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Abstract 
This article is the third of a trilogy of articles on the nature of probability in quantum mechanics. The first article [1] 
began by noting that superposed wavefunctions in quantum mechanics lead to a squared amplitude that introduces in-
terference into the position probability density of an atomic particle, which happens nowhere else in probability theory. 
It went on to also note that there is an unexplained coincidence in quantum mechanics in that the interference term 
in the squared amplitude of superposed wavefunctions gives the squared amplitude the form of a variance of a sum of 
correlated random variables and went on to examine whether there could be an archetypical variable, in the Platonic 
sense of true form, behind quantum probability that would reconcile quantum probability with classic probability. This 
examination found such a variable, which can encompass both local and nonlocal quantum events. The second article 
[2] provided evidence that quantum probability has such a stochastic nature. This evidence was based on the number of 
electrons that need to be sent through a two-slit interferometer to gain a clear pattern of self-interference, which when 
compared with the number that would be expected to be sufficient in order for the position probability distribution of 
the self-interference wavefunction to take clear shape suggests that there is more variability present than that described 
by the formulation of quantum mechanics, which implies the presence of an underlying and as yet unrecognized phys-
ical process. This final article completes the trilogy by considering how a key aspect of experimental design would 
be affected by the increased variability that would be present if quantum probability is itself stochastic in the manner 
suggested in the previous two articles. 
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1. Some relevant basics
In the previous articles the Schrödinger picture and the causal in-
terpretation as recounted by Peter Holland in his quantum theory 
of motion [3] were used, confined to a single spatial dimension 
to keep a focus on concepts. The wavefunction associated with a 
particle takes the form ψ = Re iS /(h/2π)  where R is wave amplitude, 
S is wave phase, and h is Planck’s constant. In one spatial dimen-
sion x the squared amplitude R2 of the wavefunction is |ψ(x,t)|2 

= ψ(x,t) ψ* (x,t), where ψ*is the complex conjugate of ψ, and 
the probability density f (x, t) associated with the location of the 
particle being between x and x + dx at time t is given by

where C(t) is a normalization constant ∫-∞ ψψ* dx, which varies 
with t. Provided that ∫-∞

  ψψ* dx is finite, C(t) rescales the squared 
amplitude to a position probability density by satisfying ∫-∞

  f(x,t) 
dx=1 and reflects that the particle exists somewhere at time t.

2. The first Article
The first article [1] began by noting that a remarkable feature 
of the interference term in the squared amplitude Rsum of two 

superposed wavefunctions, after allowing for the fact that the 
cosine of the phase difference related angle θ that appears in 
it is mathematically equivalent to and has all the attributes of 
a coefficient of correlation, is that from the standard result in 
statistics for the variance of the sum of two correlated random 
variables, the squared amplitude Rsum

 is mathematically equiva-
lent to this variance, where the two variables have variance R1  
and R2 and a correlation coefficient of cosθ. The article went on 
to explore what this equivalence could signify. Although Bell’s 
theorem confirmed the view that one cannot reproduce quantum 
probabilities from classic probability, the article proposed that 
the possibility nevertheless remains that hidden variables may 
exist that would bypass this limitation. Indeed, Oaknin [4] has 
shown that the proof of Bell’s theorem involves a subtle, though 
crucial, assumption that is not required by fundamental physical 
principles and is not necessarily fulfilled in the experimental set-
up that tests the inequality. This assumption is that there exists 
a preferred absolute frame of reference, supposedly provided by 
the laboratory. Oaknin shows that this preferred frame of refer-
ence, which is required by the proof of Bell’s theorem does not 
necessarily exist and cannot exist under certain circumstances 
described by Oaknin.
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The first article [1] also pointed to what von Weizsacker had said 
in the conclusion of his 1973 paper on probability and quantum 
mechanics [5], “there is a quantum theory behind quantum the-
ory, precisely because probabilities can only be defined with the 
help of probabilities.”

The starting point to explaining the coincidence noted in the arti-
cle was to suppose that before normalization the squared ampli-
tude is associated with a hidden variable whose mean equals the 
variance of another closely related and relevant hidden variable, 
a property called there the mean/variance property. Finding a 
pair of such variables with the properties needed to be consistent 
with quantum mechanics was the purpose of the first article. The 
generic forms of such variables were called the unit base vari-
able and the unit squared amplitude variable, respectively, with 
the unit base variable having a mean of zero and variance of one, 
and the unit squared amplitude variable being the square of the 
unit base variable in order that its mean equals 1, the variance of 
the unit base variable (the mean/variance property).

The element of a wavefunction that is directly relevant and ca-
pable of having these properties is its real part, the product of 
its amplitude and the cosine of its argument, which captures its 
essence. Accordingly, it was proposed that the unit base variable 
may be the product of two independent variables, an amplitude 
variable, and a cosine variable, and the unit squared amplitude 
variable and the related unit base variable would form the pair 
being searched for. 

The search for these variables led to a generic archetypical de-
noted Z. This result is drawn on later in the section on the effect 
of this variable on experiment design and is included there rather 
than here to avoid repetition.

In each instant the generic variable Z was formulated to be si-
multaneously transformed across the universal set of active 
quantum processes, wherever and for as long as a process is 
active, into a corresponding universal set of process-specific 
squared amplitude variables and their stochastic processes. This 
transformation involves Z becoming a set of independent and 
identically distributed variables spanning each spatial point and 
time at which a quantum process is active, with the realization 
of the variable at a point being transformed by a scale factor SF, 
the deterministic squared amplitude there and then of the spe-
cific quantum process, into a process specific variable that was 
denoted Y. The variable Y has a mean at each point and time that 
equals, and whose average realization over repeated trials of an 
experiment converges to, the deterministic squared amplitude.

In short, the first article presented a formulation in which behind 
the squared amplitude of either a superposed or individual wave-
function as formulated in the causal interpretation, there could 
be an associated specific variable Y at each applicable point in 
space and time that originates from a universal generic archetyp-
ical variable Z. 

Importantly, the article showed that despite being developed us-
ing classic probability theory, the variable Y and its stochastic 
process can relate to either a local or a nonlocal quantum me-
chanical process.

3. The second article
The second article [2] examined and charted the position prob-
ability distribution for a two-slit interferometer experiment. It 
clearly shows a pattern of multiple probability peaks and troughs 
which will translate, as the cumulative number of electrons sent 
through the interferometer increases, into increasingly distinct 
bands of dense detection separated by sparse detection with 
varying detection density within the bands from peak to trough, 
and vice versa, taking shape across the entire detection screen. 

The article proceeded to consider the celebrated experiment per-
formed by Tonomura [6] in particular Figure 2 from the paper, 
which illustrates the number of electrons (140,000) that needed 
to be emitted in order for a relatively clear image (d in Fig. 2) of 
self-interference to have formed on the detection screen of the 
interferometer. It is recommended that the reader refer to  this 
paper to see how the process of electron self-interference builds 
up, showing  no discernable pattern with 8 and 200 emissions, 
just the hint of a pattern with 6000 emissions, and finally a clear 
pattern with 140,000 emissions.

Before discussing this further, the second article turned to a sim-
ulation of the probability density f(x) and cumulative density 
F(x) of the standard normal distribution to see how many real-
izations are needed for a relatively clear picture of these distri-
butions to emerge. The result of 5000 realizations of the pdf and 
of the cdf were charted and these charts gave a relatively sharp 
picture of the standard normal distribution. 

The significance of this exercise was that if 5000 realizations of 
a simulated standard normal variable are sufficient to provide 
a relatively clear picture of its distribution then, provided that 
a degree of relative, rather than absolute, clarity is acceptable, 
5000 simulations are also enough to do the same for any other 
distribution where the probability distribution and the parame-
ters it employs are known, including the interference distribu-
tion and with parameters that describe the setup in the Tonomura 
experiment. Why then, the article asked, does it take 140,000 
electron emissions through a two-slit interferometer to gain a 
relatively clear picture of the self-interference effect?

The second article concluded by suggesting that the answer to 
this question is that the nature of particle position probability in 
quantum mechanics is not solely determined by the normalized 
squared amplitude of the wavefunction of a quantum mechani-
cal process, but rather originates from a random variable whose 
mean equals that deterministic squared amplitude. The resulting 
variability around the mean would lead to a much larger number, 
than the otherwise sufficient 5000 or so electron emissions, to be 
necessary for a relatively clear picture to form, as was the case in 
the Tonomura experiment, and for the average of the realizations 
of the squared amplitude variable at a point and time (x, t) to 
converge to the deterministic squared amplitude.

This suggestion was of course only a mathematical one which, if 
valid, would be the manifestation of some underlying and as yet 
unrecognized physical process that introduces more variability 
into quantum probability than is described in the existing formu-
lation of quantum mechanics and it is the purpose of the remain-
der of this final article of the trilogy to consider this increased 
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variability and its effect on atomic particle experiment design.

4. The effect of increased variability on a key aspect of exper-
iment design.
It will be recalled from the earlier discussion of the first paper 
that the search for a stochastic archetype of quantum probability 
led to a result that is stated here rather than there to avoid repeti-
tion. The result advanced the following hypothesis: 

1. A generic variable Z which is the square of another generic 
variable W, which is the product of two independent seed vari-
ables A and C:
a. Variable A~U (0,3), which is a generic stochastic analogue of 
the amplitude of a wavefunction, and
b. Variable C~U (-1,1), which is a generic stochastic analogue of 
the cosine of the argument of a wavefunction.

2. The dependent unit base variable W is the zero mean/unit vari-
ance generic stochastic analogue of the real part of a wavefunc-
tion, properties that come from the supports of A and C.
3. The dependent unit squared amplitude variable Z is the unit 
mean generic stochastic analogue of the square of the real part 
of a wavefunction.

Our examination of possible increased variability will be based 
on the unit squared amplitude variable Z hypothesized in the 
first article [1], as a suitable representative hidden variable that 
would make quantum probability stochastic, if such were the 
case, and we examine simulations of the unit squared amplitude 
variable Z. 

It is straightforward using Excel to simulate the variable Z .A 
realization of the variable A  is generated by RAND()*3 and of 
the variable C by RAND()*2+(-1). A realization of the variable 
Z is then generated by multiplying the realizations of A and C 
and squaring the result. The first step was to set up the abili-
ty to perform a set of 140,000 simulations of Z in Excel. It is 
shown in [1] that the mean of Z is1 and the variance is 2.24, 
and the adequacy of any number of repeated trials of an exper-
iment such as 5000 or 140,000 is judged in the case of 5000 
trials by how well the first 5000 simulations in the set reflected 
the mean and variance when 200 refreshed sets of 140,000 sim-
ulations were performed and in the case of 140,000 simulations 
by how well the full 140,000 reflected the mean and variance in 
the 200 refreshed sets. 5000 and 140,000 were chosen because 

5000 should be adequate if the probability distribution and its 
parameters are known and 140,000 because that number appears 
to have been deemed necessary in the Tonomura self-interfer-
ence experiment. Although the latter presented only an image of 
self-interference the experimenters would have had the underly-
ing data and it may have contributed to their decision to fire as 
many as 140,000 electrons through the interferometer.

Table 1 shows the results for the mean of the unit squared am-
plitude variable Z. These results are particularly important as in 
practice the mean measurement from repeated experiments is 
the primary result. Recalling from the opening section on some 
relevant basics that the probability density f (x, t) associated with 
the location of the particle being between x and x + dx at time t 
is given by.

where C(t) is the normalization constant ∫-∞ ψψ* dx, so that the 
expected number of times the particle is observed between x and 
x + dx at time t is N times f(x,t), where N is the number of trials 
of the experiment. Conversely, provided that N is an adequate 
number of repeated trials of the experiment, the number of times 
the particle is observed between x and x + dx at time t, when 
divided by N gives the relative frequency of the particle’s obser-
vation there, in other words the probability of it being there then. 
The choice of N is therefore a key aspect of subatomic particle 
experiment design.

However, if R(x,t)2is not deterministic, but rather is stochas-
tic and is the variable Y, which is the unit squared amplitude 
variable Z scaled i.e., transformed, by the deterministic R(x,t)2, 
then any straying of the mean realization of the underlying unit 
squared amplitude variable Z away from 1 will distort the results 
of the experiment. As explained in the section on the first article 
this transformation involves the generic universal variable Z be-
coming a set of independent and identically distributed variables 
spanning each spatial point and time at which a quantum process 
is active, with the realization of the variable at a point being 
scaled by the deterministic squared amplitude for the point and 
time of the specific quantum process that is active there and then. 
In the case of the Tonomura experiment for example, the distor-
tion would be present across all points on the detection screen 
and would only be moderated by performing an adequate num-
ber of repeated trials of the experiment, as was done in that case.
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Counts for solo and twin are for the mean of Z, analytically 1. 
Only means that when rounded to two decimal places are .99, 
1, or 1.01 are counted. Means outside this set are not counted. 
Twins are means from the first 5000 and the full 140,000 sim-
ulations respectively that both qualify and are counted in each. 
200 successive measurements of the mean of Z are made in 200 
sets of realizations. 

The first result to note is that there were no means when rounded 
to two decimal places that were measured outside the set of .99, 
1, and 1.01 for the full set of 140,000 simulations. However, 
there were 85 means from the first 5000 simulations that fell 
outside the set, ranging from as low as .93 and as high as 1.07. 
All of the count of 115, or 57.5% of the 200 qualifying measure-
ments, from the first 5000 simulations come from twin counts, 
while the count from the full 140,000 simulations come from 85 
solo counts and 115 twin counts, a total of 200, or 100% of the 
200 measurements.

Supposing, for example, that there are 200 points where the par-
ticle could be at the time, and bearing in mind that the reali-

zations of the unit squared amplitude variable at any time are 
i.i.d, and are transformed into the variable Y at each point, these 
results suggest that the mean of an experiment with 5000 trials 
would only closely approximate the deterministic squared am-
plitude at each of the points about 60% of the time and be dis-
torted about 40% of the time, while the mean of an experiment 
with 140,000 trials would closely approximate the deterministic 
squared amplitude at each point about 100% of the time and be 
distorted almost none of the time.

Table 2 below shows the results of the test of the variance of the 
unit squared variable. In a similar fashion to Table 1, counts for 
solo and twin are for the variance of Z, analytically 2.24 as was 
shown in [1]. Only variances that when rounded to two deci-
mal places are 2.23,2.24, or 2.25 are counted with the rest being 
classified as “nil”. Variances outside this set are not counted. 
Twins are variances from the first 5000 and the full 140,000 sim-
ulations respectively that both qualify and counted in each. 200 
successive measurements of the variance of Z are made in 200 
sets of realisations. 

There is more variability here than for the mean. The Table 
shows that 53, or 26.5% of the 200 measurements fell outside 
the qualifying set of 2.23, 2.24 and 2.25. These measurements 
ranged from a low of 2.11 to a high of 2.42 for the first 5000 of 
the 140,000 simulations, and from a low of 2.20 to a high of 2.28 
for the full 140,000. Of the qualifying measurements, only 19, 
or 9.5% of the 200 measurements came from the first 5000 of 
the 140,000 simulations, with 140, or 70% coming from the full 
140,000 simulations. As is the case with the mean, 140,000 sim-
ulations and hence repeated trials of an experiment are neces-
sary if the squared amplitude is a variable. Indeed, if the squared 
amplitude is a variable then, as can be seen from the Table, this 
order of number of trials is even more necessary if it is important 
to have a proper reading of the variance because when the unit 
squared amplitude variable is transformed by multiplying it by 
the deterministic squared amplitude the variance of the resulting 
variable Y is that of the unit variable multiplied by the square 
of the deterministic squared amplitude, greatly amplifying any 
distortion in the variance.

5. Conclusion
This article completes a trilogy of articles devoted to the nature 
of quantum probability. The first article hypothesized that quan-
tum probability is itself stochastic and uncovered an archetypi-

cal hidden variable that could be a suitable candidate for such 
a variable behind quantum probability if indeed it is itself sto-
chastic. The second article examined evidence provided by the 
famous Tonomura two-slit electron self-interference experiment 
that supported the hypothesis of the first article. It claimed that if 
quantum probability is itself stochastic the resulting variability 
around the mean would explain the much larger number, than 
the otherwise sufficient 5000 or so electron emissions, that were 
necessary for a relatively clear picture to form in the Tonomura 
experiment, where 140,000 electron emissions were necessary.

This third and final article has confirmed the claim in the sec-
ond article, showing, for example, that if there are 200 points 
where a particle could be any time, and bearing in mind that the 
realizations of the unit squared amplitude variable at any time 
are i.i.d, the mean of an experiment with 5000 trials would only 
closely approximate the deterministic squared amplitude at each 
of the points about 60% of the time and be distorted about 40% 
of the time, while the mean of an experiment with 140,000 trials 
would closely approximate the deterministic squared amplitude 
at each point about 100% of the time and be distorted almost 
none of the time. It has also shown that a similar result applies 
to the variance, but with more amplified distortion than happens 
with the mean.

Count 5000 last Z means 140000 twin nil total 

solo 0 1.01 

    solo 

 

1 85 

   nil 

    

0 

 twin 

   

115 

 

200 

 

5000 

 

140000 

 

nil 

 

 

115 

 

200 

 

0 

 

 

57.50% 

 

100.00% 

                                                                                  

Table 1 

 

 

Counts 5000 last Z var 140000 twin nil total 

solo 7 2.11 

    solo 

 

2.23 128 

   nil 

    

53 

 twin 

   

12 

 

200 

 

5000 

 

140000 

 

nil 

 

 

19 

 

140 

 

53 

 

 

9.5% 

 

70% 

 

26.5% 

                                                                                 

 Table 2 

 

Table 2



     Volume 6 | Issue 3 | 122Adv Theo Comp Phy, 2023 https://opastpublishers.com
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Finally, the author hopes that the results and suggestions ad-
vanced in this trilogy may prove to be helpful in practice.
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