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Abstract
The findings of bound states of the massive Klein-Gordon field near the Schwarzschild black hole have provided certain 
conditions for a stable orbit. Unlike classical methods, I have obtained a specific relation between the mass of the scalar 
particle and the distance from the black hole. Furthermore, by applying a polynomial condition to the Heun function, more 
accurate predictions of quasi-normal modes have been made. Based on this, the time of a stable orbit and its relationship 
with mass, polynomial order, and distance from the Schwarzschild black hole have been calculated.
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1. Introduction
In the scientific exploration of the Schwarzschild black hole, researchers have investigated the dynamics of particles through classical 
methods. These investigations have encompassed the stability of objects and the range of distances from the event horizon that allow 
for stable orbits in its vicinity. Additionally, the scattering behavior of particles moving away from or towards the black hole has 
been calculated. By utilizing the wave equation approach, researchers have obtained dynamic solutions for objects and quasi-normal 
modes. The results have shown a high level of accuracy when compared to experimental methods. 

During these findings, implementing a quantum mechanical approach in the presence of strong gravity posed challenges. Therefore, 
the focus of research shifted towards quantum field theory in curved spacetime, specifically in the vicinity of strong gravity. 
Scientists explored the nature of incoming and outgoing waves for massless particles through scattering theory. The complex nature 
of quasi-normal modes with different spins provided insight into the stability of waves near strong gravity, and many researchers 
employed various approaches to calculate this. Furthermore, scientists formulated the behavior of massive Klein-Gordon (KG) 
fields near Schwarzschild and Kerr black holes. Despite the extensive research conducted during that time, satisfactory results 
were seldom achieved due to the influence of singularity near the black hole. To address this issue, the mathematical formulation 
of the Heun function was introduced, which helped alleviate the problem of singularity in the dynamics of particles and waves 
near the black hole to some extent. Leveraging the properties of the Heun function, the bound states of massive and massless 
particles were presented with greater accuracy compared to previous methods. Quasi-normal modes, including the value and effect 
of the imaginary part of energy, were accurately explained. Some papers explored the polynomial conditions of the Heun function, 
yielding peculiar results. Despite the substantial amount of work in this field, the dependence of the stability of scalar particles near 
the Schwarzschild black hole on mass remains unknown. Additionally, the variation in the nature of stable orbits with distance from 
the event horizon for massive particles are rarely studied. The effect of employing polynomial conditions of the Heun function on the 
wave function for the Klein-Gordon equation is still uncertain. Furthermore, calculating the relationship between the quasi-normal 
modes, the polynomial order, and mass presents difficulties. Lastly, the nature of stability of the orbit and its dependence on mass 
and the imaginary part of energy is a significant challenge.

The focus of my work revolves around addressing the unresolved issues mentioned in the previous paragraph. In the first section, I 
calculate the potential energy using the tortoise coordinate system  for the Klein-Gordon equation in the Schwarzschild black hole [1-
10]. Furthermore, I present the minimum distance from the event horizon required for a stable orbit. I also include the maximum mass 
for orbital motion and variations of mass with distance for different values of orbital momentum in this section. The second section 
focuses on determining the energy of quasi-normal modes  for different values of the polynomial order of the Confluent Heun function 
(HeunC). Additionally, I establish the relationship between complex energy and order by employing two polynomial conditions  on 
the HeunC function. Based on these findings, I obtain the relation between the real and imaginary values of energy [11-17]. In the 
last section, I calculate the changes in stability time with mass for different values of polynomial order (N) [18,19,20]. Furthermore, I 
present the relationship between time of a stable orbit and N graphically.
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Some papers explored the polynomial conditions of the Heun function, yielding
peculiar results.

Despite the substantial amount of work in this field, the dependence of the
stability of scalar particles near the Schwarzschild black hole on mass remains
unknown. Additionally, the variation in the nature of stable orbits with distance
from the event horizon for massive particles is rarely studied. The effect of em-
ploying polynomial conditions of the Heun function on the wave function for the
Klein-Gordon equation is still uncertain. Furthermore, calculating the relation-
ship between the quasi-normal modes, the polynomial order, and mass presents
difficulties. Lastly, the nature of stability of the orbit and its dependence on
mass and the imaginary part of energy is a significant challenge.

The focus of my work revolves around addressing the unresolved issues men-
tioned in the previous paragraph. In the first section, I calculate the potential
energy using the tortoise coordinate system [1, 2, 3, 4, 5] for the Klein-Gordon
equation in the Schwarzschild black hole [5, 6, 7, 8, 9, 10]. Furthermore, I
present the minimum distance from the event horizon required for a stable or-
bit. I also include the maximum mass for orbital motion and variations of mass
with distance for different values of orbital momentum in this section.

The second section focuses on determining the energy of quasi-normal modes
[8, 11, 12, 13, 14, 15, 16, 17] for different values of the polynomial order of the
HeunC function. Additionally, I establish the relationship between complex
energy and order by employing two polynomial conditions [9, 18, 19, 20] on the
HeunC function. Based on these findings, I obtain the relation between the real
and imaginary values of energy.

In the last section, I calculate the changes in stability time with mass for
different values of polynomial order (N). Furthermore, I present the relationship
between time of a stable orbit and N graphically.

2 Stable bound states

The four-dimensional Klein Gordon (KG) equation [6] can be written as

(□+m2)ψ = 0 (2.1)

Where, □g = 1√
g

∂
∂xµ

√
ggµν ∂

∂xν is the d’Almebert operator in the general coor-

dinate system. Now, using the Schwarzschild metric [7] in equation (2.1) gives
to the differential equation of the form
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For our case, since spin is zero for scalar particle, so last term that contain spin
is taken as zero. Then, the total solution of equation (2.2) read as

ψ(t, r, θ) = exp−iwt R(r)Pl(cosθ) (2.3)
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This is important equation for calculation of numerous phenomena. From (2.4),
it is clear that solution of it depends on mass of an object, energy of massive
particle, angular momentum and distance from Schwarzschild black hole.

Now, to obtain potential energy, (2.4) should be converted into Schrodinger
equation because of presence of first order derivatives in it. For this, I have used
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This is the potential energy of scalar particle. Nature of it is depends on mass,
distance from event horizon and angular momentum. The result is different
than classical approach. Because, potential energy from classical way [21] is
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for scalar particle from (2.6). Here, to evaluate dynamics of stable orbit [22],
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Since m > 0, one of the solution of (2.8) gives
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equation because of presence of first order derivatives in it. For this, I have used
tortoise coordinate [1, 2, 3, 4, 5], i.e.

r∗ = r + ln(r − 1) (2.5)

Using equation (2.5) into equation (2.4) and taking the symmetric wave function,

i.e., R(r) = ϕ(r)
r gives

d2Φ(r∗)
dr∗2

+ [w2 − V (r)]Φ(r∗) = 0 (2.6)

Where,

V (r) = (1− 1

r
)(
l(l + 1)

r2
+

1

r3
+m2) (2.7)

This is the potential energy of scalar particle. Nature of it is depends on mass,
distance from event horizon and angular momentum. The result is different
than classical approach. Because, potential energy from classical way [21] is

V (r) = (1− 1
r )(1+

l2

r2 ) . So, phenomena than classical approach can be expected
for scalar particle from (2.6). Here, to evaluate dynamics of stable orbit [22],
we have to differentiate (2.7) with respect to r and equates it to zero. Which
gives

m =

√
−4 + 3r − 3rl + 2r2l − 3rl2 + 2r2l2

r
3
2

(2.8)

Since m > 0, one of the solution of (2.8) gives

3

2. Stable Bound States
The four-dimensional Klein Gordon (KG) equation  can be written as
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From above figure, it is clear that at l=0, minimum stable orbital distance
from Swarzschild black hole is 1.34 and its value increases gradually upto about
1.49 and nearly become constant with increase in l. Below this value for partic-
ular l, stable orbit don’t exist at all.

Similarly, near the Schwarzschild black hole, the relation between mass and
distance is obtained for particular l from (2.8) which is shown in below figure
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From this figure, it can be said that ,for any value of l, mass carried by scalar
particle for stable orbit is initially increase with increased in r and decreases with
increasing r. The highest value of mass in stable orbit is called maximum mass
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From this figure, it can be said that ,for any value of l, mass carried by scalar particle for stable orbit is initially increase with 
increased in r and decreases with increasing r. The highest value of mass in stable orbit is called maximum mass (mmax). Stable orbit 
for mmax is increased with increase in angular momentum is tabulated below

l mmax r
0 0.487637 1.79926
1 0.921105 2.40411
2 1.48206 2.73894
3 2.06002 2.84695
4 2.62098 2.87935
5 3.19894 2.91175

The outcome presented in the table contradicts Newton’s theory of gravitation. According to Newton’s theory , lighter objects should 
revolve around heavier masses. However, the table’s findings demonstrate that even when a weaker gravitational field possesses 
a greater mass, the revolution of particles around a stronger gravitational field occurs. In this case, the stronger field represents a 
black hole, while other fields with greater, equal, or lesser masses than the black hole are considered weaker in comparison. This 
phenomenon suggests that the strength of the gravitational field has a greater impact than the mass itself. As a result, this serves as 
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a notable example of the successful application of the General Theory of Relativity. Beyond this mass for given l, no stable orbit is 
existed. Similarly, far from the Schwarzschild black hole, the relation between mass and distance is obtained from (2.8) which is 
shown in below figure.

(mmax). Stable orbit for mmax is increased with increase in angular momentum
is tabulated below

l mmax r
0 0.487637 1.79926
1 0.921105 2.40411
2 1.48206 2.73894
3 2.06002 2.84695
4 2.62098 2.87935
5 3.19894 2.91175

The outcome presented in the table contradicts Newton’s theory of gravi-
tation. According to Newton’s theory , lighter objects should revolve around
heavier masses [21]. However, the table’s findings demonstrate that even when
a weaker gravitational field possesses a greater mass, the revolution of particles
around a stronger gravitational field occurs. In this case, the stronger field rep-
resents a black hole, while other fields with greater, equal, or lesser masses than
the black hole are considered weaker in comparison. This phenomenon suggests
that the strength of the gravitational field has a greater impact than the mass
itself. As a result, this serves as a notable example of the successful application
of the General Theory of Relativity. Beyond this mass for given l, no stable
orbit is existed.

Similarly, far from the Schwarzschild black hole, the relation between mass
and distance is obtained from (2.8) which is shown in below figure
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Figure 3: Relation between mass of stable orbit and distance far from
Schawarzschild black hole

From above figure, it can be said that smaller mass can make stable orbit
far from Schwarzschild black hole and vice versa.
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3. Quasi Normal Modes
Due to strong gravity of Schwarzschild black hole, orbit has certain time of stability. After that, it will leave the path. This causes 
complex value of energy which is called quasi normal modes. In order to obtain it, we have to solve (2.4).

The general solution of (2.4) is
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Due to strong gravity of Schwarzschild black hole, orbit has certain time of
stability. After that, it will leave the path. This causes complex value of energy
which is called quasi normal modes. In order to obtain it, we have to solve (2.4).
The general solution of (2.4) is

R(r) = C1 (r − 1)
iw

e−
√
m2 − w2rHeunC

(
2
√
m2 − w2, 2 iw, 0,m2 − 2w2,−l2 − δ,−r + 1

)
+

C2 (r − 1)
−iw

e
√
m2−w2rHeunC

(
−2

√
m2 − w2,−2 iw, 0,m2 − 2w2,−l2 − δ,−r + 1

)

(3.1)

where δ = m2 − 2w2.
It is the general Heun polynomial solution for the scalar particle containing
confluent Heun function (HeunC). First part of this solution is for in going,
while second part is for outgoing particle. HeunC can be expanded for N order
by using two polynomial conditions[9, 18, 19] and these condition gives specific
energy for given mass of stable orbit. Two polynomial conditions are

δ

α
+

β + γ

2
+N + 1 = 0 (3.2)

And
∆N+1(µ) = 0 (3.3)

Here, integer N ⩾ 0 is order of polynomial and ∆N+1(µ) is determinant of three
diagonal matrix. Equation (3.2) is called δn condition. This is obtained when
we take C0 = 0 and n = N . Similarly, equation(3.3) gives cn+1 = 0. The power
series being cut after its N th term when it full fill both conditions and thus
gives the polynomial solution. General form of Heun solution for scalar particle
[10, 23, 24, 25] is of the form:

H(z) = C1HeunC(α, β, γ, δ, η, z) + C2z
−βHeunC(α,−β, γ, δ, η, z) (3.4)

Comparing HeunC of equation (3.4) with (3.1), we get the parameter inside the
HeunC and using it in equation (3.2) and (3.3) gives energy for specific value
of mass and polynomial order (N). For different value of m, variation of energy
(w) with N is tabulated below
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S.N.  m  N=0  N=1  N=2  

    𝑤𝑤0  𝑤𝑤1  𝑤𝑤2  

1  0.9  ±0.8795017033990309  
+ 0.0416912295931 i 

±0.8872202331236642  
+ 0.01162276185780027 i  

±0.8924915037509322  
+ 0.004506614821280622 i 

2  0.8  ±0.782354789947242  
+ 0.030759405778067 i 

±0.7901099686647353  
+ 0.007958116126735462 i 

±0.7944265108020128  
+ 0.002970999818233123 i 

3  0.7  ±0.685501164599239  
+ 0.021471189234520 i 

±0.692724806366438  
+ 0.005105266948209186 i  

±0.696068460546929  
+ 0.001832925693875396 i  

4  0.6  ±0.5887997114766707  
+ 0.01389403215343 i 

±0.5949943358339548  
+ 0.0030044098808537645 i 

±0.597404692817181  
+ 0.0010369529380656116 i 

5  0.5  ±0.49206361205258325  
+ 0.0080687141373 i 

±0.49685676012059304  
+ 0.0015703790969961433 i 

±0.498433905850676  
+ 0.0005214857802321435 i 

6  0.4  ±0.39505498433236763  
+ 0.0039790580634 i 

±0.39826979521145406  
+ 0.0006913019587104053 i 

±0.39916898744749285  
+ 0.00022142218116341227 i 

7  0.3  ±0.2974971679169774  
+ 0.00150220494043 i 

±0.29922452461641064  
+ 0.00023242296469331046 i 

±0.2996391653908074  
+ 0.00007212872385291664 i 

8  0.2  ±0.19913489760572703  
+ 0.0003456509794 i 

±0.19975944359387166  
+ 0.0000480858159019386 i 

±0.1998907973066362  
+ 0.000014556595933645497 i 

9  0.1  ±0.09987972179693583  
+ 0.000024042908 i 

±0.09996905438224099  
+ 0.000003094097320442027 i 

±0.09998617158915306  
+ 9.218311645906113 × 10−7 i 

10  0.09  ±0.08991168480085794  
+ 0.0000158896937 i 

±0.08997739884418397  
+ 0.000002033854822175608 i 

±0.08998991074361375  
+ 6.053218185603564 × 10−7 i 

11  0.08  ±0.07993757015340408  
+ 0.0000099851771 i 

±0.0799841001187318  
+ 0.000001271866524815349 i 

±0.07999290873994104  
+ 3.781839175125361 × 10−7 i 

12  0.07  ±0.06995793535714132  
+ 0.0000058873846 i 

±0.06998933268322005  
+ 7.466561150185039 × 10−7 i 

±0.06999524630009456  
+ 2.218318455770368 × 10−7 i 

13  0.06  ±0.0599733769587725  
+ 0.00000319408677 i 

±0.059993273829075836  
+ 4.035478790401217 × 10−7 i 

±0.05999700471697138  
+ 1.198083449257831 × 10−7 i 

14  0.05  ±0.049984527191120495  
+ 0.000001547049 i 

±0.04999610333754176  
+ 1.948255878592198 × 10−7 i 

±0.049998265785518484  
+ 5.780615022562324 × 10−8 i 

15  0.04  ±0.0399920500593659  
+ 6.35933262 × 10−7 i 

±0.03999800314464758  
+ 7.98722299506466 × 10−8 i 

±0.03999911173286294  
+ 2.368686120984056 × 10−8 i 

16  0.03  ±0.029996636914537918 
 +2.017739× 10−7 i 

±0.029999156996794715  
+ 2.528974179074199 × 10−8 i 

±0.02999962514759344  
+ 7.497001349317739 × 10−9 i 

17  0.02  ±0.01999900157232379  
+ 3.9936115 × 10−8 i 

±0.019999750098395625  
+ 4.998000899550637 × 10−9 i 

±0.019999888908329655  
+ 1.481218159680231 × 10−9 i 

18  0.01  ±0.009999875049197813  
+ 2.4990005 × 10−9  i 

±0.009999968753075844  
+ 3.1246875351867× 10−11 i 

±0.00999998611171872  
+ 9.258847758135722 × 10−11 i 

19  0.009  ±0.008999908904053165  
+ 1.6397188 × 10−9 i 

±0.008999977220566292  
+ 2.050146439825544 × 10−11   i 

±0.00899998987535879  
+ 6.074781309465326 × 10−11 i 

7

 

S.N. m N=3 N=4 N=5 

  w3 w4 w5 
1 0.9           ±0.895241930097688             

+0.002138902827721407 i 
±0.896764309602307 
+ 0.001163566937510369  i 

±0.8976735738492317 
+ 0.000697268894079972 i 

2 0.8 ±0.7965395904229081 
+ 0.0013826039174208106 i 

±0.7976729377850408 
+ 0.0007439089053521748  i 

±0.7983379748949857 
+ 0.00044284436232682454 i 

3 0.7 ±0.6976065962593437 
+ 0.000836784369924551 i 

±0.6984072425343247 
+ 0.00044558384209638014  i 

±0.6988693808476578 
+ 0.0002636328367382062 i 

4 0.6 ±0.5984490492328213 
+ 0.0004648459293866209 i 

±0.5989777204928309 
+ 0.00024517413685685204 i 

±0.5992783307816149 
+ 0.00014425744770583327 i 

5 0.5 ±0.4990797962701947 
+ 0.00022987887194706624 i 

±0.49939860898467914 
+ 0.0001202145397548547 i 

±0.49957750049577815 
+ 0.00007038931039264138 i 

6 0.4 ±0.3995188871877433 
+ 0.0000961716318038772 i 

±0.39968785076702035 
+ 0.000049925885404686784 i 

±0.3997815946132724 
+ 0.000029113191867290994 i 

7 0.3 ±0.29979362547298954 
+ 0.00003094624969315101 i 

±0.29986688479386253 
+ 0.000015970433837799796 i 

±0.299907163146723 
+ 0.000009282291961325766  i 

8 0.2 ±0.19993810876448198 
+ 0.000006188194640884055 i 

±0.1999602502968295 
+ 0.000003179666312039719 i 

±0.19997234317830612 
+ 0.000001843662329181222 i 

9 0.1 ±0.09999220667508352 
+ 3.896511757184396 × 10−7 i 

±0.09999500786161895 
+ 1.996805748767781 × 10−7 i 

±0.09999653157103697 
+ 1.156123004512464 × 10−7 i 

10 0.09 ±0.08999431601590228 
+ 2.557712565437836 × 10−7 i 

±0.08999635964370636 
+ 1.310501864371189 × 10−7 i 

±0.08999747099038415 
+ 7.586922537239401 × 10−8 i 

11 0.08 ±0.07999600628929517 
+ 1.597444599012932 × 10−7 i 

±0.0799974425776719 
+ 8.183621043601788 × 10−8 i 

±0.07999822346572588 
+ 4.737372241968112 × 10−8 i 

12 0.07 ±0.0699973235396207 
+ 9.367432899726962 × 10−8 i 

±0.06999828632244821 
+ 4.798238549356557 × 10−8 i 

±0.06999880966569494 
+ 2.777423135469184 × 10−8  i 

13 0.06 ±0.05999831399358943 
+ 5.057948358148399 × 10−8 i 

±0.05999892061198497 
+ 2.590507974780383 × 10−8 i 

±0.05999925029518688 
+ 1.499400269863547 × 10−8 i 

14 0.05 ±0.049999024037915576 
+ 2.439881443173898 × 10−8 i 

±0.04999937524598907 
+ 1.249500224886014 × 10−8 i 

±0.04999956609086663 
+ 7.231787536181143 × 10−9 i 

15 0.04 ±0.03999950019679125 
+ 9.996001799101276 × 10−9 i 

±0.039999680080618036 
+ 5.118689657449965 × 10−9 i 

±0.04999956609086663 
+ 7.231787536181143 × 10−9 i 

16 0.03 ±0.02999978910920818 
+ 3.163350766098319 × 10−9 i 

±0.029999865019133317 
+ 1.619766757799259 × 10−9 i 

±0.02999990625922753 
+ 9.374062605733485 × 10−10 i 

17 0.02 ±0.01999993750615169 
+ 6.249375070373587 × 10−10  i 

±0.01999996000251983 
+ 3.199795214850327 × 10−10 i 

±0.01999997222343744 
+ 1.851769551627144 × 10−10 i 

18 0.01 ±0.009999992187692257 
+ 3.906152346317094 × 10−11  i 

±0.009999995000078747 
+ 1.999968001222837 × 10−11 i 

±0.009999996527815753 
+ 1.15739454801745 × 10−11 i 

19 0.009 ±0.008999994304801025 
+ 2.562838727807545 × 10−11  i 

±0.0089999963550465 
+ 1.312182994170376 × 10−11 i 

±0.008999997468772425 
+ 7.593681657639989 × 10−12 i 
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S.N. m N=3 N=4 N=5 

  w3 w4 w5 
1 0.9           ±0.895241930097688             

+0.002138902827721407 i 
±0.896764309602307 
+ 0.001163566937510369  i 

±0.8976735738492317 
+ 0.000697268894079972 i 

2 0.8 ±0.7965395904229081 
+ 0.0013826039174208106 i 

±0.7976729377850408 
+ 0.0007439089053521748  i 

±0.7983379748949857 
+ 0.00044284436232682454 i 

3 0.7 ±0.6976065962593437 
+ 0.000836784369924551 i 

±0.6984072425343247 
+ 0.00044558384209638014  i 

±0.6988693808476578 
+ 0.0002636328367382062 i 

4 0.6 ±0.5984490492328213 
+ 0.0004648459293866209 i 

±0.5989777204928309 
+ 0.00024517413685685204 i 

±0.5992783307816149 
+ 0.00014425744770583327 i 

5 0.5 ±0.4990797962701947 
+ 0.00022987887194706624 i 

±0.49939860898467914 
+ 0.0001202145397548547 i 

±0.49957750049577815 
+ 0.00007038931039264138 i 

6 0.4 ±0.3995188871877433 
+ 0.0000961716318038772 i 

±0.39968785076702035 
+ 0.000049925885404686784 i 

±0.3997815946132724 
+ 0.000029113191867290994 i 

7 0.3 ±0.29979362547298954 
+ 0.00003094624969315101 i 

±0.29986688479386253 
+ 0.000015970433837799796 i 

±0.299907163146723 
+ 0.000009282291961325766  i 

8 0.2 ±0.19993810876448198 
+ 0.000006188194640884055 i 

±0.1999602502968295 
+ 0.000003179666312039719 i 

±0.19997234317830612 
+ 0.000001843662329181222 i 

9 0.1 ±0.09999220667508352 
+ 3.896511757184396 × 10−7 i 

±0.09999500786161895 
+ 1.996805748767781 × 10−7 i 

±0.09999653157103697 
+ 1.156123004512464 × 10−7 i 

10 0.09 ±0.08999431601590228 
+ 2.557712565437836 × 10−7 i 

±0.08999635964370636 
+ 1.310501864371189 × 10−7 i 

±0.08999747099038415 
+ 7.586922537239401 × 10−8 i 

11 0.08 ±0.07999600628929517 
+ 1.597444599012932 × 10−7 i 

±0.0799974425776719 
+ 8.183621043601788 × 10−8 i 

±0.07999822346572588 
+ 4.737372241968112 × 10−8 i 

12 0.07 ±0.0699973235396207 
+ 9.367432899726962 × 10−8 i 

±0.06999828632244821 
+ 4.798238549356557 × 10−8 i 

±0.06999880966569494 
+ 2.777423135469184 × 10−8  i 

13 0.06 ±0.05999831399358943 
+ 5.057948358148399 × 10−8 i 

±0.05999892061198497 
+ 2.590507974780383 × 10−8 i 

±0.05999925029518688 
+ 1.499400269863547 × 10−8 i 

14 0.05 ±0.049999024037915576 
+ 2.439881443173898 × 10−8 i 

±0.04999937524598907 
+ 1.249500224886014 × 10−8 i 

±0.04999956609086663 
+ 7.231787536181143 × 10−9 i 

15 0.04 ±0.03999950019679125 
+ 9.996001799101276 × 10−9 i 

±0.039999680080618036 
+ 5.118689657449965 × 10−9 i 

±0.04999956609086663 
+ 7.231787536181143 × 10−9 i 

16 0.03 ±0.02999978910920818 
+ 3.163350766098319 × 10−9 i 

±0.029999865019133317 
+ 1.619766757799259 × 10−9 i 

±0.02999990625922753 
+ 9.374062605733485 × 10−10 i 

17 0.02 ±0.01999993750615169 
+ 6.249375070373587 × 10−10  i 

±0.01999996000251983 
+ 3.199795214850327 × 10−10 i 

±0.01999997222343744 
+ 1.851769551627144 × 10−10 i 

18 0.01 ±0.009999992187692257 
+ 3.906152346317094 × 10−11  i 

±0.009999995000078747 
+ 1.999968001222837 × 10−11 i 

±0.009999996527815753 
+ 1.15739454801745 × 10−11 i 

19 0.009 ±0.008999994304801025 
+ 2.562838727807545 × 10−11  i 

±0.0089999963550465 
+ 1.312182994170376 × 10−11 i 

±0.008999997468772425 
+ 7.593681657639989 × 10−12 i 
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value of N, real and imaginary values of energy are given below   

Numerical calculations provide that real value of energy carry both positive
and negative with equal magnitude while imaginary part carry only positive
value. Furthermore, with decreasing mass and increasing N, imaginary parts
become smaller. For different value of N, real and imaginary values is given
below

0.01 0.02 0.03 0.04
wr

-0.5

0.5

wⅈ

(a) N = 0

0.001 0.002 0.003 0.004 0.005 0.006 0.007
wr

-0.5

0.5

wⅈ

(b) N = 1

0.0005 0.0010 0.0015 0.0020 0.0025
wr

-0.5

0.5

wⅈ

(c) N=2

0.0002 0.0004 0.0006 0.0008 0.0010
wr

-0.5

0.5

wi

(d) N = 3

0.0001 0.0002 0.0003 0.0004 0.0005 0.0006
wr

-0.5

0.5

1.0
wⅈ

(e) N = 4

0.00005 0.00010 0.00015 0.00020 0.00025 0.00030 0.00035
wr

-0.5

0.5

1.0
wⅈ

(f) N = 5

Figure 4: Relation between imaginary and real value of energy for given N

Parabolic relation between real and imaginary value of energy for any N can
be easily seen for different m.
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Parabolic relation between real and imaginary value of energy for any N can be easily seen for different m.
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4. Stability of Orbit
From quasi normal modes in previous section, we get energy of the form w = a + ib. Using this value in exp−iwt of (2.3) gives

4 Stability of orbit

From quasi normal modes in previous section, we get energy of the form w =
a+ ib. Using this value in exp−iwt of (2.3) gives

T = expia exp−bt (4.1)

First term of (4.1) gives nature of in coming particle. While second term gives
decay rates and reciprocal of it provides time for stable orbit[7, 26]. Using this
concept on table of quasi normal modes give
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Figure 5: Relation between time of stability and mass

Above six figure tell us that with decrease in mass, the stability is increased
and vice versa. Which means m is inversely proportional to stability time. From
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First term of (4.1) gives nature of in coming particle. While second term gives decay rates and reciprocal of it provides time for 
stable orbit[7, 26]. Using this concept on table of quasi normal modes give

Figure 5: Relation between time of stability and mass

Above six figures tell us that with decrease in mass, the stability is increased and vice versa. Which means m is inversely proportional 
to stability time. From figure (2) and (3), mass for stable orbit is inversely proportional to distance. Combining this idea, and using 
figure (2), (3) and (5), it can be said that stability of orbit decreased up to  m_max  and then increases rapidly as distance from 
Schwarzschild black hole is increased. In other word, near the Schwarzschild black hole, due to very strong gravity, its stability is 
decreased and far from black hole cause long revolution of smaller mass. Again, for same  m 
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figure (2) and (3), mass for stable orbit is inversely proportional to distance.
Combining this idea, and using figure (2), (3) and (5), it can be said that sta-
bility of orbit decreased upto mmax and then increases rapidly as distance from
Schwarzschild black hole is increased. In other word, near the Schwarzschild
black hole, due to very strong gravity, its stability is decreased and far from
black hole cause long revolution of smaller mass. Again, for same N, m α ( 1

T )
Again,
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Figure 6: Relation between T and N for m=0.9

From figure (6), it is also clear that with increase in polynomial order, stabil-
ity of orbit is increased. Therefore, expansion of HeunC upto larger value of N
can provides much accurate information about orbital stability and its energy.

5 Discussion and Conclusion

In the second section of my work, I derived the potential energy for scalar parti-
cles based on the massive Klein-Gordon field. This energy formula is applicable
to scalar particles such as mesons or smaller particles. It can also be applied
to celestial bodies like planets and stars. The obtained potential energy was
different from that of classical approximations. Therefore, it provides a more
accurate analysis of the dynamics of scalar particles. Consequently, the rela-
tionship between the mass of a body, its angular momentum, and its distance
near the Schwarzschild black hole was correctly explained. This result chal-
lenges the traditional concept of independence of mass. As we move away from
the Schwarzschild black hole, the mass required for stability initially increases
and then decreases after reaching a peak value. This can be attributed to larger
masses being able to sustain revolution near the black hole for a certain period.
The mass of a revolving object can be greater than that of the black hole itself.
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Figure 6: Relation between T and N for m=0.9

From figure (6), it is also clear that with increase in polynomial order, stability of orbit is increased. Therefore, expansion of HeunC 
up to larger value of N can provides much accurate information about orbital stability and its energy.

5. Discussion and Conclusion
In the second section of my work, I derived the potential energy for scalar particles based on the massive Klein-Gordon field. 
This energy formula is applicable to scalar particles such as mesons or smaller particles. It can also be applied to celestial bodies 
like planets and stars. The obtained potential energy was different from that of classical approximations. Therefore, it provides a 
more accurate analysis of the dynamics of scalar particles. Consequently, the relationship between the mass of a body, its angular 
momentum, and its distance near the Schwarzschild black hole was correctly explained. This result challenges the traditional concept 
of independence of mass. As we move away from the Schwarzschild black hole, the mass required for stability initially increases 
and then decreases after reaching a peak value. This can be attributed to larger masses being able to sustain revolution near the 
black hole for a certain period. The mass of a revolving object can be greater than that of the black hole itself. However, Newtonian 
theory predicts the revolution of a lighter body around a heavier one. The contrasting result from this section tells us that the strong 
gravity of the black hole is the cause rather than its mass. As we move farther from the black hole, the gravitational force weakens, 
allowing smaller particles to revolve around it. In the third section, I applied polynomial conditions to the HeunC function. This 
approach resulted in obtaining the energy for different values of N and m. Unlike classical and quantum mechanical predictions, 
the energy obtained through this method has a complex nature, known as quasi-normal modes. The real part of the energy has both 
positive and negative values with the same magnitude, while the imaginary part is always positive. For any value of N, the plot 
between real and imaginary values follows a parabolic pattern. Furthermore, the real value of energy is nearly equal to the mass of an 
object, while the imaginary value decreases as N is increased and m is decreased. In the last section, I utilized the calculations from 
the second and third sections to determine the stability time for orbital motion. This has an inverse relationship with the imaginary 
energy. By performing mathematical calculations based on the results obtained in the previous sections, I found that the stability 
time of bound states near the Schwarzschild black hole decreases for heavier masses due to the strong gravitational field. Therefore, 
heavier objects have a shorter survival time. However, as we move farther from the black hole, the orbital motion of smaller masses 
becomes possible, resulting in longer stability times. This is because the gravitational field is weaker in that region. This effect is 
clearly observed in the calculations presented in this section. Again, keeping distance and polynomial order constant, the mass of a 
scalar object is inversely proportional to the time period. It means that a larger mass will have a shorter lifespan in these paths. This 
concept can be used in the motion of artificial satellites near Earth with greater accuracy. Moreover, with an increase in polynomial 
order, the stability time for the same mass increases. A larger expansion of the function leads to greater accuracy in orbital motion. 
Therefore, in addition to the research conducted in this study, other dynamical properties of the Klein-Gordon equation, such as 
scattering and probability density, can be calculated by considering a larger expansion of these functions.
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