝜃𝐴𝐴 . Following the results of 
[13-14] that identified dynamic and coherent number states 
|Ψn(𝜔𝜔, 𝑡𝑡)⟩ = ( |n(𝑡𝑡)⟩ +  |n(𝑡𝑡) − 1⟩ )/√2 and recalling the 
non-Hermicity of the field operators [14], we find that �̂�𝑎 |n ⟩ =
√𝑠𝑠 𝑒𝑒−𝑖𝑖 𝜑𝜑|n − 1 ⟩ , which provides a complex field amplitude 
[14], for the time-dependent evolutions of photonic beam 
fronts. The output intensity, for fluctuating numbers of photons 
 𝑁𝑁𝑝𝑝ℎ(𝜃𝜃𝐴𝐴, 𝑡𝑡) and the expectation number 〈𝑁𝑁𝑝𝑝ℎ(𝜃𝜃𝐴𝐴, 𝑡𝑡)〉 of the 
interference between pure states, take the forms: 
 
𝑁𝑁𝑝𝑝ℎ(𝜃𝜃𝐴𝐴, 𝑡𝑡) = 𝜂𝜂 0.5[ 𝑁𝑁𝐻𝐻(𝑡𝑡) 𝑐𝑐𝑜𝑜𝑐𝑐2(𝜃𝜃𝐴𝐴) +  𝑁𝑁𝑉𝑉(𝑡𝑡) 𝑐𝑐𝑠𝑠𝑠𝑠2(𝜃𝜃𝐴𝐴) + 
 
+2 Γ(𝜏𝜏)√𝑁𝑁𝐻𝐻(𝑡𝑡)𝑁𝑁𝑉𝑉(𝑡𝑡) 𝑐𝑐𝑠𝑠𝑠𝑠 (𝜃𝜃𝐴𝐴) 𝑐𝑐𝑜𝑜𝑐𝑐( 𝜃𝜃𝐴𝐴) 𝑐𝑐𝑜𝑜𝑐𝑐(𝜉𝜉𝐻𝐻(𝑡𝑡) − 𝜉𝜉𝑉𝑉(𝑡𝑡))] 

(8) 
 
〈𝑁𝑁𝑝𝑝ℎ(𝜃𝜃𝐴𝐴, 𝑡𝑡)〉 = η 0.5 ⟨ 𝑁𝑁𝑡𝑡𝑡𝑡𝑡𝑡(𝑡𝑡)  × 

 × [1 +  σ(𝑡𝑡,  𝜃𝜃𝐴𝐴) Γ(𝜏𝜏)  𝑐𝑐𝑜𝑜𝑐𝑐(𝜉𝜉𝐻𝐻(𝑡𝑡) − 𝜉𝜉𝑉𝑉(𝑡𝑡))] ⟩     (9) 
 
where σ(𝑡𝑡,  𝜃𝜃𝐴𝐴) = 𝑐𝑐𝑠𝑠𝑠𝑠 (2 𝜃𝜃𝐴𝐴)√ 𝑁𝑁𝐻𝐻(𝑡𝑡) 𝑁𝑁𝑉𝑉(𝑡𝑡)/ 𝑁𝑁𝑡𝑡𝑡𝑡𝑡𝑡(𝑡𝑡) is the 
visibility with  𝑁𝑁𝑡𝑡𝑡𝑡𝑡𝑡(𝑡𝑡) = 𝑁𝑁𝐻𝐻(𝑡𝑡) 𝑐𝑐𝑜𝑜𝑐𝑐2(𝜃𝜃𝐴𝐴) + 𝑁𝑁𝑉𝑉(𝑡𝑡) 𝑐𝑐𝑠𝑠𝑠𝑠2(𝜃𝜃𝐴𝐴) ) , 
and Γ(𝜏𝜏) is the temporal overlap between the intrinsic optical 
fields of the photons whose derivation is available in [14]. The 
time-varying phases of the two polarization states are 
𝜉𝜉𝐻𝐻 𝑎𝑎𝑠𝑠𝑎𝑎 𝜉𝜉𝑉𝑉, and the time-average is indicated by the angled 
brackets.  

By varying parameters in eq. (9), the lowest number of 
photons is always larger than zero, which increases the 
probability of detection. Overall, the more photons are trapped 
in the system through quantum Rayleigh spontaneous emission 
[13-14], the more likely it is for groups of identical photons to 
form through quantum Rayleigh stimulated emission [14]. As a 
result, single photons coalesce into groups of multi-photon 
states, thereby changing the statistical outcomes.  

V. THE WAVE FUNCTION COLLAPSE LEADING TO 
FACTORIZATION OF THE QUANTUM JOINT PROBABILITY  

A rigorous derivation based on the formalism of wave 
function collapse of a maximally entangled state will provide a 
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𝛼𝛼. The elements of the data vector are 𝑐𝑐𝑚𝑚 = 1 𝑜𝑜𝑜𝑜 0 for a 
detection event or no detection, respectively, of the m-th order 
element. Thus, 𝑣𝑣(𝛼𝛼, 𝜃𝜃𝐴𝐴) has the following averaged number of 
‘1’ terms summed over the probing times 𝛿𝛿(𝑡𝑡 − 𝑡𝑡𝑚𝑚),  for one 
photon of polarization H or V in the measurement frame of 
coordinates:  

  𝑣𝑣 (𝛼𝛼; 𝜃𝜃𝐴𝐴) = 1
𝑁𝑁  ∑ 𝑐𝑐𝑚𝑚;𝐻𝐻(𝛼𝛼, 𝜃𝜃𝐴𝐴)

𝑁𝑁𝐻𝐻

𝑚𝑚=1
 𝛿𝛿 (𝑡𝑡 − 𝑡𝑡𝑚𝑚;𝐻𝐻(𝛼𝛼, 𝜃𝜃𝐴𝐴))

+ 1
𝑁𝑁  ∑ 𝑐𝑐𝑚𝑚;𝑉𝑉(𝛼𝛼, 𝜃𝜃𝐴𝐴)

𝑁𝑁𝑉𝑉

𝑚𝑚=1
 𝛿𝛿 (𝑡𝑡 − 𝑡𝑡𝑚𝑚;𝑉𝑉(𝛼𝛼, 𝜃𝜃𝐴𝐴)) = 

         =  𝑃𝑃𝐻𝐻(𝛼𝛼, 𝜃𝜃𝐴𝐴) + 𝑃𝑃𝑉𝑉(𝛼𝛼, 𝜃𝜃𝐴𝐴) = 

=  0.5 𝜂𝜂 [𝑐𝑐𝑜𝑜𝑐𝑐2  (𝜃𝜃𝐴𝐴 − 𝛼𝛼) +  𝑐𝑐𝑠𝑠𝑠𝑠2  (𝜃𝜃𝐴𝐴 − 𝛼𝛼)] =  1
2  𝜂𝜂     (6) 

 
where 𝜂𝜂 specifies the quantum efficiency of cross-polarization 
coupling,  𝑁𝑁𝐻𝐻 = 𝑁𝑁𝑉𝑉 = 𝑁𝑁/2 , namely, the total number of events 
𝑁𝑁 is split equally between the two input polarizations H or V 
polarization, 𝜃𝜃𝐴𝐴 is the polarization angle of the analysing filter 
at location A,  𝛼𝛼 is a rotation setting of the electro-optic 
modulator, the probing times are 𝑡𝑡𝑚𝑚;𝐻𝐻(𝛼𝛼) ≠  𝑡𝑡𝑚𝑚;𝑉𝑉(𝛼𝛼) and 
𝑃𝑃𝐻𝐻;𝑉𝑉(𝛼𝛼, 𝜃𝜃𝐴𝐴) is the probability of detecting a pulse, for input H 
or V and polarization filter rotated by 𝛼𝛼. For input polarization 
V, orthogonal to H, the rotation angle is:  𝜋𝜋/2 − 𝛼𝛼 and the 
probability of detection along 𝜃𝜃𝐴𝐴 is 𝑃𝑃𝑉𝑉(𝛼𝛼, 𝜃𝜃𝐴𝐴) = 𝑐𝑐𝑠𝑠𝑠𝑠2  (𝜃𝜃𝐴𝐴 − 𝛼𝛼).  
The average number of ‘0’s is found from the expression:  
𝑣𝑣0 (𝛼𝛼, 𝜃𝜃𝐴𝐴) = 1 − 𝑣𝑣1 (𝛼𝛼, 𝜃𝜃𝐴𝐴) . 

The correlation vector 𝑣𝑣𝐶𝐶(𝛼𝛼; 𝛽𝛽) of simultaneous detections 
between two arbitrary and random series 𝑣𝑣(𝛼𝛼)  and 𝑣𝑣(𝛽𝛽)  or 
ensembles, at locations A and B, respectively, is expressed as 
the product of the two m-th order terms, of simultaneous or 
coincident detections 𝑣𝑣𝐶𝐶(𝛼𝛼; 𝛽𝛽) = 𝑣𝑣(𝛼𝛼) ∙  𝑣𝑣(𝛽𝛽) leading to an 
average 𝑣𝑣𝐶𝐶(𝛼𝛼; 𝛽𝛽) of ’1’s or joint probability of simultaneous 
detections: 

𝑣𝑣𝐶𝐶(𝛼𝛼; 𝛽𝛽) = 𝑣𝑣(𝛼𝛼) ∙  𝑣𝑣(𝛽𝛽) ⇒ 𝑃𝑃(𝛼𝛼; 𝛽𝛽) 

𝑃𝑃(𝛼𝛼; 𝛽𝛽) = 1
𝑁𝑁 ∑ 𝑐𝑐𝑚𝑚(𝛼𝛼)

𝑁𝑁

𝑚𝑚=1
 𝑐𝑐𝑚𝑚(𝛽𝛽)                                   (7) 

 
By considering all possible combinations in Eq. (7), it is 
obvious that the order of the random distributions of the two 
sequences will determine the value of the joint probability of 
correlation 𝑃𝑃(𝛼𝛼; 𝛽𝛽) whose maximal value equals the lowest of 
the two local probabilities 𝑃𝑃(𝛼𝛼) 𝑎𝑎𝑠𝑠𝑎𝑎 𝑃𝑃(𝛽𝛽). The values of 
𝑃𝑃(𝛼𝛼; 𝛽𝛽) may exceed the definition of the local condition for 
independent probabilities [2-3], i.e., 𝑃𝑃(𝛼𝛼; 𝛽𝛽) = 𝑃𝑃(𝛼𝛼) 𝑃𝑃(𝛽𝛽). 
These analytic results modelling lossless systems would 
produce, as explained in the Introduction, correlation values 
larger than 0.25 which cannot be achieved experimentally 
because of the presence of the quantum Rayleigh scattering of 
photons [12]. 

A distinction needs to be made between the probability of 
coincident events at the level of each individual event, and the 
product of probabilities of ‘1’s in each ensemble of 
measurements which is, in fact, the product of the averaged 
values of polarization states.   

From a physical perspective, identical systems operated in 
identical ways will yield identical distributions of outcomes, 
which is critical in the reproduction of experimental results. 
Given the low quantum efficiencies of ‘single-photon’ 
detections, the performance of correlated outputs can be 
significantly increased by launching, into the two systems, 
groups of identical photons as generated by the parametric 
amplification in the original crystal [13-14], or externally 
controlled number of photons [5-6]. In such circumstances, the 
likelihood of a few photons reaching the output photodetectors 
simultaneously will be even larger than the probability of Eq. 
(6).  

IV. POLARIZATION-CONTROLLED OUTPUT OF MULTI-PHOTON 
STATES 

With multiple photons propagating in both input orthogonal 
states of polarization H and V, one can control the output 
intensity through interference of the intrinsic fields [14] of 
groups of identical photons coupled onto the filter’s 
polarization state of rotation angle 𝜃𝜃𝐴𝐴 . Following the results of 
[13-14] that identified dynamic and coherent number states 
|Ψn(𝜔𝜔, 𝑡𝑡)⟩ = ( |n(𝑡𝑡)⟩ +  |n(𝑡𝑡) − 1⟩ )/√2 and recalling the 
non-Hermicity of the field operators [14], we find that �̂�𝑎 |n ⟩ =
√𝑠𝑠 𝑒𝑒−𝑖𝑖 𝜑𝜑|n − 1 ⟩ , which provides a complex field amplitude 
[14], for the time-dependent evolutions of photonic beam 
fronts. The output intensity, for fluctuating numbers of photons 
 𝑁𝑁𝑝𝑝ℎ(𝜃𝜃𝐴𝐴, 𝑡𝑡) and the expectation number 〈𝑁𝑁𝑝𝑝ℎ(𝜃𝜃𝐴𝐴, 𝑡𝑡)〉 of the 
interference between pure states, take the forms: 
 
𝑁𝑁𝑝𝑝ℎ(𝜃𝜃𝐴𝐴, 𝑡𝑡) = 𝜂𝜂 0.5[ 𝑁𝑁𝐻𝐻(𝑡𝑡) 𝑐𝑐𝑜𝑜𝑐𝑐2(𝜃𝜃𝐴𝐴) +  𝑁𝑁𝑉𝑉(𝑡𝑡) 𝑐𝑐𝑠𝑠𝑠𝑠2(𝜃𝜃𝐴𝐴) + 
 
+2 Γ(𝜏𝜏)√𝑁𝑁𝐻𝐻(𝑡𝑡)𝑁𝑁𝑉𝑉(𝑡𝑡) 𝑐𝑐𝑠𝑠𝑠𝑠 (𝜃𝜃𝐴𝐴) 𝑐𝑐𝑜𝑜𝑐𝑐( 𝜃𝜃𝐴𝐴) 𝑐𝑐𝑜𝑜𝑐𝑐(𝜉𝜉𝐻𝐻(𝑡𝑡) − 𝜉𝜉𝑉𝑉(𝑡𝑡))] 

(8) 
 
〈𝑁𝑁𝑝𝑝ℎ(𝜃𝜃𝐴𝐴, 𝑡𝑡)〉 = η 0.5 ⟨ 𝑁𝑁𝑡𝑡𝑡𝑡𝑡𝑡(𝑡𝑡)  × 

 × [1 +  σ(𝑡𝑡,  𝜃𝜃𝐴𝐴) Γ(𝜏𝜏)  𝑐𝑐𝑜𝑜𝑐𝑐(𝜉𝜉𝐻𝐻(𝑡𝑡) − 𝜉𝜉𝑉𝑉(𝑡𝑡))] ⟩     (9) 
 
where σ(𝑡𝑡,  𝜃𝜃𝐴𝐴) = 𝑐𝑐𝑠𝑠𝑠𝑠 (2 𝜃𝜃𝐴𝐴)√ 𝑁𝑁𝐻𝐻(𝑡𝑡) 𝑁𝑁𝑉𝑉(𝑡𝑡)/ 𝑁𝑁𝑡𝑡𝑡𝑡𝑡𝑡(𝑡𝑡) is the 
visibility with  𝑁𝑁𝑡𝑡𝑡𝑡𝑡𝑡(𝑡𝑡) = 𝑁𝑁𝐻𝐻(𝑡𝑡) 𝑐𝑐𝑜𝑜𝑐𝑐2(𝜃𝜃𝐴𝐴) + 𝑁𝑁𝑉𝑉(𝑡𝑡) 𝑐𝑐𝑠𝑠𝑠𝑠2(𝜃𝜃𝐴𝐴) ) , 
and Γ(𝜏𝜏) is the temporal overlap between the intrinsic optical 
fields of the photons whose derivation is available in [14]. The 
time-varying phases of the two polarization states are 
𝜉𝜉𝐻𝐻 𝑎𝑎𝑠𝑠𝑎𝑎 𝜉𝜉𝑉𝑉, and the time-average is indicated by the angled 
brackets.  

By varying parameters in eq. (9), the lowest number of 
photons is always larger than zero, which increases the 
probability of detection. Overall, the more photons are trapped 
in the system through quantum Rayleigh spontaneous emission 
[13-14], the more likely it is for groups of identical photons to 
form through quantum Rayleigh stimulated emission [14]. As a 
result, single photons coalesce into groups of multi-photon 
states, thereby changing the statistical outcomes.  

V. THE WAVE FUNCTION COLLAPSE LEADING TO 
FACTORIZATION OF THE QUANTUM JOINT PROBABILITY  

A rigorous derivation based on the formalism of wave 
function collapse of a maximally entangled state will provide a 
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through quantum Rayleigh spontaneous emission [13-14], the 
more likely it is for groups of identical photons to form through 
quantum Rayleigh stimulated emission [14]. As a result, single 
photons coalesce into groups of multi-photon states, thereby 
changing the statistical outcomes.

5. The Wave Function Collapse Leading to Factorization of 
the Quantum Joint Probability
A rigorous derivation based on the formalism of wave function 
collapse of a maximally entangled state will provide a method 
to test the concept of quantum nonlocality. If no detection takes 
place at location A, the projective measurement at location B 
involves the operator Π (𝛽)=|𝐻𝛽⟩ ⟨𝐻𝛽| acting on the initial state

and resulting in the probability of detection

after setting ⟨𝐻𝛽|𝐻𝐵⟩=𝑐𝑜𝑠𝛽 and ⟨𝐻𝛽|𝑉𝐵⟩=𝑠𝑖𝑛𝛽 for the projective 
amplitudes onto the polarization filter. Similarly, for the first 
detection at location A, i.e., 𝑃𝛼=1/2 .

If a first detection takes place at location A involving the projective 
operator Π̂(𝛼)=|𝐻𝛼⟩ ⟨𝐻𝛼|, it will result in an intermediary state 
for the projective amplitudes ⟨𝐻𝛼|𝐻𝐴⟩=𝑐𝑜𝑠𝛼 and ⟨𝐻𝛼|𝑉𝐴⟩=𝑠𝑖𝑛𝛼 , 
so that the reduced or collapsed wave function |𝜓𝐵|𝐴⟩ becomes:

where |𝜓𝐵⟩ denotes the normalised wave function for the 
calculation of the detection probability at location B, conditional 
on a detection at location A. The normalization factor ℕ=1/2 
for the collapsed wave function |𝜓𝐵|𝐴⟩ corresponds to the 
probability of detection 𝑃𝛼 for the first measurement, and after 
substituting for |𝜓𝐵⟩ from eq. (13) we have:

Based on the normalized state |𝜓𝐵⟩, the probability of detection 
at location B following a detection at location A, becomes in this 
case, for a projective measurement:

This result which can be found in [2, Sec.19.5] implies that for 𝛽−
𝛼=±𝜋/2 , regardless of the values of 𝛽 𝑜𝑟 𝛼, the local probability 
of detection at location B could peak at unity even though 
the probability at location A is limited to 1/2. This theoretical 

outcome is easily testable experimentally for direct evidence of 
a quantum nonlocal effect influencing the second measurement 
after the wave function collapse. But this has never been done 
either because of the quantum Rayleigh scattering [12] of a 
single-photon and/or the non-existence of such a nonlocal effect. 
The product of the local probabilities of eqs. (14) and (15) equals 
the expression of the joint probability 𝑃𝛼𝛽 for simultaneous 
detections at both locations A and B, that is:

after inserting from Eqs. (13-15) in the equality (16a). The 
equality (16b) provides a direct calculation of the joint probability, 
confirming the validity of the derivation. With the conditional 
probability of local detection 𝑃𝛽|𝛼 being, mathematically, lower 
than, or at best, equal to the local probability of detection 𝑃𝛽 
in the absence of a first detection, i.e., 𝑃𝛽|𝛼≤𝑃𝛽, the formalism 
of wave function collapse gives rise to a factorization of local 
probabilities and imposes an upper bound on the quantum joint 
probability, in clear contradiction to the conventional assumption 
[2, p.538], [3]. This formalism delivers average values of the 
ensembles rather than correlation between the sequential orders 
of the detections. The possibility of factorizing the quantum 
probability for joint events as in (16a) is identical to the classical 
case of joint probabilities with the second local probability being 
conditioned on a first detection. This strong similarity between 
the classical and quantum joint probabilities renders the local 
condition of separability [2], [3] irrelevant for the derivation of 
Bell inequalities.

6. The Flaws of the Quantum Nonlocality Interpretation of 
Experiments
For the two polarized photons shown in the inset to Figure 1 
of ref. [9] “quantum mechanics predicts that the polarization 
measurements performed at the two distant stations will be 
strongly correlated [9].” Yet, quantum-strong correlations can 
also be achieved with independent photons or classical systems 
[5-7]. Another quotation of interest from is: “In what are now 
known as Bell’s inequalities, he showed that, for any local 
realist formalism, there exist limits on the predicted correlations 
[9].” Once again, as pointed out above, Bell inequalities can be 
violated with expectation values from independent and multi-
photon states [5-7]. 

At least three critical elements have been ignored in the 
interpretations of experimental results alleging proof of 
quantum nonlocality: 1) the quantum Rayleigh scattering 
involving photon-dipole interactions in a dielectric medium, 
which prevents a single photon from propagating in a straight-
line, thereby obstructing the synchronized detections of initially 
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method to test the concept of quantum nonlocality. If no 
detection takes place at location A, the projective measurement 
at location B involves the operator Π̂(𝛽𝛽) = |𝐻𝐻𝛽𝛽⟩ ⟨𝐻𝐻𝛽𝛽|  acting on 
the initial state  

|𝜓𝜓𝐴𝐴𝐴𝐴⟩ = ( |𝐻𝐻𝐴𝐴⟩ |𝑉𝑉𝐴𝐴⟩ −  |𝑉𝑉𝐴𝐴⟩ |𝐻𝐻𝐴𝐴⟩)/√2                               (10)  
 

and resulting in the probability of detection 
 
𝑃𝑃𝛽𝛽 = ⟨𝜓𝜓𝐴𝐴𝐴𝐴|𝐼𝐼𝐴𝐴⨂|𝐻𝐻𝛽𝛽⟩ ⟨𝐻𝐻𝛽𝛽|⨂ 𝐼𝐼𝐴𝐴|𝜓𝜓𝐴𝐴𝐴𝐴⟩ = (𝑐𝑐𝑐𝑐𝑐𝑐2 𝛽𝛽 + 𝑐𝑐𝑠𝑠𝑠𝑠2 𝛽𝛽)/2 

= 1/2                          (11) 
 
after setting ⟨𝐻𝐻𝛽𝛽|𝐻𝐻𝐴𝐴⟩ = 𝑐𝑐𝑐𝑐𝑐𝑐 𝛽𝛽 and ⟨𝐻𝐻𝛽𝛽|𝑉𝑉𝐴𝐴⟩ = 𝑐𝑐𝑠𝑠𝑠𝑠 𝛽𝛽 for the 
projective amplitudes onto the polarization filter. Similarly, for 
the first detection at location A, i.e., 𝑃𝑃𝛼𝛼 = 1/2 . 

If a first detection takes place at location A involving the 
projective operator Π̂(𝛼𝛼) = |𝐻𝐻𝛼𝛼⟩ ⟨𝐻𝐻𝛼𝛼|, it will result in an 
intermediary state for the projective amplitudes ⟨𝐻𝐻𝛼𝛼|𝐻𝐻𝐴𝐴⟩ =
𝑐𝑐𝑐𝑐𝑐𝑐 𝛼𝛼 and  ⟨𝐻𝐻𝛼𝛼|𝑉𝑉𝐴𝐴⟩ = 𝑐𝑐𝑠𝑠𝑠𝑠 𝛼𝛼 , so that the reduced or collapsed 
wave function |𝜓𝜓𝐴𝐴|𝐴𝐴⟩ becomes: 

 
|𝜓𝜓𝐴𝐴|𝐴𝐴⟩ = |𝐻𝐻𝛼𝛼⟩ ⟨𝐻𝐻𝛼𝛼|⨂ 𝐼𝐼𝐴𝐴|𝜓𝜓𝐴𝐴𝐴𝐴⟩ = 

= 1
√2

 (𝑐𝑐𝑐𝑐𝑐𝑐 𝛼𝛼  |𝑉𝑉𝐴𝐴⟩ − 𝑐𝑐𝑠𝑠𝑠𝑠 𝛼𝛼  |𝐻𝐻𝐴𝐴⟩) |𝐻𝐻𝛼𝛼⟩  (12) 

 

|𝜓𝜓𝐴𝐴⟩ =
|𝜓𝜓𝐴𝐴|𝐴𝐴⟩

√ℕ
 = |𝐻𝐻𝛼𝛼⟩⟨𝐻𝐻𝛼𝛼|⨂ 𝐼𝐼𝐴𝐴| 𝜓𝜓𝐴𝐴𝐴𝐴⟩

√ℕ
                                  (13) 

 
where |𝜓𝜓𝐴𝐴⟩ denotes the normalised wave function for the 
calculation of the detection probability at location B, 
conditional on a detection at location A. The normalization 
factor ℕ = 1/2 for the collapsed wave function |𝜓𝜓𝐴𝐴|𝐴𝐴⟩ 
corresponds to the probability of detection 𝑃𝑃𝛼𝛼 for the first 
measurement, and after substituting for |𝜓𝜓𝐴𝐴⟩ from eq. (13) we 
have: 
 
𝑃𝑃𝛼𝛼 = ⟨𝜓𝜓𝐴𝐴𝐴𝐴|𝐼𝐼𝐴𝐴⨂|𝐻𝐻𝛼𝛼⟩⟨𝐻𝐻𝛼𝛼|⨂ 𝐼𝐼𝐴𝐴|𝜓𝜓𝐴𝐴𝐴𝐴⟩ = |⟨𝐻𝐻𝛼𝛼|𝜓𝜓𝐴𝐴𝐴𝐴⟩|2 = 
 

= ℕ ⟨𝜓𝜓𝐴𝐴|𝜓𝜓𝐴𝐴⟩ = 1/2           (14) 
 
Based on the normalized state |𝜓𝜓𝐴𝐴⟩, the probability of detection 
at location B following a detection at location A, becomes in 
this case, for a projective measurement: 
 
𝑃𝑃𝛽𝛽|𝛼𝛼 = ⟨𝜓𝜓𝐴𝐴|𝐻𝐻𝛽𝛽⟩ ⟨𝐻𝐻𝛽𝛽|𝜓𝜓𝐴𝐴⟩ = | 𝑐𝑐𝑐𝑐𝑐𝑐 𝛼𝛼  𝑐𝑐𝑠𝑠𝑠𝑠 𝛽𝛽 − 𝑐𝑐𝑠𝑠𝑠𝑠 𝛼𝛼 𝑐𝑐𝑐𝑐𝑐𝑐 𝛽𝛽|2     

=  𝑐𝑐𝑠𝑠𝑠𝑠2(𝛽𝛽 − 𝛼𝛼)                              (15) 
 
This result which can be found in [2, Sec.19.5] implies that 
for 𝛽𝛽 − 𝛼𝛼 = ±𝜋𝜋/2, regardless of the values of  𝛽𝛽 𝑐𝑐𝑜𝑜 𝛼𝛼, the local 
probability of detection at location B could peak at unity even 
though the probability at location A is limited to 1/2. This 
theoretical outcome is easily testable experimentally for direct 
evidence of a quantum nonlocal effect influencing the second 
measurement after the wave function collapse. But this has 
never been done either because of the quantum Rayleigh 

scattering [12] of a single-photon and/or the non-existence of 
such a nonlocal effect.  The product of the local probabilities of 
eqs. (14) and (15) equals the expression of the joint probability 
𝑃𝑃𝛼𝛼𝛽𝛽  for simultaneous detections at both locations A and B, that 
is: 

𝑃𝑃𝛼𝛼𝛽𝛽 = |⟨𝐻𝐻𝛽𝛽|⟨𝐻𝐻𝛼𝛼|
|𝜓𝜓𝐴𝐴𝐴𝐴⟩
√𝑃𝑃𝛼𝛼

|
2

𝑃𝑃𝛼𝛼 =  |⟨𝐻𝐻𝛽𝛽|𝜓𝜓𝐴𝐴⟩|2𝑃𝑃𝛼𝛼 = 𝑃𝑃𝛽𝛽|𝛼𝛼 𝑃𝑃𝛼𝛼 

           (16𝑎𝑎) 
 
𝑃𝑃𝛼𝛼𝛽𝛽 = ⟨𝜓𝜓𝐴𝐴𝐴𝐴|𝐻𝐻𝛼𝛼⟩|𝐻𝐻𝛽𝛽⟩⨂⟨𝐻𝐻𝛽𝛽|⟨𝐻𝐻𝛼𝛼|𝜓𝜓𝐴𝐴𝐴𝐴⟩ = 0.5  𝑐𝑐𝑠𝑠𝑠𝑠2(𝛽𝛽 − 𝛼𝛼)   

(16𝑏𝑏) 
 

𝑃𝑃𝛼𝛼𝛽𝛽 =  𝑃𝑃𝛼𝛼 𝑃𝑃𝛽𝛽|𝛼𝛼  ≤ 𝑃𝑃𝛼𝛼 𝑃𝑃𝛽𝛽                                                         (16𝑐𝑐) 
 
after inserting from Eqs. (13-15) in the equality (16a). The 
equality (16b) provides a direct calculation of the joint 
probability, confirming the validity of the derivation.  With the 
conditional probability of local detection 𝑃𝑃𝛽𝛽|𝛼𝛼 being, 
mathematically, lower than, or at best, equal to  the local 
probability of detection 𝑃𝑃𝛽𝛽 in the absence of a first detection, 
i.e., 𝑃𝑃𝛽𝛽|𝛼𝛼 ≤ 𝑃𝑃𝛽𝛽, the formalism of wave function collapse gives 
rise to a factorization of local probabilities and imposes an 
upper bound on the quantum joint probability, in clear 
contradiction to the conventional assumption [2, p.538], [3]. 
This formalism delivers average values of the ensembles rather 
than correlation between the sequential orders of the detections. 
The possibility of factorizing the quantum probability for joint 
events as in (16a) is identical to the classical case of joint 
probabilities with the second local probability being 
conditioned on a first detection. This strong similarity between 
the classical and quantum joint probabilities renders the local 
condition of separability [2], [3] irrelevant for the derivation of 
Bell inequalities.  

 

VI. THE FLAWS OF THE QUANTUM NONLOCALITY 
INTERPRETATION OF EXPERIMENTS 

 
For the two polarized photons shown in the inset to Fig. 1 of 

[9] “quantum mechanics predicts that the polarization 
measurements performed at the two distant stations will be 
strongly correlated.” Yet, quantum-strong correlations can also 
be achieved with independent photons or classical systems [5-
7].  

Another quotation of interest from [9] is: “In what are now 
known as Bell’s inequalities, he showed that, for any local 
realist formalism, there exist limits on the predicted 
correlations.” Once again, as pointed out above, Bell 
inequalities can be violated with expectation values from 
independent and multi-photon states [5-7]. 

At least three critical elements have been ignored in the 
interpretations of experimental results alleging proof of 
quantum nonlocality: 1) the quantum Rayleigh scattering 
involving photon-dipole interactions in a dielectric medium [8], 
[12-14], which prevents a single photon from propagating in a 
straight-line, thereby obstructing the synchronized detections of 
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method to test the concept of quantum nonlocality. If no 
detection takes place at location A, the projective measurement 
at location B involves the operator Π̂(𝛽𝛽) = |𝐻𝐻𝛽𝛽⟩ ⟨𝐻𝐻𝛽𝛽|  acting on 
the initial state  

|𝜓𝜓𝐴𝐴𝐴𝐴⟩ = ( |𝐻𝐻𝐴𝐴⟩ |𝑉𝑉𝐴𝐴⟩ −  |𝑉𝑉𝐴𝐴⟩ |𝐻𝐻𝐴𝐴⟩)/√2                               (10)  
 

and resulting in the probability of detection 
 
𝑃𝑃𝛽𝛽 = ⟨𝜓𝜓𝐴𝐴𝐴𝐴|𝐼𝐼𝐴𝐴⨂|𝐻𝐻𝛽𝛽⟩ ⟨𝐻𝐻𝛽𝛽|⨂ 𝐼𝐼𝐴𝐴|𝜓𝜓𝐴𝐴𝐴𝐴⟩ = (𝑐𝑐𝑐𝑐𝑐𝑐2 𝛽𝛽 + 𝑐𝑐𝑠𝑠𝑠𝑠2 𝛽𝛽)/2 

= 1/2                          (11) 
 
after setting ⟨𝐻𝐻𝛽𝛽|𝐻𝐻𝐴𝐴⟩ = 𝑐𝑐𝑐𝑐𝑐𝑐 𝛽𝛽 and ⟨𝐻𝐻𝛽𝛽|𝑉𝑉𝐴𝐴⟩ = 𝑐𝑐𝑠𝑠𝑠𝑠 𝛽𝛽 for the 
projective amplitudes onto the polarization filter. Similarly, for 
the first detection at location A, i.e., 𝑃𝑃𝛼𝛼 = 1/2 . 

If a first detection takes place at location A involving the 
projective operator Π̂(𝛼𝛼) = |𝐻𝐻𝛼𝛼⟩ ⟨𝐻𝐻𝛼𝛼|, it will result in an 
intermediary state for the projective amplitudes ⟨𝐻𝐻𝛼𝛼|𝐻𝐻𝐴𝐴⟩ =
𝑐𝑐𝑐𝑐𝑐𝑐 𝛼𝛼 and  ⟨𝐻𝐻𝛼𝛼|𝑉𝑉𝐴𝐴⟩ = 𝑐𝑐𝑠𝑠𝑠𝑠 𝛼𝛼 , so that the reduced or collapsed 
wave function |𝜓𝜓𝐴𝐴|𝐴𝐴⟩ becomes: 

 
|𝜓𝜓𝐴𝐴|𝐴𝐴⟩ = |𝐻𝐻𝛼𝛼⟩ ⟨𝐻𝐻𝛼𝛼|⨂ 𝐼𝐼𝐴𝐴|𝜓𝜓𝐴𝐴𝐴𝐴⟩ = 

= 1
√2

 (𝑐𝑐𝑐𝑐𝑐𝑐 𝛼𝛼  |𝑉𝑉𝐴𝐴⟩ − 𝑐𝑐𝑠𝑠𝑠𝑠 𝛼𝛼  |𝐻𝐻𝐴𝐴⟩) |𝐻𝐻𝛼𝛼⟩  (12) 

 

|𝜓𝜓𝐴𝐴⟩ =
|𝜓𝜓𝐴𝐴|𝐴𝐴⟩

√ℕ
 = |𝐻𝐻𝛼𝛼⟩⟨𝐻𝐻𝛼𝛼|⨂ 𝐼𝐼𝐴𝐴| 𝜓𝜓𝐴𝐴𝐴𝐴⟩

√ℕ
                                  (13) 

 
where |𝜓𝜓𝐴𝐴⟩ denotes the normalised wave function for the 
calculation of the detection probability at location B, 
conditional on a detection at location A. The normalization 
factor ℕ = 1/2 for the collapsed wave function |𝜓𝜓𝐴𝐴|𝐴𝐴⟩ 
corresponds to the probability of detection 𝑃𝑃𝛼𝛼 for the first 
measurement, and after substituting for |𝜓𝜓𝐴𝐴⟩ from eq. (13) we 
have: 
 
𝑃𝑃𝛼𝛼 = ⟨𝜓𝜓𝐴𝐴𝐴𝐴|𝐼𝐼𝐴𝐴⨂|𝐻𝐻𝛼𝛼⟩⟨𝐻𝐻𝛼𝛼|⨂ 𝐼𝐼𝐴𝐴|𝜓𝜓𝐴𝐴𝐴𝐴⟩ = |⟨𝐻𝐻𝛼𝛼|𝜓𝜓𝐴𝐴𝐴𝐴⟩|2 = 
 

= ℕ ⟨𝜓𝜓𝐴𝐴|𝜓𝜓𝐴𝐴⟩ = 1/2           (14) 
 
Based on the normalized state |𝜓𝜓𝐴𝐴⟩, the probability of detection 
at location B following a detection at location A, becomes in 
this case, for a projective measurement: 
 
𝑃𝑃𝛽𝛽|𝛼𝛼 = ⟨𝜓𝜓𝐴𝐴|𝐻𝐻𝛽𝛽⟩ ⟨𝐻𝐻𝛽𝛽|𝜓𝜓𝐴𝐴⟩ = | 𝑐𝑐𝑐𝑐𝑐𝑐 𝛼𝛼  𝑐𝑐𝑠𝑠𝑠𝑠 𝛽𝛽 − 𝑐𝑐𝑠𝑠𝑠𝑠 𝛼𝛼 𝑐𝑐𝑐𝑐𝑐𝑐 𝛽𝛽|2     

=  𝑐𝑐𝑠𝑠𝑠𝑠2(𝛽𝛽 − 𝛼𝛼)                              (15) 
 
This result which can be found in [2, Sec.19.5] implies that 
for 𝛽𝛽 − 𝛼𝛼 = ±𝜋𝜋/2, regardless of the values of  𝛽𝛽 𝑐𝑐𝑜𝑜 𝛼𝛼, the local 
probability of detection at location B could peak at unity even 
though the probability at location A is limited to 1/2. This 
theoretical outcome is easily testable experimentally for direct 
evidence of a quantum nonlocal effect influencing the second 
measurement after the wave function collapse. But this has 
never been done either because of the quantum Rayleigh 

scattering [12] of a single-photon and/or the non-existence of 
such a nonlocal effect.  The product of the local probabilities of 
eqs. (14) and (15) equals the expression of the joint probability 
𝑃𝑃𝛼𝛼𝛽𝛽  for simultaneous detections at both locations A and B, that 
is: 

𝑃𝑃𝛼𝛼𝛽𝛽 = |⟨𝐻𝐻𝛽𝛽|⟨𝐻𝐻𝛼𝛼|
|𝜓𝜓𝐴𝐴𝐴𝐴⟩
√𝑃𝑃𝛼𝛼

|
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𝑃𝑃𝛼𝛼 =  |⟨𝐻𝐻𝛽𝛽|𝜓𝜓𝐴𝐴⟩|2𝑃𝑃𝛼𝛼 = 𝑃𝑃𝛽𝛽|𝛼𝛼 𝑃𝑃𝛼𝛼 

           (16𝑎𝑎) 
 
𝑃𝑃𝛼𝛼𝛽𝛽 = ⟨𝜓𝜓𝐴𝐴𝐴𝐴|𝐻𝐻𝛼𝛼⟩|𝐻𝐻𝛽𝛽⟩⨂⟨𝐻𝐻𝛽𝛽|⟨𝐻𝐻𝛼𝛼|𝜓𝜓𝐴𝐴𝐴𝐴⟩ = 0.5  𝑐𝑐𝑠𝑠𝑠𝑠2(𝛽𝛽 − 𝛼𝛼)   

(16𝑏𝑏) 
 

𝑃𝑃𝛼𝛼𝛽𝛽 =  𝑃𝑃𝛼𝛼 𝑃𝑃𝛽𝛽|𝛼𝛼  ≤ 𝑃𝑃𝛼𝛼 𝑃𝑃𝛽𝛽                                                         (16𝑐𝑐) 
 
after inserting from Eqs. (13-15) in the equality (16a). The 
equality (16b) provides a direct calculation of the joint 
probability, confirming the validity of the derivation.  With the 
conditional probability of local detection 𝑃𝑃𝛽𝛽|𝛼𝛼 being, 
mathematically, lower than, or at best, equal to  the local 
probability of detection 𝑃𝑃𝛽𝛽 in the absence of a first detection, 
i.e., 𝑃𝑃𝛽𝛽|𝛼𝛼 ≤ 𝑃𝑃𝛽𝛽, the formalism of wave function collapse gives 
rise to a factorization of local probabilities and imposes an 
upper bound on the quantum joint probability, in clear 
contradiction to the conventional assumption [2, p.538], [3]. 
This formalism delivers average values of the ensembles rather 
than correlation between the sequential orders of the detections. 
The possibility of factorizing the quantum probability for joint 
events as in (16a) is identical to the classical case of joint 
probabilities with the second local probability being 
conditioned on a first detection. This strong similarity between 
the classical and quantum joint probabilities renders the local 
condition of separability [2], [3] irrelevant for the derivation of 
Bell inequalities.  

 

VI. THE FLAWS OF THE QUANTUM NONLOCALITY 
INTERPRETATION OF EXPERIMENTS 

 
For the two polarized photons shown in the inset to Fig. 1 of 

[9] “quantum mechanics predicts that the polarization 
measurements performed at the two distant stations will be 
strongly correlated.” Yet, quantum-strong correlations can also 
be achieved with independent photons or classical systems [5-
7].  

Another quotation of interest from [9] is: “In what are now 
known as Bell’s inequalities, he showed that, for any local 
realist formalism, there exist limits on the predicted 
correlations.” Once again, as pointed out above, Bell 
inequalities can be violated with expectation values from 
independent and multi-photon states [5-7]. 

At least three critical elements have been ignored in the 
interpretations of experimental results alleging proof of 
quantum nonlocality: 1) the quantum Rayleigh scattering 
involving photon-dipole interactions in a dielectric medium [8], 
[12-14], which prevents a single photon from propagating in a 
straight-line, thereby obstructing the synchronized detections of 
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method to test the concept of quantum nonlocality. If no 
detection takes place at location A, the projective measurement 
at location B involves the operator Π̂(𝛽𝛽) = |𝐻𝐻𝛽𝛽⟩ ⟨𝐻𝐻𝛽𝛽|  acting on 
the initial state  

|𝜓𝜓𝐴𝐴𝐴𝐴⟩ = ( |𝐻𝐻𝐴𝐴⟩ |𝑉𝑉𝐴𝐴⟩ −  |𝑉𝑉𝐴𝐴⟩ |𝐻𝐻𝐴𝐴⟩)/√2                               (10)  
 

and resulting in the probability of detection 
 
𝑃𝑃𝛽𝛽 = ⟨𝜓𝜓𝐴𝐴𝐴𝐴|𝐼𝐼𝐴𝐴⨂|𝐻𝐻𝛽𝛽⟩ ⟨𝐻𝐻𝛽𝛽|⨂ 𝐼𝐼𝐴𝐴|𝜓𝜓𝐴𝐴𝐴𝐴⟩ = (𝑐𝑐𝑐𝑐𝑐𝑐2 𝛽𝛽 + 𝑐𝑐𝑠𝑠𝑠𝑠2 𝛽𝛽)/2 

= 1/2                          (11) 
 
after setting ⟨𝐻𝐻𝛽𝛽|𝐻𝐻𝐴𝐴⟩ = 𝑐𝑐𝑐𝑐𝑐𝑐 𝛽𝛽 and ⟨𝐻𝐻𝛽𝛽|𝑉𝑉𝐴𝐴⟩ = 𝑐𝑐𝑠𝑠𝑠𝑠 𝛽𝛽 for the 
projective amplitudes onto the polarization filter. Similarly, for 
the first detection at location A, i.e., 𝑃𝑃𝛼𝛼 = 1/2 . 

If a first detection takes place at location A involving the 
projective operator Π̂(𝛼𝛼) = |𝐻𝐻𝛼𝛼⟩ ⟨𝐻𝐻𝛼𝛼|, it will result in an 
intermediary state for the projective amplitudes ⟨𝐻𝐻𝛼𝛼|𝐻𝐻𝐴𝐴⟩ =
𝑐𝑐𝑐𝑐𝑐𝑐 𝛼𝛼 and  ⟨𝐻𝐻𝛼𝛼|𝑉𝑉𝐴𝐴⟩ = 𝑐𝑐𝑠𝑠𝑠𝑠 𝛼𝛼 , so that the reduced or collapsed 
wave function |𝜓𝜓𝐴𝐴|𝐴𝐴⟩ becomes: 

 
|𝜓𝜓𝐴𝐴|𝐴𝐴⟩ = |𝐻𝐻𝛼𝛼⟩ ⟨𝐻𝐻𝛼𝛼|⨂ 𝐼𝐼𝐴𝐴|𝜓𝜓𝐴𝐴𝐴𝐴⟩ = 

= 1
√2

 (𝑐𝑐𝑐𝑐𝑐𝑐 𝛼𝛼  |𝑉𝑉𝐴𝐴⟩ − 𝑐𝑐𝑠𝑠𝑠𝑠 𝛼𝛼  |𝐻𝐻𝐴𝐴⟩) |𝐻𝐻𝛼𝛼⟩  (12) 
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where |𝜓𝜓𝐴𝐴⟩ denotes the normalised wave function for the 
calculation of the detection probability at location B, 
conditional on a detection at location A. The normalization 
factor ℕ = 1/2 for the collapsed wave function |𝜓𝜓𝐴𝐴|𝐴𝐴⟩ 
corresponds to the probability of detection 𝑃𝑃𝛼𝛼 for the first 
measurement, and after substituting for |𝜓𝜓𝐴𝐴⟩ from eq. (13) we 
have: 
 
𝑃𝑃𝛼𝛼 = ⟨𝜓𝜓𝐴𝐴𝐴𝐴|𝐼𝐼𝐴𝐴⨂|𝐻𝐻𝛼𝛼⟩⟨𝐻𝐻𝛼𝛼|⨂ 𝐼𝐼𝐴𝐴|𝜓𝜓𝐴𝐴𝐴𝐴⟩ = |⟨𝐻𝐻𝛼𝛼|𝜓𝜓𝐴𝐴𝐴𝐴⟩|2 = 
 

= ℕ ⟨𝜓𝜓𝐴𝐴|𝜓𝜓𝐴𝐴⟩ = 1/2           (14) 
 
Based on the normalized state |𝜓𝜓𝐴𝐴⟩, the probability of detection 
at location B following a detection at location A, becomes in 
this case, for a projective measurement: 
 
𝑃𝑃𝛽𝛽|𝛼𝛼 = ⟨𝜓𝜓𝐴𝐴|𝐻𝐻𝛽𝛽⟩ ⟨𝐻𝐻𝛽𝛽|𝜓𝜓𝐴𝐴⟩ = | 𝑐𝑐𝑐𝑐𝑐𝑐 𝛼𝛼  𝑐𝑐𝑠𝑠𝑠𝑠 𝛽𝛽 − 𝑐𝑐𝑠𝑠𝑠𝑠 𝛼𝛼 𝑐𝑐𝑐𝑐𝑐𝑐 𝛽𝛽|2     

=  𝑐𝑐𝑠𝑠𝑠𝑠2(𝛽𝛽 − 𝛼𝛼)                              (15) 
 
This result which can be found in [2, Sec.19.5] implies that 
for 𝛽𝛽 − 𝛼𝛼 = ±𝜋𝜋/2, regardless of the values of  𝛽𝛽 𝑐𝑐𝑜𝑜 𝛼𝛼, the local 
probability of detection at location B could peak at unity even 
though the probability at location A is limited to 1/2. This 
theoretical outcome is easily testable experimentally for direct 
evidence of a quantum nonlocal effect influencing the second 
measurement after the wave function collapse. But this has 
never been done either because of the quantum Rayleigh 

scattering [12] of a single-photon and/or the non-existence of 
such a nonlocal effect.  The product of the local probabilities of 
eqs. (14) and (15) equals the expression of the joint probability 
𝑃𝑃𝛼𝛼𝛽𝛽  for simultaneous detections at both locations A and B, that 
is: 

𝑃𝑃𝛼𝛼𝛽𝛽 = |⟨𝐻𝐻𝛽𝛽|⟨𝐻𝐻𝛼𝛼|
|𝜓𝜓𝐴𝐴𝐴𝐴⟩
√𝑃𝑃𝛼𝛼
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           (16𝑎𝑎) 
 
𝑃𝑃𝛼𝛼𝛽𝛽 = ⟨𝜓𝜓𝐴𝐴𝐴𝐴|𝐻𝐻𝛼𝛼⟩|𝐻𝐻𝛽𝛽⟩⨂⟨𝐻𝐻𝛽𝛽|⟨𝐻𝐻𝛼𝛼|𝜓𝜓𝐴𝐴𝐴𝐴⟩ = 0.5  𝑐𝑐𝑠𝑠𝑠𝑠2(𝛽𝛽 − 𝛼𝛼)   

(16𝑏𝑏) 
 

𝑃𝑃𝛼𝛼𝛽𝛽 =  𝑃𝑃𝛼𝛼 𝑃𝑃𝛽𝛽|𝛼𝛼  ≤ 𝑃𝑃𝛼𝛼 𝑃𝑃𝛽𝛽                                                         (16𝑐𝑐) 
 
after inserting from Eqs. (13-15) in the equality (16a). The 
equality (16b) provides a direct calculation of the joint 
probability, confirming the validity of the derivation.  With the 
conditional probability of local detection 𝑃𝑃𝛽𝛽|𝛼𝛼 being, 
mathematically, lower than, or at best, equal to  the local 
probability of detection 𝑃𝑃𝛽𝛽 in the absence of a first detection, 
i.e., 𝑃𝑃𝛽𝛽|𝛼𝛼 ≤ 𝑃𝑃𝛽𝛽, the formalism of wave function collapse gives 
rise to a factorization of local probabilities and imposes an 
upper bound on the quantum joint probability, in clear 
contradiction to the conventional assumption [2, p.538], [3]. 
This formalism delivers average values of the ensembles rather 
than correlation between the sequential orders of the detections. 
The possibility of factorizing the quantum probability for joint 
events as in (16a) is identical to the classical case of joint 
probabilities with the second local probability being 
conditioned on a first detection. This strong similarity between 
the classical and quantum joint probabilities renders the local 
condition of separability [2], [3] irrelevant for the derivation of 
Bell inequalities.  

 

VI. THE FLAWS OF THE QUANTUM NONLOCALITY 
INTERPRETATION OF EXPERIMENTS 

 
For the two polarized photons shown in the inset to Fig. 1 of 

[9] “quantum mechanics predicts that the polarization 
measurements performed at the two distant stations will be 
strongly correlated.” Yet, quantum-strong correlations can also 
be achieved with independent photons or classical systems [5-
7].  

Another quotation of interest from [9] is: “In what are now 
known as Bell’s inequalities, he showed that, for any local 
realist formalism, there exist limits on the predicted 
correlations.” Once again, as pointed out above, Bell 
inequalities can be violated with expectation values from 
independent and multi-photon states [5-7]. 

At least three critical elements have been ignored in the 
interpretations of experimental results alleging proof of 
quantum nonlocality: 1) the quantum Rayleigh scattering 
involving photon-dipole interactions in a dielectric medium [8], 
[12-14], which prevents a single photon from propagating in a 
straight-line, thereby obstructing the synchronized detections of 
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method to test the concept of quantum nonlocality. If no 
detection takes place at location A, the projective measurement 
at location B involves the operator Π̂(𝛽𝛽) = |𝐻𝐻𝛽𝛽⟩ ⟨𝐻𝐻𝛽𝛽|  acting on 
the initial state  

|𝜓𝜓𝐴𝐴𝐴𝐴⟩ = ( |𝐻𝐻𝐴𝐴⟩ |𝑉𝑉𝐴𝐴⟩ −  |𝑉𝑉𝐴𝐴⟩ |𝐻𝐻𝐴𝐴⟩)/√2                               (10)  
 

and resulting in the probability of detection 
 
𝑃𝑃𝛽𝛽 = ⟨𝜓𝜓𝐴𝐴𝐴𝐴|𝐼𝐼𝐴𝐴⨂|𝐻𝐻𝛽𝛽⟩ ⟨𝐻𝐻𝛽𝛽|⨂ 𝐼𝐼𝐴𝐴|𝜓𝜓𝐴𝐴𝐴𝐴⟩ = (𝑐𝑐𝑐𝑐𝑐𝑐2 𝛽𝛽 + 𝑐𝑐𝑠𝑠𝑠𝑠2 𝛽𝛽)/2 

= 1/2                          (11) 
 
after setting ⟨𝐻𝐻𝛽𝛽|𝐻𝐻𝐴𝐴⟩ = 𝑐𝑐𝑐𝑐𝑐𝑐 𝛽𝛽 and ⟨𝐻𝐻𝛽𝛽|𝑉𝑉𝐴𝐴⟩ = 𝑐𝑐𝑠𝑠𝑠𝑠 𝛽𝛽 for the 
projective amplitudes onto the polarization filter. Similarly, for 
the first detection at location A, i.e., 𝑃𝑃𝛼𝛼 = 1/2 . 

If a first detection takes place at location A involving the 
projective operator Π̂(𝛼𝛼) = |𝐻𝐻𝛼𝛼⟩ ⟨𝐻𝐻𝛼𝛼|, it will result in an 
intermediary state for the projective amplitudes ⟨𝐻𝐻𝛼𝛼|𝐻𝐻𝐴𝐴⟩ =
𝑐𝑐𝑐𝑐𝑐𝑐 𝛼𝛼 and  ⟨𝐻𝐻𝛼𝛼|𝑉𝑉𝐴𝐴⟩ = 𝑐𝑐𝑠𝑠𝑠𝑠 𝛼𝛼 , so that the reduced or collapsed 
wave function |𝜓𝜓𝐴𝐴|𝐴𝐴⟩ becomes: 

 
|𝜓𝜓𝐴𝐴|𝐴𝐴⟩ = |𝐻𝐻𝛼𝛼⟩ ⟨𝐻𝐻𝛼𝛼|⨂ 𝐼𝐼𝐴𝐴|𝜓𝜓𝐴𝐴𝐴𝐴⟩ = 

= 1
√2

 (𝑐𝑐𝑐𝑐𝑐𝑐 𝛼𝛼  |𝑉𝑉𝐴𝐴⟩ − 𝑐𝑐𝑠𝑠𝑠𝑠 𝛼𝛼  |𝐻𝐻𝐴𝐴⟩) |𝐻𝐻𝛼𝛼⟩  (12) 
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√ℕ
 = |𝐻𝐻𝛼𝛼⟩⟨𝐻𝐻𝛼𝛼|⨂ 𝐼𝐼𝐴𝐴| 𝜓𝜓𝐴𝐴𝐴𝐴⟩

√ℕ
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where |𝜓𝜓𝐴𝐴⟩ denotes the normalised wave function for the 
calculation of the detection probability at location B, 
conditional on a detection at location A. The normalization 
factor ℕ = 1/2 for the collapsed wave function |𝜓𝜓𝐴𝐴|𝐴𝐴⟩ 
corresponds to the probability of detection 𝑃𝑃𝛼𝛼 for the first 
measurement, and after substituting for |𝜓𝜓𝐴𝐴⟩ from eq. (13) we 
have: 
 
𝑃𝑃𝛼𝛼 = ⟨𝜓𝜓𝐴𝐴𝐴𝐴|𝐼𝐼𝐴𝐴⨂|𝐻𝐻𝛼𝛼⟩⟨𝐻𝐻𝛼𝛼|⨂ 𝐼𝐼𝐴𝐴|𝜓𝜓𝐴𝐴𝐴𝐴⟩ = |⟨𝐻𝐻𝛼𝛼|𝜓𝜓𝐴𝐴𝐴𝐴⟩|2 = 
 

= ℕ ⟨𝜓𝜓𝐴𝐴|𝜓𝜓𝐴𝐴⟩ = 1/2           (14) 
 
Based on the normalized state |𝜓𝜓𝐴𝐴⟩, the probability of detection 
at location B following a detection at location A, becomes in 
this case, for a projective measurement: 
 
𝑃𝑃𝛽𝛽|𝛼𝛼 = ⟨𝜓𝜓𝐴𝐴|𝐻𝐻𝛽𝛽⟩ ⟨𝐻𝐻𝛽𝛽|𝜓𝜓𝐴𝐴⟩ = | 𝑐𝑐𝑐𝑐𝑐𝑐 𝛼𝛼  𝑐𝑐𝑠𝑠𝑠𝑠 𝛽𝛽 − 𝑐𝑐𝑠𝑠𝑠𝑠 𝛼𝛼 𝑐𝑐𝑐𝑐𝑐𝑐 𝛽𝛽|2     

=  𝑐𝑐𝑠𝑠𝑠𝑠2(𝛽𝛽 − 𝛼𝛼)                              (15) 
 
This result which can be found in [2, Sec.19.5] implies that 
for 𝛽𝛽 − 𝛼𝛼 = ±𝜋𝜋/2, regardless of the values of  𝛽𝛽 𝑐𝑐𝑜𝑜 𝛼𝛼, the local 
probability of detection at location B could peak at unity even 
though the probability at location A is limited to 1/2. This 
theoretical outcome is easily testable experimentally for direct 
evidence of a quantum nonlocal effect influencing the second 
measurement after the wave function collapse. But this has 
never been done either because of the quantum Rayleigh 

scattering [12] of a single-photon and/or the non-existence of 
such a nonlocal effect.  The product of the local probabilities of 
eqs. (14) and (15) equals the expression of the joint probability 
𝑃𝑃𝛼𝛼𝛽𝛽  for simultaneous detections at both locations A and B, that 
is: 

𝑃𝑃𝛼𝛼𝛽𝛽 = |⟨𝐻𝐻𝛽𝛽|⟨𝐻𝐻𝛼𝛼|
|𝜓𝜓𝐴𝐴𝐴𝐴⟩
√𝑃𝑃𝛼𝛼
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           (16𝑎𝑎) 
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(16𝑏𝑏) 
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after inserting from Eqs. (13-15) in the equality (16a). The 
equality (16b) provides a direct calculation of the joint 
probability, confirming the validity of the derivation.  With the 
conditional probability of local detection 𝑃𝑃𝛽𝛽|𝛼𝛼 being, 
mathematically, lower than, or at best, equal to  the local 
probability of detection 𝑃𝑃𝛽𝛽 in the absence of a first detection, 
i.e., 𝑃𝑃𝛽𝛽|𝛼𝛼 ≤ 𝑃𝑃𝛽𝛽, the formalism of wave function collapse gives 
rise to a factorization of local probabilities and imposes an 
upper bound on the quantum joint probability, in clear 
contradiction to the conventional assumption [2, p.538], [3]. 
This formalism delivers average values of the ensembles rather 
than correlation between the sequential orders of the detections. 
The possibility of factorizing the quantum probability for joint 
events as in (16a) is identical to the classical case of joint 
probabilities with the second local probability being 
conditioned on a first detection. This strong similarity between 
the classical and quantum joint probabilities renders the local 
condition of separability [2], [3] irrelevant for the derivation of 
Bell inequalities.  

 

VI. THE FLAWS OF THE QUANTUM NONLOCALITY 
INTERPRETATION OF EXPERIMENTS 

 
For the two polarized photons shown in the inset to Fig. 1 of 

[9] “quantum mechanics predicts that the polarization 
measurements performed at the two distant stations will be 
strongly correlated.” Yet, quantum-strong correlations can also 
be achieved with independent photons or classical systems [5-
7].  

Another quotation of interest from [9] is: “In what are now 
known as Bell’s inequalities, he showed that, for any local 
realist formalism, there exist limits on the predicted 
correlations.” Once again, as pointed out above, Bell 
inequalities can be violated with expectation values from 
independent and multi-photon states [5-7]. 

At least three critical elements have been ignored in the 
interpretations of experimental results alleging proof of 
quantum nonlocality: 1) the quantum Rayleigh scattering 
involving photon-dipole interactions in a dielectric medium [8], 
[12-14], which prevents a single photon from propagating in a 
straight-line, thereby obstructing the synchronized detections of 
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method to test the concept of quantum nonlocality. If no 
detection takes place at location A, the projective measurement 
at location B involves the operator Π̂(𝛽𝛽) = |𝐻𝐻𝛽𝛽⟩ ⟨𝐻𝐻𝛽𝛽|  acting on 
the initial state  

|𝜓𝜓𝐴𝐴𝐴𝐴⟩ = ( |𝐻𝐻𝐴𝐴⟩ |𝑉𝑉𝐴𝐴⟩ −  |𝑉𝑉𝐴𝐴⟩ |𝐻𝐻𝐴𝐴⟩)/√2                               (10)  
 

and resulting in the probability of detection 
 
𝑃𝑃𝛽𝛽 = ⟨𝜓𝜓𝐴𝐴𝐴𝐴|𝐼𝐼𝐴𝐴⨂|𝐻𝐻𝛽𝛽⟩ ⟨𝐻𝐻𝛽𝛽|⨂ 𝐼𝐼𝐴𝐴|𝜓𝜓𝐴𝐴𝐴𝐴⟩ = (𝑐𝑐𝑐𝑐𝑐𝑐2 𝛽𝛽 + 𝑐𝑐𝑠𝑠𝑠𝑠2 𝛽𝛽)/2 

= 1/2                          (11) 
 
after setting ⟨𝐻𝐻𝛽𝛽|𝐻𝐻𝐴𝐴⟩ = 𝑐𝑐𝑐𝑐𝑐𝑐 𝛽𝛽 and ⟨𝐻𝐻𝛽𝛽|𝑉𝑉𝐴𝐴⟩ = 𝑐𝑐𝑠𝑠𝑠𝑠 𝛽𝛽 for the 
projective amplitudes onto the polarization filter. Similarly, for 
the first detection at location A, i.e., 𝑃𝑃𝛼𝛼 = 1/2 . 

If a first detection takes place at location A involving the 
projective operator Π̂(𝛼𝛼) = |𝐻𝐻𝛼𝛼⟩ ⟨𝐻𝐻𝛼𝛼|, it will result in an 
intermediary state for the projective amplitudes ⟨𝐻𝐻𝛼𝛼|𝐻𝐻𝐴𝐴⟩ =
𝑐𝑐𝑐𝑐𝑐𝑐 𝛼𝛼 and  ⟨𝐻𝐻𝛼𝛼|𝑉𝑉𝐴𝐴⟩ = 𝑐𝑐𝑠𝑠𝑠𝑠 𝛼𝛼 , so that the reduced or collapsed 
wave function |𝜓𝜓𝐴𝐴|𝐴𝐴⟩ becomes: 

 
|𝜓𝜓𝐴𝐴|𝐴𝐴⟩ = |𝐻𝐻𝛼𝛼⟩ ⟨𝐻𝐻𝛼𝛼|⨂ 𝐼𝐼𝐴𝐴|𝜓𝜓𝐴𝐴𝐴𝐴⟩ = 

= 1
√2

 (𝑐𝑐𝑐𝑐𝑐𝑐 𝛼𝛼  |𝑉𝑉𝐴𝐴⟩ − 𝑐𝑐𝑠𝑠𝑠𝑠 𝛼𝛼  |𝐻𝐻𝐴𝐴⟩) |𝐻𝐻𝛼𝛼⟩  (12) 
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where |𝜓𝜓𝐴𝐴⟩ denotes the normalised wave function for the 
calculation of the detection probability at location B, 
conditional on a detection at location A. The normalization 
factor ℕ = 1/2 for the collapsed wave function |𝜓𝜓𝐴𝐴|𝐴𝐴⟩ 
corresponds to the probability of detection 𝑃𝑃𝛼𝛼 for the first 
measurement, and after substituting for |𝜓𝜓𝐴𝐴⟩ from eq. (13) we 
have: 
 
𝑃𝑃𝛼𝛼 = ⟨𝜓𝜓𝐴𝐴𝐴𝐴|𝐼𝐼𝐴𝐴⨂|𝐻𝐻𝛼𝛼⟩⟨𝐻𝐻𝛼𝛼|⨂ 𝐼𝐼𝐴𝐴|𝜓𝜓𝐴𝐴𝐴𝐴⟩ = |⟨𝐻𝐻𝛼𝛼|𝜓𝜓𝐴𝐴𝐴𝐴⟩|2 = 
 

= ℕ ⟨𝜓𝜓𝐴𝐴|𝜓𝜓𝐴𝐴⟩ = 1/2           (14) 
 
Based on the normalized state |𝜓𝜓𝐴𝐴⟩, the probability of detection 
at location B following a detection at location A, becomes in 
this case, for a projective measurement: 
 
𝑃𝑃𝛽𝛽|𝛼𝛼 = ⟨𝜓𝜓𝐴𝐴|𝐻𝐻𝛽𝛽⟩ ⟨𝐻𝐻𝛽𝛽|𝜓𝜓𝐴𝐴⟩ = | 𝑐𝑐𝑐𝑐𝑐𝑐 𝛼𝛼  𝑐𝑐𝑠𝑠𝑠𝑠 𝛽𝛽 − 𝑐𝑐𝑠𝑠𝑠𝑠 𝛼𝛼 𝑐𝑐𝑐𝑐𝑐𝑐 𝛽𝛽|2     

=  𝑐𝑐𝑠𝑠𝑠𝑠2(𝛽𝛽 − 𝛼𝛼)                              (15) 
 
This result which can be found in [2, Sec.19.5] implies that 
for 𝛽𝛽 − 𝛼𝛼 = ±𝜋𝜋/2, regardless of the values of  𝛽𝛽 𝑐𝑐𝑜𝑜 𝛼𝛼, the local 
probability of detection at location B could peak at unity even 
though the probability at location A is limited to 1/2. This 
theoretical outcome is easily testable experimentally for direct 
evidence of a quantum nonlocal effect influencing the second 
measurement after the wave function collapse. But this has 
never been done either because of the quantum Rayleigh 

scattering [12] of a single-photon and/or the non-existence of 
such a nonlocal effect.  The product of the local probabilities of 
eqs. (14) and (15) equals the expression of the joint probability 
𝑃𝑃𝛼𝛼𝛽𝛽  for simultaneous detections at both locations A and B, that 
is: 

𝑃𝑃𝛼𝛼𝛽𝛽 = |⟨𝐻𝐻𝛽𝛽|⟨𝐻𝐻𝛼𝛼|
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           (16𝑎𝑎) 
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after inserting from Eqs. (13-15) in the equality (16a). The 
equality (16b) provides a direct calculation of the joint 
probability, confirming the validity of the derivation.  With the 
conditional probability of local detection 𝑃𝑃𝛽𝛽|𝛼𝛼 being, 
mathematically, lower than, or at best, equal to  the local 
probability of detection 𝑃𝑃𝛽𝛽 in the absence of a first detection, 
i.e., 𝑃𝑃𝛽𝛽|𝛼𝛼 ≤ 𝑃𝑃𝛽𝛽, the formalism of wave function collapse gives 
rise to a factorization of local probabilities and imposes an 
upper bound on the quantum joint probability, in clear 
contradiction to the conventional assumption [2, p.538], [3]. 
This formalism delivers average values of the ensembles rather 
than correlation between the sequential orders of the detections. 
The possibility of factorizing the quantum probability for joint 
events as in (16a) is identical to the classical case of joint 
probabilities with the second local probability being 
conditioned on a first detection. This strong similarity between 
the classical and quantum joint probabilities renders the local 
condition of separability [2], [3] irrelevant for the derivation of 
Bell inequalities.  

 

VI. THE FLAWS OF THE QUANTUM NONLOCALITY 
INTERPRETATION OF EXPERIMENTS 

 
For the two polarized photons shown in the inset to Fig. 1 of 

[9] “quantum mechanics predicts that the polarization 
measurements performed at the two distant stations will be 
strongly correlated.” Yet, quantum-strong correlations can also 
be achieved with independent photons or classical systems [5-
7].  

Another quotation of interest from [9] is: “In what are now 
known as Bell’s inequalities, he showed that, for any local 
realist formalism, there exist limits on the predicted 
correlations.” Once again, as pointed out above, Bell 
inequalities can be violated with expectation values from 
independent and multi-photon states [5-7]. 

At least three critical elements have been ignored in the 
interpretations of experimental results alleging proof of 
quantum nonlocality: 1) the quantum Rayleigh scattering 
involving photon-dipole interactions in a dielectric medium [8], 
[12-14], which prevents a single photon from propagating in a 
straight-line, thereby obstructing the synchronized detections of 
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method to test the concept of quantum nonlocality. If no 
detection takes place at location A, the projective measurement 
at location B involves the operator Π̂(𝛽𝛽) = |𝐻𝐻𝛽𝛽⟩ ⟨𝐻𝐻𝛽𝛽|  acting on 
the initial state  

|𝜓𝜓𝐴𝐴𝐴𝐴⟩ = ( |𝐻𝐻𝐴𝐴⟩ |𝑉𝑉𝐴𝐴⟩ −  |𝑉𝑉𝐴𝐴⟩ |𝐻𝐻𝐴𝐴⟩)/√2                               (10)  
 

and resulting in the probability of detection 
 
𝑃𝑃𝛽𝛽 = ⟨𝜓𝜓𝐴𝐴𝐴𝐴|𝐼𝐼𝐴𝐴⨂|𝐻𝐻𝛽𝛽⟩ ⟨𝐻𝐻𝛽𝛽|⨂ 𝐼𝐼𝐴𝐴|𝜓𝜓𝐴𝐴𝐴𝐴⟩ = (𝑐𝑐𝑐𝑐𝑐𝑐2 𝛽𝛽 + 𝑐𝑐𝑠𝑠𝑠𝑠2 𝛽𝛽)/2 

= 1/2                          (11) 
 
after setting ⟨𝐻𝐻𝛽𝛽|𝐻𝐻𝐴𝐴⟩ = 𝑐𝑐𝑐𝑐𝑐𝑐 𝛽𝛽 and ⟨𝐻𝐻𝛽𝛽|𝑉𝑉𝐴𝐴⟩ = 𝑐𝑐𝑠𝑠𝑠𝑠 𝛽𝛽 for the 
projective amplitudes onto the polarization filter. Similarly, for 
the first detection at location A, i.e., 𝑃𝑃𝛼𝛼 = 1/2 . 

If a first detection takes place at location A involving the 
projective operator Π̂(𝛼𝛼) = |𝐻𝐻𝛼𝛼⟩ ⟨𝐻𝐻𝛼𝛼|, it will result in an 
intermediary state for the projective amplitudes ⟨𝐻𝐻𝛼𝛼|𝐻𝐻𝐴𝐴⟩ =
𝑐𝑐𝑐𝑐𝑐𝑐 𝛼𝛼 and  ⟨𝐻𝐻𝛼𝛼|𝑉𝑉𝐴𝐴⟩ = 𝑐𝑐𝑠𝑠𝑠𝑠 𝛼𝛼 , so that the reduced or collapsed 
wave function |𝜓𝜓𝐴𝐴|𝐴𝐴⟩ becomes: 

 
|𝜓𝜓𝐴𝐴|𝐴𝐴⟩ = |𝐻𝐻𝛼𝛼⟩ ⟨𝐻𝐻𝛼𝛼|⨂ 𝐼𝐼𝐴𝐴|𝜓𝜓𝐴𝐴𝐴𝐴⟩ = 

= 1
√2

 (𝑐𝑐𝑐𝑐𝑐𝑐 𝛼𝛼  |𝑉𝑉𝐴𝐴⟩ − 𝑐𝑐𝑠𝑠𝑠𝑠 𝛼𝛼  |𝐻𝐻𝐴𝐴⟩) |𝐻𝐻𝛼𝛼⟩  (12) 

 

|𝜓𝜓𝐴𝐴⟩ =
|𝜓𝜓𝐴𝐴|𝐴𝐴⟩

√ℕ
 = |𝐻𝐻𝛼𝛼⟩⟨𝐻𝐻𝛼𝛼|⨂ 𝐼𝐼𝐴𝐴| 𝜓𝜓𝐴𝐴𝐴𝐴⟩

√ℕ
                                  (13) 

 
where |𝜓𝜓𝐴𝐴⟩ denotes the normalised wave function for the 
calculation of the detection probability at location B, 
conditional on a detection at location A. The normalization 
factor ℕ = 1/2 for the collapsed wave function |𝜓𝜓𝐴𝐴|𝐴𝐴⟩ 
corresponds to the probability of detection 𝑃𝑃𝛼𝛼 for the first 
measurement, and after substituting for |𝜓𝜓𝐴𝐴⟩ from eq. (13) we 
have: 
 
𝑃𝑃𝛼𝛼 = ⟨𝜓𝜓𝐴𝐴𝐴𝐴|𝐼𝐼𝐴𝐴⨂|𝐻𝐻𝛼𝛼⟩⟨𝐻𝐻𝛼𝛼|⨂ 𝐼𝐼𝐴𝐴|𝜓𝜓𝐴𝐴𝐴𝐴⟩ = |⟨𝐻𝐻𝛼𝛼|𝜓𝜓𝐴𝐴𝐴𝐴⟩|2 = 
 

= ℕ ⟨𝜓𝜓𝐴𝐴|𝜓𝜓𝐴𝐴⟩ = 1/2           (14) 
 
Based on the normalized state |𝜓𝜓𝐴𝐴⟩, the probability of detection 
at location B following a detection at location A, becomes in 
this case, for a projective measurement: 
 
𝑃𝑃𝛽𝛽|𝛼𝛼 = ⟨𝜓𝜓𝐴𝐴|𝐻𝐻𝛽𝛽⟩ ⟨𝐻𝐻𝛽𝛽|𝜓𝜓𝐴𝐴⟩ = | 𝑐𝑐𝑐𝑐𝑐𝑐 𝛼𝛼  𝑐𝑐𝑠𝑠𝑠𝑠 𝛽𝛽 − 𝑐𝑐𝑠𝑠𝑠𝑠 𝛼𝛼 𝑐𝑐𝑐𝑐𝑐𝑐 𝛽𝛽|2     

=  𝑐𝑐𝑠𝑠𝑠𝑠2(𝛽𝛽 − 𝛼𝛼)                              (15) 
 
This result which can be found in [2, Sec.19.5] implies that 
for 𝛽𝛽 − 𝛼𝛼 = ±𝜋𝜋/2, regardless of the values of  𝛽𝛽 𝑐𝑐𝑜𝑜 𝛼𝛼, the local 
probability of detection at location B could peak at unity even 
though the probability at location A is limited to 1/2. This 
theoretical outcome is easily testable experimentally for direct 
evidence of a quantum nonlocal effect influencing the second 
measurement after the wave function collapse. But this has 
never been done either because of the quantum Rayleigh 

scattering [12] of a single-photon and/or the non-existence of 
such a nonlocal effect.  The product of the local probabilities of 
eqs. (14) and (15) equals the expression of the joint probability 
𝑃𝑃𝛼𝛼𝛽𝛽  for simultaneous detections at both locations A and B, that 
is: 

𝑃𝑃𝛼𝛼𝛽𝛽 = |⟨𝐻𝐻𝛽𝛽|⟨𝐻𝐻𝛼𝛼|
|𝜓𝜓𝐴𝐴𝐴𝐴⟩
√𝑃𝑃𝛼𝛼

|
2

𝑃𝑃𝛼𝛼 =  |⟨𝐻𝐻𝛽𝛽|𝜓𝜓𝐴𝐴⟩|2𝑃𝑃𝛼𝛼 = 𝑃𝑃𝛽𝛽|𝛼𝛼 𝑃𝑃𝛼𝛼 

           (16𝑎𝑎) 
 
𝑃𝑃𝛼𝛼𝛽𝛽 = ⟨𝜓𝜓𝐴𝐴𝐴𝐴|𝐻𝐻𝛼𝛼⟩|𝐻𝐻𝛽𝛽⟩⨂⟨𝐻𝐻𝛽𝛽|⟨𝐻𝐻𝛼𝛼|𝜓𝜓𝐴𝐴𝐴𝐴⟩ = 0.5  𝑐𝑐𝑠𝑠𝑠𝑠2(𝛽𝛽 − 𝛼𝛼)   

(16𝑏𝑏) 
 

𝑃𝑃𝛼𝛼𝛽𝛽 =  𝑃𝑃𝛼𝛼 𝑃𝑃𝛽𝛽|𝛼𝛼  ≤ 𝑃𝑃𝛼𝛼 𝑃𝑃𝛽𝛽                                                         (16𝑐𝑐) 
 
after inserting from Eqs. (13-15) in the equality (16a). The 
equality (16b) provides a direct calculation of the joint 
probability, confirming the validity of the derivation.  With the 
conditional probability of local detection 𝑃𝑃𝛽𝛽|𝛼𝛼 being, 
mathematically, lower than, or at best, equal to  the local 
probability of detection 𝑃𝑃𝛽𝛽 in the absence of a first detection, 
i.e., 𝑃𝑃𝛽𝛽|𝛼𝛼 ≤ 𝑃𝑃𝛽𝛽, the formalism of wave function collapse gives 
rise to a factorization of local probabilities and imposes an 
upper bound on the quantum joint probability, in clear 
contradiction to the conventional assumption [2, p.538], [3]. 
This formalism delivers average values of the ensembles rather 
than correlation between the sequential orders of the detections. 
The possibility of factorizing the quantum probability for joint 
events as in (16a) is identical to the classical case of joint 
probabilities with the second local probability being 
conditioned on a first detection. This strong similarity between 
the classical and quantum joint probabilities renders the local 
condition of separability [2], [3] irrelevant for the derivation of 
Bell inequalities.  

 

VI. THE FLAWS OF THE QUANTUM NONLOCALITY 
INTERPRETATION OF EXPERIMENTS 

 
For the two polarized photons shown in the inset to Fig. 1 of 

[9] “quantum mechanics predicts that the polarization 
measurements performed at the two distant stations will be 
strongly correlated.” Yet, quantum-strong correlations can also 
be achieved with independent photons or classical systems [5-
7].  

Another quotation of interest from [9] is: “In what are now 
known as Bell’s inequalities, he showed that, for any local 
realist formalism, there exist limits on the predicted 
correlations.” Once again, as pointed out above, Bell 
inequalities can be violated with expectation values from 
independent and multi-photon states [5-7]. 

At least three critical elements have been ignored in the 
interpretations of experimental results alleging proof of 
quantum nonlocality: 1) the quantum Rayleigh scattering 
involving photon-dipole interactions in a dielectric medium [8], 
[12-14], which prevents a single photon from propagating in a 
straight-line, thereby obstructing the synchronized detections of 
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𝑃𝑃++(𝛼𝛼; 𝛽𝛽) = 𝑁𝑁++(𝛼𝛼; 𝛽𝛽)/ 𝑁𝑁𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 where 𝑁𝑁++ is the number of 
coincident counts of photons and  𝑁𝑁𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 is the number of all 
coincident detections for all four settings 𝑁𝑁𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 =
𝑁𝑁++(𝛼𝛼; 𝛽𝛽) + 𝑁𝑁−−(𝛼𝛼′; 𝛽𝛽′) + 𝑁𝑁+−(𝛼𝛼; 𝛽𝛽′) + 𝑁𝑁−+(𝛼𝛼′; 𝛽𝛽). 
However, this normalization is mathematical because the 
physical number 𝑁𝑁𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 = 𝑁𝑁𝑖𝑖𝑛𝑛 of initiated photon-pairs is very 
much larger as photons are lost between the source and the 
photodetectors, for various reasons, thereby throwing doubt 
about the real statistics. This normalization makes a violation 
of the CHSC impossible as  𝑁𝑁++/𝑁𝑁𝑖𝑖𝑛𝑛 ≪ 0.1.  

The Clauser-Horne (CH) inequality has arbitrary values for the 
two measurement settings, i.e., 𝛼𝛼 𝑎𝑎𝑎𝑎𝑎𝑎 𝛼𝛼′ as well as  𝛽𝛽 𝑎𝑎𝑎𝑎𝑎𝑎 𝛽𝛽′  
are set separately. The CH inequality also contains correlations 
between ‘1’s and ‘0’s, so that, in terms of binary-valued 
probabilities  𝑝𝑝 (1,1; 𝛼𝛼, 𝛽𝛽) and similar forms, [10-11], the 
inequality is written as: 

 
𝑝𝑝 (1,1; 𝛼𝛼, 𝛽𝛽) −  𝑝𝑝 (1,1; 𝛼𝛼′,  𝛽𝛽′) ≤            

         ≤ 𝑝𝑝 (1, 0; 𝛼𝛼, 𝛽𝛽′) + 𝑝𝑝 (0,1; 𝛼𝛼′, 𝛽𝛽)     (2) 
 
with the normalization factor 𝑁𝑁𝑖𝑖𝑛𝑛 of initiated events being used. 
But, as only one term of the four terms is measured in any given 
run, the linear combination would relate the maximal values on 
the left-hand side to the minimal values on the right-hand side. 
With such probabilities for all four terms, the opposite 
requirements of the inequality for the coincident detections of 
(1;1) on the left-hand side, and for only one-location detection 
(1;0) or (0;1) on the right-hand side, make a violation 
impossible, mathematically, unless arbitrary values are selected 
from various data sets. In this case, the inequality becomes 
physically meaningless. 

For an input of multi-photon states, loss effects may not 
annihilate all the input photons, so that the number of detections 
increases regardless of the projective probability 𝑝𝑝(𝛼𝛼) = 𝑐𝑐𝑜𝑜𝑜𝑜2 𝛼𝛼 
which provides a mathematical average. For a single-photon 
input, the density distribution per solid angle ∆Ω  of the mixed 
quantum state arising from spontaneous emission that follows 
the radiation pattern of an oscillating dipole is [16-17]: 

 

𝑝𝑝(𝜃𝜃)∆Ω = 𝑐𝑐𝑜𝑜𝑜𝑜2 𝜃𝜃 ∆𝜃𝜃 ∆𝜑𝜑
2𝜋𝜋 ∫ 𝑐𝑐𝑜𝑜𝑜𝑜2 𝜃𝜃  𝑎𝑎𝜃𝜃𝜋𝜋

−𝜋𝜋
                                   (3) 

 
where the solid angle of emission is ∆Ω , the polar angle between 
the electric dipole vector and the polarization vector of the 
emitted photon is 𝜃𝜃, and 𝜑𝜑 is the azimuthal angle in the plane 
perpendicular to the dipole [16-17]. It is this distribution of the 
Rayleigh spontaneously emitted photons over the range 
{−𝜋𝜋, 𝜋𝜋}, that randomly rotates the polarization state of the 
absorbed photons. 

Physically, however, one single photon is scattered randomly 
by quantum Rayleigh photon-dipole interactions. By contrast, a 
group of identical photons can propagate in a straight line inside 
a dielectric medium through quantum Rayleigh stimulated 
emission. This process of stimulated emission can also amplify 
a spontaneously emitted photon with a rotated polarization, 
particularly so if the polarization modulator and analyser enable 
a lossless mode to propagate [13-14].  

B. Linking projective measurements to the theoretical 
correlation function  

 
Quantum correlations are evaluated as the expectation values 

of a product of operators [2-3]. For the projective operators  
�̂�𝛱(𝛼𝛼) = |𝐻𝐻𝛼𝛼⟩ ⟨𝐻𝐻𝛼𝛼| 𝑎𝑎𝑎𝑎𝑎𝑎 �̂�𝛱(𝛽𝛽) = |𝐻𝐻𝛽𝛽⟩ ⟨𝐻𝐻𝛽𝛽|  corresponding to 
the polarization filters with one detection setting at each of the 
two locations A and B, respectively, the probability of 
coincident detections has the form, cf. [3, eq. 13]: 

 
𝑝𝑝 (1,1; 𝛼𝛼, 𝛽𝛽) = |(⟨𝜓𝜓𝑖𝑖𝑛𝑛|�̂�𝛱(𝛼𝛼)) (�̂�𝛱(𝛽𝛽) |𝜓𝜓𝑖𝑖𝑛𝑛⟩)|

= |⟨Φ𝛼𝛼|Φ𝛽𝛽⟩|                                                (4) 

with |𝐻𝐻𝛼𝛼⟩ and |𝐻𝐻𝛽𝛽⟩  identifying the states of the polarization 
filters, and ⟨𝛷𝛷𝛼𝛼| = ⟨𝜓𝜓𝑖𝑖𝑛𝑛|�̂�𝛱(𝛼𝛼) for the Hermitian conjugate 
state.  For the polarization-entangled photons, the outcomes 
consist of the overlap between two state vectors rotated on the 
Poincaré sphere and are defined as the correlation function 
𝐶𝐶(𝛼𝛼; 𝛽𝛽) between two (mixed) states; by contrast, 
experimentally, the probability of coincident detections is 
calculated from the sum  of products of overlapping terms, i.e., 
 𝑝𝑝𝑐𝑐(𝑎𝑎, 𝑏𝑏) = (∑ 𝑎𝑎𝑛𝑛

𝑁𝑁
𝑛𝑛=1  𝑏𝑏𝑛𝑛)/𝑁𝑁 , as defined in the Introduction, 

and identifies the fraction of simultaneous detections at the 
level of each quantum event. This discrepancy is part of the 
disconnect between theory and measurement. 

For the basis states |𝐻𝐻⟩ 𝑎𝑎𝑎𝑎𝑎𝑎 |𝑉𝑉⟩ of the shared measurement 
Hilbert space, the projective amplitudes are ⟨𝐻𝐻𝛼𝛼|𝐻𝐻𝐴𝐴⟩ = 𝑐𝑐𝑜𝑜𝑜𝑜 𝛼𝛼, 
⟨𝐻𝐻𝛼𝛼|𝑉𝑉𝐴𝐴⟩ = 𝑜𝑜𝑠𝑠𝑎𝑎 𝛼𝛼,  ⟨𝐻𝐻𝛽𝛽|𝐻𝐻𝐵𝐵⟩ = 𝑐𝑐𝑜𝑜𝑜𝑜 𝛽𝛽 and  ⟨𝐻𝐻𝛽𝛽|𝑉𝑉𝐵𝐵⟩ = 𝑜𝑜𝑠𝑠𝑎𝑎 𝛽𝛽. The 
correlation function 𝐶𝐶(𝛼𝛼; 𝛽𝛽) of magnitude |𝐶𝐶(𝛼𝛼; 𝛽𝛽)| =
 𝑝𝑝 (1,1; 𝛼𝛼, 𝛽𝛽) between filter polarization states and for 
independent states of photons |𝜓𝜓𝑖𝑖𝑛𝑛⟩ becomes:  

𝐶𝐶(𝛼𝛼; 𝛽𝛽) = ⟨𝛷𝛷𝛼𝛼|𝛷𝛷𝛽𝛽⟩ = ⟨𝜓𝜓𝑖𝑖𝑛𝑛|𝐻𝐻𝛼𝛼⟩ ⟨𝐻𝐻𝛼𝛼|𝐻𝐻𝛽𝛽⟩⟨𝐻𝐻𝛽𝛽|𝜓𝜓𝑖𝑖𝑛𝑛⟩            (5𝑎𝑎) 

|𝜓𝜓𝑖𝑖𝑛𝑛⟩ = ( |𝐻𝐻⟩  + |𝑉𝑉⟩ )/ √2                                                      (5𝑏𝑏) 
 
  |𝐻𝐻𝛼𝛼⟩ = cos 𝛼𝛼 |𝐻𝐻⟩ + sin 𝛼𝛼  |𝑉𝑉⟩; |𝐻𝐻𝛽𝛽⟩ = cos 𝛽𝛽 |𝐻𝐻⟩ + sin 𝛽𝛽  |𝑉𝑉⟩ 

 (5c) 
𝐶𝐶(𝛼𝛼; 𝛽𝛽) = 0.5[𝑐𝑐𝑜𝑜𝑜𝑜 𝛼𝛼 + sin 𝛼𝛼] [𝑐𝑐𝑜𝑜𝑜𝑜(𝛼𝛼 − 𝛽𝛽)]  ×
                                                            ×  [𝑐𝑐𝑜𝑜𝑜𝑜 𝛽𝛽 +  𝑜𝑜𝑠𝑠𝑎𝑎 𝛽𝛽] =  

=  0.5 cos(𝛼𝛼 − 𝛽𝛽)[cos(𝛼𝛼 − 𝛽𝛽) + sin(𝛼𝛼 + 𝛽𝛽)]       (5𝑎𝑎) 
 

This correlation of eq. (5d) is composed of three terms indicated 
in the first equality. The projections of the input states onto the 
respective filters are given by the sum of the sine and cosine 
functions, while the term 𝑐𝑐𝑜𝑜𝑜𝑜(𝛼𝛼 − 𝛽𝛽)  indicates the overlap 
between the two filters. The magnitude of this correlation 
function or probability of coincident detections can reach a peak 
of unity for the symmetric case of  𝛼𝛼 = 𝛽𝛽 = 𝜋𝜋/4 𝑜𝑜𝑜𝑜 𝜋𝜋/4 ± 𝜋𝜋 , 
outperforming the coincidence values of 0.5 obtained with 
entangled states of photons as presented in Section V. 
 

III. CORRELATED OR COINCIDENT DETECTIONS OF 
INDEPENDENT PHOTONS 

A series or an ensemble of detection measurements is 
mathematically cast into a temporal vector 𝑣𝑣(𝛼𝛼, 𝜃𝜃𝐴𝐴) along 
polarization output angle 𝜃𝜃𝐴𝐴, and for a polarization input setting  
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paired-photons; 2) the unavoidable parametric amplification of 
the spontaneously emitted photons in the nonlinear crystal of the 
original source and 3) the experimental evidence of quantum-
strong correlations between polarization states or statistical 
ensembles of multi-photon, independent states [5,6,8,12-14].

Maximally entangled states |ψ𝐴𝐵⟩, represented in the same 
frame of coordinates of horizontal and vertical polarizations, 
would deliver, allegedly, the strongest values of the correlation 
function 𝐸𝑐 for the Pauli spin vectors operators 𝜎̂ 𝐴 and 𝜎̂ 𝐵, e.g., 
𝐸𝑐= ⟨ψ𝐴𝐵 | 𝜎̂ 𝐴 ⨂ 𝜎̂ 𝐵 |ψ𝐴𝐵⟩=𝑐𝑜𝑠 [2  (𝜃𝐴−𝜃𝐵)] with the polarization 
filters rotated by an angle 𝜃𝐴 𝑜𝑟 𝜃𝐵, respectively, from the 
horizontal axis. However, quantum-strong correlations with 
independent photons have been demonstrated experimentally 
[5] but ignored by legacy journals because they did not fit in 
with the theory of quantum nonlocality. The same correlation 
function is obtained ‘classically’, as a result of the overlap of 
two polarization Stokes vectors of the polarization filters on the 
Poincaré sphere [7]. The Stokes parameters correspond to the 
expectation values of the Pauli spin operators [7].

The correlation function is a numerical calculation as opposed 
to a physical interaction. Thus, the numerical comparison of the 
data sets is carried out at a third location C where the reference 
system of coordinates is located for comparison or correlation 
calculations of the two sets of measured data, and does not 
require physical overlap of the observables whose operators 
are aligned with the system of coordinates of the measurement 
Hilbert space onto which the detected state vectors are mapped. 
In this case, the correlation operator 𝐶̂ =𝜎̂ 𝐴 ⨂ 𝜎̂ 𝐵 can be reduced 
to [18; Eq. (A6)]:

where the polarization vectors 𝒂 and 𝒃 identify the orientation 
of the detecting polarization filters in the Stokes representation, 
and 𝜎̂ =( 𝜎̂ 1,𝜎̂ 2  ,𝜎̂ 3 ) is the Pauli spin vector (with 𝜎̂ 2 =𝑖 𝜎̂ 1 𝜎̂ 3). 
The presence of the identity operator in Eq. (17) implies that, 
when the last term vanishes for a linear polarization state, the 
correlation function is determined by the orientations of the 
polarization filters.

The theoretical concept of photonic quantum nonlocality cannot 
be implemented physically because of the quantum Rayleigh 
scattering of single photons [12]. Landmark experiments [10-
11] reported that measured outcomes were fitted with quantum 
states possessing a dominant component of non-entangled 
photons, thereby contradicting their own claim of quantum 
nonlocality. With probabilities of photon detections lower than 
0.001, the alleged quantum nonlocality cannot be classified as 
a resource for developing quantum computing devices, despite 
recent publicity.

All the experimental evidence indicates the absence of a 
quantum effect between two simultaneously measured single and 
entangled photons because of the quantum Rayleigh scattering 
of single photons. The theoretical quantum joint probability for 
entangled photons is limited by an upper value of 0.5, whereas the 

correlation between independent qubits on the Poincaré sphere 
can exceed 0.5 as shown in Section 2. Equally, the classical 
correlation coefficient between two sequences of arbitrarily 
distributed binary values can be larger than 0.5, calculated as the 
sum of same order, overlapping, product components of '1' or '0'.

The quantum reality of independent states of photons takes 
precedence over the quantum nonlocality of statistically mixed 
quantum states by delivering stronger quantum correlations as 
explained in Section 2. The mixed states are time- and space 
independent and can be used at anytime, anywhere and in any 
context regardless of the physical context and circumstances. 
Thus, discarding critically informative aspects of the photonic 
systems being probed leads to the need for ‘counter-intuitive’ 
explanations such as the quantum nonlocality phenomenon.

Consequently, the physical reality as promoted by Einstein 
prevails over the mythical quantum nonlocality of Bohr, if only 
because a single photon will be scattered about in a dielectric 
medium by the quantum Rayleigh scattering.

7. Conclusion
The search for single-photon sources and photo-detectors is 
rather unnecessary because groups of identical photons perform 
equally well in terms of correlations of coincident measurements 
required for data processing with independent polarization 
qubits. A long series of physical errors, some of which stemming 
from disregard for scientific methodology, have been covered 
up over the last six decades. An arbitrarily defined probability 
threshold which, allegedly, can only be violated by quantum 
correlations was repeatedly proven to be physically incorrect. 
Experimental outcomes purporting to prove the role of 
polarization-entangled photons were, in fact, modelled with a 
high level of non-entangled states. The formalism of the wave 
function collapse of the entangled states, when fully analysed, 
leads to the factorization of the quantum probability of joint 
detections, thereby enabling a local verification of the claimed 
quantum nonlocality, if it existed.

No explanation is provided in ref 19 about the physically 
meaningful process of Rayleigh scattering of single photons 
which prevents synchronized detections of the original pair 
of entangled photons [19]. The absence of such experimental 
evidence is consistent with the analysis based on the concept 
of wave function collapse leading to the factorization of the 
quantum joint probability. This, in turn, should enable a local 
determination of the alleged quantum nonlocality, which has 
never been done. Therefore, Gisin’s statement that “…a violation 
of a Bell inequality proves that no future theory can satisfy 
the locality condition” is physically unsubstantiated given the 
evidence to the contrary presented in Sections 2 and 3 above, 
and references [5,6].

The intrinsic and monochromatic field of photons has the same 
localized spatial profile and fall-off regardless of the source of 
origin [14]. In a dielectric medium, e. g., a cubic beam splitter, 
saturated with input single photons scattered through quantum 
Rayleigh spontaneous emission, groups of identical photons will 

6 
> REPLACE THIS LINE WITH YOUR MANUSCRIPT ID NUMBER (DOUBLE-CLICK HERE TO EDIT) < 
 

6 
 

initially paired-photons; 2) the unavoidable parametric 
amplification of the spontaneously emitted photons in the 
nonlinear crystal of the original source [8], [13-14]; and 3) the 
experimental evidence of quantum-strong correlations between 
polarization states or statistical ensembles of multi-photon, 
independent states [5-6].      

Maximally entangled states |ψ𝐴𝐴𝐴𝐴⟩, represented in the same 
frame of coordinates of horizontal and vertical polarizations, 
would deliver, allegedly, the strongest values of the correlation 
function 𝐸𝐸𝑐𝑐  for the Pauli spin vectors operators �̂�𝜎 𝐴𝐴 and �̂�𝜎 𝐴𝐴, 
e.g., 𝐸𝐸𝑐𝑐 =  ⟨ψ𝐴𝐴𝐴𝐴 | �̂�𝜎 𝐴𝐴 ⨂ �̂�𝜎 𝐴𝐴 |ψ𝐴𝐴𝐴𝐴⟩ = 𝑐𝑐𝑐𝑐𝑐𝑐  [2 (𝜃𝜃𝐴𝐴 − 𝜃𝜃𝐴𝐴)] with 
the polarization filters rotated by an angle 𝜃𝜃𝐴𝐴 𝑐𝑐𝑜𝑜 𝜃𝜃𝐴𝐴, 
respectively, from the horizontal axis. However, quantum-
strong correlations with independent photons have been 
demonstrated experimentally [5] but ignored by legacy journals 
because they did not fit in with the theory of quantum 
nonlocality. The same correlation function is obtained 
‘classically’, as a result of the overlap of two polarization 
Stokes vectors of the polarization filters on the Poincaré sphere 
[7].  The Stokes parameters correspond to the expectation 
values of the Pauli spin operators [7].   

The correlation function is a numerical calculation as opposed 
to a physical interaction. Thus, the numerical comparison of the 
data sets is carried out at a third location C where the reference 
system of coordinates is located for comparison or correlation 
calculations of the two sets of measured data, and does not 
require physical overlap of the observables whose operators are 
aligned with the system of coordinates of the measurement 
Hilbert space onto which the detected state vectors are mapped. 
In this case, the correlation operator  �̂�𝐶 = �̂�𝜎 𝐴𝐴 ⨂ �̂�𝜎 𝐴𝐴  can be 
reduced to [18; Eq. (A6)]: 

 
�̂�𝐶 = (𝒂𝒂 ∙  �̂�𝜎)(𝒃𝒃 ∙  �̂�𝜎) = 𝒂𝒂 ∙ 𝒃𝒃 𝐼𝐼 + 𝑖𝑖 ( 𝒂𝒂 × 𝒃𝒃 ) ∙ �̂�𝜎             (17) 

 
where the polarization vectors  𝒂𝒂 and 𝒃𝒃  identify the orientation 
of the detecting polarization filters in the Stokes representation, 
and �̂�𝜎 = ( �̂�𝜎1, �̂�𝜎2 , �̂�𝜎3 ) is the Pauli spin vector (with �̂�𝜎2 =
𝑖𝑖 �̂�𝜎1 �̂�𝜎3). The presence of the identity operator in Eq. (17) 
implies that, when the last term vanishes for a linear 
polarization state, the correlation function is determined by the 
orientations of the polarization filters. 

The theoretical concept of photonic quantum nonlocality 
cannot be implemented physically because of the quantum 
Rayleigh scattering of single photons [12]. Landmark 
experiments [10-11] reported that measured outcomes were 
fitted with quantum states possessing a dominant component of 
non-entangled photons, thereby contradicting their own claim 
of quantum nonlocality. With probabilities of photon detections 
lower than 0.001, the alleged quantum nonlocality cannot be 
classified as a resource for developing quantum computing 
devices, despite recent publicity.  

All the experimental evidence indicates the absence of a 
quantum effect between two simultaneously measured single 
and entangled photons because of the quantum Rayleigh 
scattering of single photons. The theoretical quantum joint 
probability for entangled photons is limited by an upper value 
of 0.5, whereas the correlation between independent qubits on 
the Poincaré sphere can exceed 0.5 as shown in Section 2. 
Equally, the classical correlation coefficient between two 

sequences of arbitrarily distributed binary values can be larger 
than 0.5, calculated as the sum of same order, overlapping, 
product components of '1' or '0'.   

The quantum reality of independent states of photons takes 
precedence over the quantum nonlocality of statistically mixed 
quantum states by delivering stronger quantum correlations as 
explained in Section 2. The mixed states are time- and space 
independent and can be used at anytime, anywhere and in any 
context regardless of the physical context and circumstances. 
Thus, discarding critically informative aspects of the photonic 
systems being probed leads to the need for ‘counter-intuitive’ 
explanations such as the quantum nonlocality phenomenon.  

Consequently, the physical reality as promoted by Einstein 
prevails over the mythical quantum nonlocality of Bohr, if only 
because a single photon will be scattered about in a dielectric 
medium by the quantum Rayleigh scattering.  
 

VII. CONCLUSION 
The search for single-photon sources and photo-detectors is 

rather unnecessary because groups of identical photons perform 
equally well in terms of correlations of coincident 
measurements required for data processing with independent 
polarization qubits. 

A long series of physical errors, some of which stemming 
from disregard for scientific methodology, have been covered 
up over the last six decades. An arbitrarily defined probability 
threshold which, allegedly, can only be violated by quantum 
correlations was repeatedly proven to be physically incorrect. 
Experimental outcomes purporting to prove the role of 
polarization-entangled photons were, in fact, modelled with a 
high level of non-entangled states. The formalism of the wave 
function collapse of the entangled states, when fully analysed, 
leads to the factorization of the quantum probability of joint 
detections, thereby enabling a local verification of the claimed 
quantum nonlocality, if it existed.    

No explanation is provided in ref. [19] about the physically 
meaningful process of Rayleigh scattering of single photons 
which prevents synchronized detections of the original pair of 
entangled photons.  The absence of such experimental evidence 
is consistent with the analysis based on the concept of wave 
function collapse leading to the factorization of the 
quantum joint probability. This, in turn, should enable a local 
determination of the alleged quantum nonlocality, which has 
never been done. Therefore, Gisin’s statement [19] that “…a 
violation of a Bell inequality proves that no future theory can 
satisfy the locality condition” is physically unsubstantiated 
given the evidence to the contrary presented in Sections 2 and 
3 above, and references [5-6]. 

The intrinsic and monochromatic field of photons [14] has the 
same localized spatial profile and fall-off regardless of the 
source of origin. In a dielectric medium, e. g., a cubic beam 
splitter, saturated with input single photons scattered through 
quantum Rayleigh spontaneous emission, groups of identical 
photons will form through quantum Rayleigh stimulated 
emission [13-14].  

The combination of amplified spontaneous emission and its 
random phase will provide physically meaningful explanations 
[13-14] for the Hong-Ou-Mandel effect of vanishing 
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form through quantum Rayleigh stimulated emission [13,14]. 
The combination of amplified spontaneous emission and its 
random phase will provide physically meaningful explanations 
for the Hong-Ou-Mandel effect of vanishing correlations [20] 
between separate photodetectors, which is used experimentally 
to confirm the quality of indistinguishable single photons [13,14]. 
The concept of quantum interference of probability amplitudes 
resulting from a lack of knowledge associated with probabilities 
of alternative (which-way) propagation pathways is time-
independent and as such can be easily reproduced with multi-
photon states populating the pathways simultaneously as a result 
of amplified spontaneous emission [13,14]. All the examples 
presented in ref can be explained in terms of simultaneous multi-
photon interference of dynamic and coherent number states that 
deliver phase-related interference with fluctuations of number of 
photons, analogously to wave interference [13,14].
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