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Abstract
CoVID-19 pandemic has forced many countries to shut down their industries as most of these countries observed complete state-
wide lockdown during the first wave of this contagious virus. Factories and vehicles on the road are a major source of nitrogen 
dioxide (NO2), which is also one of the major air pollutants. The emission of NO₂ is considered as a good indicator of prevalant 
global economic activities as its predominant corollary affairs typically involve industrial oprtaions and these emissions are 
evidently visible from space. Sentinel-5 Precursor (launched in July 2018), equipped with spectrometer Tropomoi (Tropospheric 
Monitoring Instrument), is a low-earth-orbit atmosphere mission satellite dedicated towards monitoring air pollution sensing 
remotely. This study is focused primarily on, estimation and variation of NO2 emission over different parts of the world, before 
and during the first wave of CoVID-19 epidemic (07 weeks duration). It is found that in most of the countries during the lockdown 
period (7 weeks), air quality was cleaner by about 40 to 50 % over the last year, mainly due to the shutdown of industry and traffic 
activities. The technology is quite promising and provides a tool to access if a country or place followed complete lockdown.
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Introduction
The rapid increase of population in the world has led to an anthro-
pogenic impact on the natural environment of the Earth. Urbaniza-
tion can be seen to have increased in the world, rapidly [1]. During 
the last few decades, industrialization, energy consumption, trans-
portation, motorization, economic-growth, and power plants, etc. 
of the countries have proliferated with time and turn out to be the 
main cause of air pollution [2]. Growth in population has an ad-
verse effect on the concentration of NO2 in the atmosphere [2]. 
Particulate matter(PM)(e.g., soot, dust, smokes, fumes, mists, 
etc.), NO2, sulfur dioxide (SO2), ozone (O3), carbon dioxide (CO2) 
and carbon monoxide (CO) are major pollutants of the air and has 
an acute harmful effect on the health of human beings  [3-15]. One 
of the major sources of NO2, contributing to the air, is the com-
bustion of fossil fuels such as coal, oil, and gases due to vehicles, 
power stations, and heating. In any case, the role of extraterrestrial 
impact on the vacillation of these gases cannot be excluded [16]. In 
urban areas, automobile emissions contribute approximately 80% 
of the NO2. Burning of petrol, metal-refining, coal-fired power sta-

tions based electricity generation, food processing units and other 
manufacturing industries are other sources of NO2 contributing to 
the air (Kaplan et al., 2019). Above mentioned sources also con-
tribute SO2 to the air [9, 10, 17].

The CoVID-19 pandemic situation has caused lockdown in almost 
all the major countries of the world with the traffic and industrial 
activities suspended. Such a scenario creates an excellent opportu-
nity for researchers to relatively access dynamic parameters; par-
ticularly the ones which are anthropogenic in nature. Several stud-
ies regarding relative variation of air quality before and during the 
lockdown has been carried with an emphasis on decrease in con-
taminant levels, such as the extent of the reduction of major pollut-
ants, like carbon monoxide (CO), nitrogen dioxide (NO2) and sul-
fur dioxide (SO2) in India and China during January to April, 2020, 
variation of fine particulate matter (PM2.5) and nitrogen dioxide 
(NO2) in the continental United States, impacts on the air quality 
of São Paulo state, Brazil during lockdown, affect of CoVID-19 
lockdown on NO2, O3, PM2.5 and PM10 concentrations in Bagh-
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dad, Iraq, etc [18-21]. The present study is a contribution towards 
this body of literature with the results derived employing efficient 
and robust techniques.

The Copernicus Program which comes within the ambit of the 
European Space Agency operates a certain number of Earth per-
ception satellites dedicated to measuring both the physical and 
Earth science parameters [22]. Recently launched Sentinel-5 Pre-
cursor (Sentinel-5 P)satellite by the European Space Agency (Oc-
tober 2017), installed with Tropospheric Monitoring Instrument 
(TROPOMI), which senses in the shortwave infrared (SWIR), 
the near-infrared (NIR), the visible (VIS) and the ultraviolet 
(UV) spectral bands, is a low-earth-circle atmosphere crucial to 
observing air quality and air contamination  [22-25. It completes 
near-global coverage in one day and has a high spatial-resolution 
of approximately 7×3.5 km2.

Sentinel, assembles various satellites which makes it one of the 
most important Earth observation programs. Key atmospheric 
constituents, such as nitrogen dioxide (NO2), sulfur dioxide (SO2), 
ozone (O3), carbon monoxide (CO), methane (CH4), formaldehyde 
(HCHO), aerosols and clouds are sensed by selected wavelengths 
range for TROPOMI installed on the Sentinel-5 P [22, 23] . Co-
pernicus Open Access Data Hub facilitates the freely download-

able near-real-time, offline and reprocessed data of the Sentinel-5 
P. This study attempts to establish the effect of lockdown on the 
relative composition of NO2 in the troposphere towards inferring 
significant improvement in air quality compared to last year using 
the Sentinel-5P data.

Data and Methods
The NO2 data of the Sentinel-5 P, which was launched on 13 Oc-
tober 2017, were brought in to the public domain on 10 July 2018. 
A comparative study between the worldwide NO2 emission in the 
present phase of 2020 and the same of 2019 was made using the 
Google Earth Engine tools. The correlation between the present 
pandemic and better air quality can be easily concluded from this 
study. It can be observed from the recently released satellite im-
ages by the European Space Agency that there has been a consid-
erable decrease in the emission of NO2 during this global crisis, 
which has led to a reduction in NO2 spots in the atmosphere. From 
the study, it can be inferred that this decreased emission in specific 
regions is directly related to the decrease in human activities such 
as the use of motor vehicles, running of power plants and other 
industrial endeavors related to fossil fuel usage and economic ac-
tivity, in those particular regions [17, 27, 28, 29]. AMFv6 pack-
age has been used to derive Tropohosperic NO2, VCDs of POMI-
NO-TROPOMI (Figure 1 ) [30].
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Figure 1:  Flowchart of the POMINO-TROPOMI algorithm (after Liu, et al., 2020).  
 

 

 

Figure 2:  NO2 Emission over the world during 2019 (20 March to 25 April) 

Figure 1:  Flowchart of the POMINO-TROPOMI algorithm (after Liu, et al., 2020).

Result and Discussion
COVID 19 Impact on worldwide NO2 Emission
In order to curb the transmission rate of the deadly virus and to flat-
ten the curve of the spread of COVID-19 most countries have im-
posed restrictions such as shutting down offices, factories, schools, 
etc. and canceling all public events so as to avoid the possibility of 
any mass gathering which was bound to fan the spread even more. 

Many countries have requested their citizens to stay at home and 
to implement self-imposed travel restrictions, moving out of their 
houses only in case of emergencies or to facilitate absolute needs. 
As an obvious result of such lockdowns, there has been a consid-
erable reduction in the road and air traffic which has further led to 
a reduction in emission of poisonous gases in the atmosphere due 
to a reduction in the consumption of fossil fuel and anthropogenic 
activities. Thus, in the light of this deadly epidemic it can be said 
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that although there have been colossal and long-lasting social and 
economic impacts, the positive impact on the environment-howso-
ever temporary in nature-cannot be ignored. 

Readings from the Sentinel-5 P from the Satelite imagery released 
by the European Space Agency clearly show that over the past 7 
weeks, the levels of nitrogen dioxide (NO2) over cities and indus-
trial clusters in the USA, Europe, and Asia were remarkably re-

duced, as evident from a comparison with last year. This decrease 
shall have several health benefits as NO2 released from automo-
biles, factories, etc. are a major cause of exacerbation respirato-
ry illnesses such as asthma, bronchitis, and pneumonia and have 
decreased several thousand deaths related to respiratory deseas-
es caused by the air pollution  [31-37]. Global tropospheric NO2 
emission has been shown in Figures. 2 and 3 for the same period 
of the year 2019 and 2020, respectively. 
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Figure 3:  NO2 Emission over the world during 2020 (20 March to 25 April) 
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Impact on the United States of America
It is observed that NO2 concentration has decreased by 50% in 
most parts of the North East, Southeast, and Midwest of the United 
States(US) during the studied time period (Figure. 4).From Figure. 
4 it can be inferred that suspension of industry and activites during 

these seven weeks leadto reduction in consumption of fossil fuel 
and as a result it has improved the air quality of the US. Figure. 5 
shows daily average NO2 emission of 2019 and 2020 for the North 
East, South East and Midwest regions of the US for the studied 7 
weeks duration and confirms improvement in air quality.
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Figure 4:  NO2 Emission over the US during 2020 and 2019(20 March to 25 April) 

 

 

 

Figure 5: NO2 Emission time series over the US during 2019 &2020 (20 March to 25 April) 
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Figure 5: NO2 Emission time series over the US during 2019 &2020 (20 March to 25 April)

Impact on European Countries 
With the rapid escalation of CoVID-19 in Lombardy, Italy, the 
country which was the first in Europe to become a hotspot of the 
disease and declared complete lockdown on March 9, 2020, which 
was followed by Spain on March 14, issuing general confinement 
and further toughening the measures on 28 March; France declared 
complete lockdown on March 17 and Germany, rather, opted for 
strict social distancing measures since March 22, while the UK an-
nounced a complete lockdown on March 23 ("Coronavirus: What 
are the lockdown measures across Europe?" DW; 14.04.2020; 
and "When did the UK lockdown start and how long will it last? 
- Heart”; 28.05.2020). Comparing the mean NO2 emissions for 
the identical months and dates for the year 2019 and 2020 (Fig-
ures. 6 & 7) a unique observation is observed in the world context 
that the patches of highest concentration, of about 200 mol/km2 
fell sharply lessthan150. In most of the other countries, although 

shades of concentrations lightened the kernel spots remained con-
sistent. Declination of European nitrogen oxide emissions is un-
ambiguously portrayed. Highest emission, during the lockdown, is 
spotted in Antwerp, Belgium followed by southwestern Cologne 
and Dortmund city of Germany and westerly neighboring Brussel, 
Netherland. These cities in the cluster, along with London, Paris, 
and Milan appear to emit the highest emission also during the year 
2019. However, London, Paris, and Milan registered a very steep 
decline of NO2 emission in 2020. The prominent decline is also 
observed in Barcelona and Madrid of Spain. The precipitous de-
cline could be attributed to the fact that a significant portion of the 
NO2 emission of most of these high yielding cities derives from 
traffic [38-41]. It is estimated that more than 11,000 deaths have 
been avoided in Europe due to coal and oil consumption plummet 
during COVID-19 lockdown [35, 41] .
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Figure 6: NO2 Emission over the European countries  during2020 and 2019(20 March to 25 

April)  
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Figure 7: NO2 Emission time series over the Germany,France & Italy during 2019 &2020 (20 
March to 25 April) 
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Figure 7: NO2 Emission time series over the Germany,France & Italy during 2019 &2020 (20 
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Impact on India
In India, it's evident from both the figures (Figures. 8 & 9) that a 
significant and essential drop in NO2 emission is observed all over 
the country with the atypical exception in few northeastern states, 
where the subtle increase in the emission concentration is detected 
(Figures 8 & 9). The highest concentrations, during the lockdown 
period, are conspicuous to the coal excavated central-eastern sec-
tors, while the industrial belt of Gujrat-Maharashtra appears to 
indicate reduced NO2 emission by more than 70%. Similar deple-
tion is also observed in the central and southern states where the 

blistering NO2 concertation zones from 2019 appears mildewed or 
even nullified. The area in and around Delhi, considered as one of 
the worst air quality index cities by the World Meteorological Or-
ganization, has seen a significant drop in NO2 release. As such, all 
the hotspots of nitrogen oxides clearly show dramatic declination 
[42, 43]. The uninhabited or sparsely populated northern regions, 
quintessentially, show no difference. The temporal shutdown of 
industries and less traffic explains the considerable decrease, while 
for the coal-bearing zones, emission may be expected even with-
out anthropogenic interventions. (Reference can be added)
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Figure 8: NO2 Emission over India during 2020 and 2019(20 March to 25 April)  

 

 

 

Figure 9: NO2 Emission time series over India during 2019 &2020 (20 March to 25 April) 
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Figure 8: NO2 Emission over India during 2020 and 2019(20 March to 25 April)

Figure 9: NO2 Emission time series over India during 2019 &2020 (20 March to 25 April)

Impact on China
The most subtle change in NO2 concentration, across the globe, is 
observed in China(Figure. 10). While NO2 emanation drastically 
declined in most of the industrial and populated cities across the 
globe, Beijing and its adjacent northern cluster of cities recorded 
the highest emanation in the world at a time when, almost, the 
whole world was under a lockdown or restricted public activity. 
Here, the efficacy of time series evaluation (Figure.11) plays a key 
role in distinguishing and elucidating the fall in emission. No per-
ceptible variation in NO2 emission could be traced from the un-

inhabited terrains. In a nutshell, the NO2 emanating sources were 
actively functioning in China as usual years, as evidenced by the 
high emissions stemming from industrially captivated Beijing and 
its neighbored regions, with the remarkable exception of the Hubei 
province. With this premise, it may be inferred that China, well-
nigh, operated its traffic and effluent emanating industries con-
ventionally, diametric to global scenario. Incidentally, the prime 
reason for the eccentric pattern in global NO2 emission stems from 
China [44, 45].
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Further, the Hubei province is studied with supplementary inclusion of November and December 2019 and January to April 2020.
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Figure 10: NO2 Emission over Chinaduring 2020 and 2019 (20 March to 25 April)  

 

 

 

Figure 11: NO2 Emission time series over China during 2018-19 &2019-20 (1 December to 25 

April) 
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Figure 10: NO2 Emission over Chinaduring 2020 and 2019 (20 March to 25 April)
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Figure 10: NO2 Emission over Chinaduring 2020 and 2019 (20 March to 25 April)  
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Figure 11: NO2 Emission time series over China during 2018-19 &2019-20 (1 December to 25 April)

Impact on Wuhan (China)
Even as the scheming decline in NO2 emission is observed in Chi-
na, the Hubei Province with Wuhan as its capital city, where the 
CoVID-19 case reportedly emerged for the first time, however, 
recorded a sharp fall. Such contrasting variation within similar 
geographical expanses prompted a localized study of mean NO2 
emission in Hubei province [46]. It is evident from the map that 
in January 2020 lowest ever emission is detected which sluggish-
ly increased over the two months. Now, it is imperative to note 
that public traffic was suspended within Wuhan city on 23 Janu-
ary, showing stark inconsistency with the NO2 emission findings 

as shown in the map (Figure 12) and time-series variation (Figure 
13) [46].

Ideally, the declining volume of NO2 for a week could never av-
erage out the higher emission of the remaining three weeks to 
produce the lowest ever emission volume for the entire month of 
January 2020. However, the emissions were typically high during 
November and December 2019. The discordant correlation sug-
gests that restriction in public traffic was imposed well before the 
last week of January, as known widely across the globe [47]. 
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Figure 12: NO2 Emission over Wuhan city from2019 to 2020 (November to April)  

 

 

 

Figure 13: NO2 Emission time series over Wuhan during 2018-19 &2019-20 (1 December to 25 
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Figure 12: NO2 Emission over Wuhan city from2019 to 2020 (November to April)
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Figure 13: NO2 Emission time series over Wuhan during 2018-19 &2019-20 (1 December to 25 April)

Conclusion
The pandemic brought about by the novel Corona Virus-2019, 
known for causing one of the most contagious diseases in the re-
cent past, has paralyzed several aspects of day-to-day life. Most 
importantly, from a broader perspective, it has inflicted deceler-
ation in global economic growth. While the pandemic meted out 
multifaceted abominate repercussions, it ironically engaged man-
kind to contemplate on the environmental exploitation due to in-
dustrialization with vivid and life-size examples and recognize 
climate change. This paper scientifically documents one such ex-
ample in the form of depletion in NO2 emission in some of the ma-

jor developed and developing countries of the world due to lock-
down or restricted public activity. In presenting the moderate to the 
steep decline in NO2 concentrations in major cities, the results also 
portray a grim picture of how most of the public activities are still 
dependent on processes which yield environmentally hazardous 
effluents even after widespread awareness on promoting a switch 
over to the ‘clean and green’ technologies. 
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