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Abstract
In this paper, aim is turning double-rotor flux switching permanent magnet with H-shape stator machine 
(DRFSPMWHSSMs) into mathematical equations via Maxwell relations to provide a 3-quasi model for 
calculating flux density at arbitrary point of DRFSPMWHSSMs. Remarkable reason for opting this type of 
machine is 2 rotors can be energized only by integrated stator that is an obstacle against squandering core loss. 
Merging reluctance and permanent magnet machine into a configuration has high advantages like receiving 
appropriate power density in low volume of geometric structure. The model implemented in this article can 
be answerable for the entire distinct mentioned machine with the different number of teethes. After extracting 
equations, comparison between numerical method and this analytical model for efficacy of analytical model 
is done.

Keywords: Partial Derivation Equation, 3-Quasi Analytical Model, Numerical Model, Subdomain, Boundary Conditions, Hybrid 
Electrical Vehicle.

 

 

Nomenclature 

 

A Magnetic vector potential (V.s/m) 

B Magnetic flux density vector (T) 

Br Radial component of B (T) 

𝑩𝑩𝜽𝜽 Tangential component of B (T) 

H Magnetic field intensity vector (A/m) 

J Armature current density vector (A/m2) 

μ0 Free space permeability (H/m). 

μr Relative permeability 

Niss Number of inner stator slots 

Nirs Number of inner rotor slots 

Noss Number of outer stator slots 

Nors Number of outer rotor slots 

αi Central angle of ith slot of inner rotor 

βi Central angle of ith slot of inner stator 

σi Central angle of ith slot of outer rotor 

ψi Central angle of ith slot of outer stator 

Гi Central angle of ith slot of permanent     

magnet 

𝛿𝛿         Width of slots of inner rotor 

𝛾𝛾          Width of slots of inner stator 

𝛽𝛽       Width of permanent magnets 

r Radial direction 

θ Tangential direction 

z Axial direction 

iry Inner rotor yoke 

irs Inner rotor slot 

ia Inner airgap 

iss Inner stator slot 

isy Inner stator yoke 

osy Outer stator yoke 

oss Outer stator slot 

oa Outer airgap 

ors Outer rotor slot 

ory Outer rotor yoke 

υ          Angular displacement of rotor 

m, n, v, k   Harmonic order 

a, b, c, d, e Unknown coefficient  

 

 

1. Introduction 

The permanent magnet flux-switching (PMFS) machines are suitable machine due to their 

sinusoidal phase back-EMF waveform, high torque density, and robust, simple rotor structure [1-

4]. They are also very suitable for outer-rotor application [5-8]. PMSMs can be categorized into 

rotor-PM machines and stator-PM machines. Totally, the rotor-PM machines, like surface-
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1. Introduction
The permanent magnet flux-switching (PMFS) machines 
are suitable machine due to their sinusoidal phase back-EMF 
waveform, high torque density, and robust, simple rotor structure 
[1-4]. They are also very suitable for outer-rotor application 
[5-8]. PMSMs can be categorized into rotor-PM machines 
and stator-PM machines. Totally, the rotor-PM machines, like 
surface-mounted, surface inset, and interior types, are too 
good in current domestic and industrial applications because 
of recognized their features. Newly, the switched flux PM 
machines (SFPMMs), have introduced to overcome some of the 
problems suffered from rotor-PM machines despite some of their 
drawbacks such as a reduction of slot space and a relatively high 
working frequency [9]. Accordingly, the most researches are 
on stator-based and rotor-based PM machines either separately 
or by comparison [10-12]. Many new structures of PMSMs 
with high torque density have been proposed, Furthermore, 
PM machines, in particular, fractional slot PM machines and 
SFPMMs, heavily researched recently, are often equipped with 
concentrated windings offering the advantage of short end turns 
for reduced winding cost, weight, and loss, but suffering a low 
effective winding factor. Hence, research and development of 
high performance electric machines with less or no rare earth 
magnets is of continuously great importance. In comparison to 
the induction machines and switched reluctance machines, ferrite 
PM machines are attracted for the rare earth magnet machines 
although low torque of ferrite PM machines is not satisfying [13-
14]. To overcome this issue, electrical machines with two airgap 
and spoke-type structure have been found to increase torque 
and power density [15-16].Flux switching permanent magnet 
(FSPM) are favorite choice due to large torque capability, 
sinusoidal back-electromotive force (EMF) waveforms, high 
torque (power) density, as well as compact and robust structure 
since both energy supply are on stator [17,31-37]. There are 
some studies reported in literatures dealing with analytical and 
numerical magnetic field calculations of FSPM. In a prototype 
of a high-power three-phase 12-stator-slot/10-rotor-pole FSPM 
motor for hybrid electric vehicles (HEVs) is designed by FEM 
[38]. In a new flux switching permanent magnet machine 
(S-FSPM) with an outer-rotor configuration is investigated by 
theoretical analysis and two-dimensional (2-D) FEM [39]. Kim 
et al. have presented a new study on the comparison of dual-
rotor single-stator (DRSS) and dual-stator single-rotor (DSSR) 
axial flux-switching permanent magnet machines by 3-D finite 
element analysis (FEA) and experimental verification [40]. 
Ina 2-D analytical method is investigated for FSPM by using 
Maxwell equations [41,42]. Yu et al. have proposed a double-
stator flux switched permanent magnet motor (DSFSM) adopting 
stator-partitioned structure with double air gaps; the DSFSM is 
designed and verified by FEM [43]. Yang et al. have presented 
a simple analytical model for switched flux memory machines 
to provide in-depth insight into its working mechanism [44-50].

The contribution of the proposed analytical model is as follows:
• The 2D analytical model based on the Maxwell equations for 
double-mechanical port FSPMMs has been presented for the 
first time. 
• The proposed model is able to incorporate the influences of the 
inner and outer parts on each other.

2. Structure of Investigated Machine
Studied machine is composed of inner and outer rotors are lack 
of winding, stator and permanent magnets mounted on teethes of 
stator that in figure 1 is shown cross section of this structure and 
in figure 2 three dimensional geometric is illustrated. Permanent 
magnets on stator magnetize in direction of tangential alone that 
permanent magnets in adjacent to each other are in opposite 
magnetization direction also, stator is H-shape formation that 
slots in stator can be acceptable for two groups of winding to 
generate energy for rotation of rotors.

Figure 1: Two dimensional of DRFSPMWHSSMs

Figure 2: Three dimensional of DRFSPMWHSSMs

3. Procedure of Three-Phase Winding
The prototype machine investigating has determined layout 
of winding based on table 1 and table 2 for single and double 
layer winding, the number of slots for stator is 12 and for two 
rotors are 10. Energizing into wires of winding is balanced to 
produce less-ripple torque and without spike which current for 
three phases is in accordance with relations1, 2 and 3 that I_m 
andω_eare respectively magnitude of current and electrical 
angular velocity.

The contribution of the proposed analytical model is as follows: 

• The 2D analytical model based on the Maxwell equations for double-mechanical port 

FSPMMs has been presented for the first time.  

• The proposed model is able to incorporate the influences of the inner and outer parts on 

each other. 
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Figure 1. Two dimensional of DRFSPMWHSSMs 

 
Fig 2. Three dimensional of DRFSPMWHSSMs 

 

3. Procedure of Three-Phase Winding 

The prototype machine investigating has determined layout of winding based on table 1 and table 

2 for single and double layer winding, the number of slots for stator is 12 and for two rotors are 

10. Energizing into wires of winding is balanced to produce less-ripple torque and without spike 

which current for three phases is in accordance with relations1, 2 and 3 that Im and ωeare 

respectively magnitude of current and electrical angular velocity. 

(1) ia(t) = sin (t)  
(2) 𝑖𝑖𝑏𝑏(𝑡𝑡) = 𝐼𝐼𝑚𝑚sin (𝜔𝜔𝑒𝑒𝑡𝑡 − 2𝜋𝜋

3 ) 

(3) 𝑖𝑖𝑐𝑐(𝑡𝑡) = 𝐼𝐼𝑚𝑚sin (𝜔𝜔𝑒𝑒𝑡𝑡 + 2𝜋𝜋
3 ) 

 

 

Table 1.  Layout of single-layer winding 

 

 

 

Table 2.  Layout of 2-layer winding 

 

 

4. Fundamental Equations  



 Volume 7 | Issue 2 | 184J App Mat Sci & Engg Res, 2023

 
Fig 2. Three dimensional of DRFSPMWHSSMs 

 

3. Procedure of Three-Phase Winding 

The prototype machine investigating has determined layout of winding based on table 1 and table 

2 for single and double layer winding, the number of slots for stator is 12 and for two rotors are 

10. Energizing into wires of winding is balanced to produce less-ripple torque and without spike 

which current for three phases is in accordance with relations1, 2 and 3 that Im and ωeare 

respectively magnitude of current and electrical angular velocity. 

(1) ia(t) = sin (t)  
(2) 𝑖𝑖𝑏𝑏(𝑡𝑡) = 𝐼𝐼𝑚𝑚sin (𝜔𝜔𝑒𝑒𝑡𝑡 − 2𝜋𝜋

3 ) 

(3) 𝑖𝑖𝑐𝑐(𝑡𝑡) = 𝐼𝐼𝑚𝑚sin (𝜔𝜔𝑒𝑒𝑡𝑡 + 2𝜋𝜋
3 ) 
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Table 2.  Layout of 2-layer winding 

 

 

4. Fundamental Equations  

Number of slot Layout
1 A+
2 C-
3 C-
4 B+
5 B+
6 A-
7 A-
8 C+
9 C+
10 B-
11 B-
12 A+

Number of slot Right side Left side
1 A- B+
2 B- C+
3 C- A+
4 A- B+
5 B- C+
6 C- A+
7 A- B+
8 B- C+
9 C- A+

10 A- B+
11 B- C+
12 C- A+

Table 1.  Layout of single-layer winding

Table 2.  Layout of 2-layer winding

4. Fundamental Equations 
Assumptions to simplify problem is imminent that some reasoning to solve and model are as follows:
• Direction of magnetic potential vector and current density vector is in depth and z
• Length in direction of z is infinite
• Permeability for cores is infinite
• Eddy current is eliminated
• End-effect is neglected
Based on the assumptions given above, the Maxwell equation for a sub-region having both current density and PMs is expressed as 
follows:

Assumptions to simplify problem is imminent that some reasoning to solve and model are as 

follows: 

 Direction of magnetic potential vector and current density vector is in depth and z 

 Length in direction of z is infinite 

 Permeability for cores is infinite 

 Eddy current is eliminated 

 End-effect is neglected 

Based on the assumptions given above, the Maxwell equation for a sub-region having both 

current density and PMs is expressed as follows: 

−𝛻𝛻2𝐴𝐴𝑧𝑧
𝑖𝑖 = 𝜇𝜇0𝜇𝜇𝑟𝑟𝐽𝐽𝑧𝑧𝑖𝑖 +

𝜇𝜇0
𝑟𝑟 (𝜕𝜕𝑀𝑀𝑟𝑟

𝜕𝜕𝜕𝜕 − 𝑟𝑟 𝜕𝜕𝑀𝑀𝜃𝜃
𝜕𝜕𝑟𝑟 ) (4) 

It is noted that in the PM sub-regions Jz=0, and in the winding sub-regions Mr= M  =0. For 

other sub-regions both J and M are zero, as shown in the following expression: 

− 1
𝑟𝑟2

𝜕𝜕2𝐴𝐴𝑧𝑧
𝑖𝑖

𝜕𝜕𝜕𝜕2 − 1
𝑟𝑟
𝜕𝜕
𝜕𝜕𝑟𝑟 (𝑟𝑟

𝜕𝜕𝐴𝐴𝑧𝑧
𝑖𝑖

𝜕𝜕𝑟𝑟 ) = 0 (5) 

 

The magnetic flux density components are obtained for each sub-region by using curl from the 

magnetic vector potential, i.e. 𝑩𝑩 = 𝛁𝛁 × 𝑨𝑨, and the magnetic field intensity is calculated by (6). 

𝑯𝑯 = 𝑩𝑩
𝜇𝜇0𝜇𝜇𝑟𝑟

 (6) 

 

Based on relations (4), (5) andB = ∇ × A, magnetic potential vector and magnetic flux density 

are obtained as follows: 

 

4.1 Slots of Inner Rotor 
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The magnetic flux density components are obtained for each sub-region by using curl from the magnetic vector potential, i.e. 
B=∇×A, and the magnetic field intensity is calculated by (6).
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4.4Outer Airgap
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4.5 Permanent Magnet

4.6 Inner Stator Slot

 

(19) 

 

(20) 

 

(21) 

4.6 Inner Stator Slot 

 

(22) 

 

(23) 

 

(19) 

 

(20) 

 

(21) 

4.6 Inner Stator Slot 

 

(22) 

 

(23) 



 Volume 7 | Issue 2 | 187J App Mat Sci & Engg Res, 2023

 

(24) 

 

4.7 Outer Stator Slot 
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4.7 Outer Stator Slot 
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4.7 Outer Stator Slot
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Unknown coefficients are obtained by boundary conditions that magnetic potential vector and 

radial flux intensity are continuous between each adjacent region shown in appendix. 

 

5. Results 

Relations from (1) to (24) contribute to achieve magnetic flux density in directions of radial and 

tangential for both single layer and double layer winding in inner and outer airgap for 

DRFSPMWHSSMs. To confirm outputs brought from partial derivation equations, comparison 

between FEM and analytical model is as an observer to verify that then a case study based on 

table 1 is determined to cast the geometric of DRFSPMWHSSMs. 

 

 

 

 

 

 

Table 3: Specification of DRFSPMWHSSMs 

 

 

 

Unknown coefficients are obtained by boundary conditions that magnetic potential vector and radial flux intensity are continuous 
between each adjacent regionshown in appendix.

5. Results
Relations from (1) to (24) contribute to achieve magnetic flux density in directions of radial and tangential for both single layer 
and double layer winding in inner and outer airgap for DRFSPMWHSSMs. To confirm outputs brought from partial derivation 
equations, comparison between FEM and analytical model is as an observer to verify that then a case study based on table 1 is 
determined to cast the geometric of DRFSPMWHSSMs.

Parameters Value
Number of inner phases, Niph 3
Number of outer phases, Noph 3
Number of inner rotor slots, Nirs 10
Number of outer rotor slots, Nors 10
Number of inner stator slots, Niss 12
Number of outer stator slots, Noss 12
Number of conductors per each inner slot 40
Number of conductors per each outer slot 20
Relative permeability of PM, μrpm 1
Residual flux density, Brem 1.2T
Maximum current for inner winding, Imaxi 20A
Maximum current for inner winding, Imaxo 20A
Maximum current density of inner winding, Ji 6A/mm2

Maximum current density of outer winding, Jo 6A/mm2

Inner rotor yoke radius,  Rryi 26mm
Outer rotor yoke radius,  Rryo 102mm
Inner stator yoke radius, Ryi 60mm
Outer stator yoke radius, Ryo 75mm
Inner radius of inner stator, Rsi 38mm
Outer radius of outer stator, Rso 92.09mm
Inner radius of outer rotor, Rro 96mm
Outer radius of inner rotor, Rri 35mm
Inner radius of permanent magnet, Rpmi 63.63mm
Outer radius of permanent magnet, Rpmo 72.67mm
Width of inner rotor slot,  wri 26.99 π/180 rad
Width of outer rotor slot, wro 27.01π/180 rad
Width of inner stator slot, wsi 12.5 π/180 rad
Width of outer stator slot, wso 6.92 π/180 rad
Width of PM, wpmi 3.24 π/180 rad
Stack length, Ls 100mm

Table.3 Specification ofDRFSPMWHSSMs
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Figure 3: Radial and tangential flux density for inner part (r =35.6mm) for only permanent 

magnet 

 

 

 
 

Figure 4: Radial and tangential flux density for outer part (r =94mm) for only permanent magnet 
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Figure 4: Radial and tangential flux density for outer part (r =94mm) for only permanent magnet 
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Figure 3: Radial and tangential flux density for inner part (r =35.6mm) for only permanent magnet

Figure 4: Radial and tangential flux density for outer part (r =94mm)for only permanent magnet

Figure5. Radial and tangential flux density for inner part (r =35.6mm&t=0) for only single layer winding
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Figure 6: Radial and tangential flux density for outer part (r =94mm&t=0) for only single layer winding

Figure 7: Radial and tangential flux density for outer part (r =35.6mm&t=0) for only double layer winding

Figure 8: Radial and tangential flux density for outer part (r =94mm&t=0) for only double layer winding

 
Figure 7: Radial and tangential flux density for outer part (r =35.6mm&t=0) for only double 

layer winding 

 

 
Figure 8: Radial and tangential flux density for outer part (r =94mm&t=0) for only double layer 

winding 

 

6. Conclusions 

In this paper, a flawless model for designing  DRFSPMWHSSMs is presented that value of 

magnetic flux density into inner and outer airgap is calculable and anticipatable. The magnetic 

flux density components due to permanent magnet and armature currents have been computed by 

analytical and numerical model which Analytical results are in good agreement with those 

obtained by FEM [18-30]. 

0 20 40 60 80 100 120 140 160 180
-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

theta (degrees)

R
ad

ia
l a

nd
 ta

ng
en

tia
l f

lu
x 

de
ns

ity
 (T

)

 

 

Analytic Br
FEM Br
Analytic Bt
FEM Bt

0 20 40 60 80 100 120 140 160 180
-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

theta (degrees)

R
ad

ia
l a

nd
 ta

ng
en

tia
l f

lu
x 

de
ns

ity
 (T

)

 

 

Analytic Br
FEM Br
Analytic Bt
FEM Bt

 
Figure 7: Radial and tangential flux density for outer part (r =35.6mm&t=0) for only double 

layer winding 
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6. Conclusions
In this paper, a flawless model for designing DRFSPMWHSSMs is presented that value of magnetic flux density into inner and 
outer airgap is calculable and anticipatable. The magnetic flux density components due to permanent magnet and armature currents 
have been computed by analytical and numerical model which Analytical results are in good agreement with those obtained by FEM 
[18-30].
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