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Safety Behavior Analysis of a Delayed Control System

Abstract
Time delays in systems are becoming important phenomena now-a-days in regards to its safety issues. A continuous delayed 
system proposed by A. Uçar is considered for this work. Detailed works are concentrated on finding behavior of this system 
of continuous delayed system with respect to different system parameters. Self-written code is used to observe the behavior of 
the system. Self-written code gives flexibility to see behaviors of the system in more in depth. System behavior is observed for a 
very large range of parameters and comparison is made with others works. Results indicate that for a certain range of values of 
parameters the system show predictable behavior but after certain range of parameter values the system goes to unpredictable 
chaotic behavior. In addition, parametric relation is shown for same type of chaotic behavior. It is expected that this finding will 
increase understanding of complex phenomena involved in delayed dynamical system when safety is prime importance.
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Introduction
A continuous delayed system proposed by A. Uçar is considered 
for this work to address safety behavior [1]. Time delays that 
occurred in different science and engineering is becoming a very 
interest and important topic now-a-days [2-3]. The prototype 
delayed dynamical system is extensively used as a prototype 
model to observe oscillation in shipbuilding industry [1, 4-8]. Also, 
instability and periodic fluctuations phenomena can be explained 
by this type of time delays system in model systems [9]. Unwanted 
and unsafe chaotic behavior after a range of system parameter 
values can be analyzed with this system. This model is extensively 
used to chaotic study. Also, time delayed arises in different 
systems in feedback science, engineering and medicine. Delayed 
differential equations are extensively used in Chemostat system, 
delayed neutral networks, internet congestion control system and 
Mackey-Glass equation, musical instruments, communications 
and control systems etc. Time delayed also occurred due to sensors 
dynamics in feedback path which correspond to undesirable 
oscillations and instability [10-15].
  
Since A. Uçar proposed time delay dynamical system which is very 
important for feedback science, engineers and control engineering 
fields, delayed differential equation (DDE) to solve this prototype 
model is becoming very important and interesting now-a-days. 
Improvement of his works and systems related to this delayed 
system are utmost important. A Uçar in his original work has tried 

to propose his new system for chaos studies as well as show its 
behavior [1]. In his later work he has tried to show some of chaotic 
behavior of this delayed dynamical system [16]. Chunguang et. 
al. has tried to see the behavior for various parameter values of 
this system [17]. Mingshu has tried to show the behavior of this 
dynamical system by using Euler method rather than 4th order 
Runge-Kutta method to reduce error up to certain limit. Karl et 
al. have tried to synchronize the two types of A. Uçar systems [3, 
18, 19]. 

Authors in this current investigation used self-written 4th order 
Runge-Kutta code in Matlab to observe the behavior of the system 
in lieu of using ODE45 solver in Matlab at first for constant values 
‘τ’ and ‘d’ but changing values for another constant ‘c’. Behavior 
is analyzed for very small step size (0.001) to see very smaller 
change in the system. After that pre-function value was taken 
smaller than previous value and behavior was observed. Then time 
delay was changed but all other parameters were remained fixed 
and the behaviors were observed. Then parameter relations have 
been tried to find out for similar behavior of the system but for 
different system parameters. Comparisons were made with others 
findings. 

Objectives
The present study aimed to determine the impact of different data 
ranges which can lead to chaotic behavior on delayed dynamic 
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systems to deal with safety aspects. Since these systems need to be 
function properly in all the time, however finding these ranges which 
can cause nonfunctional of these systems are prime importance. It 
is expected that this finding will increase understanding of complex 
phenomena involved in delayed dynamical system.

Description of the Model
Delay Differential Equation (DDE) is different than Ordinary 
Differential Equation (ODE). In ordinary differential equation 
derivative depends on the current value of the independent 
variable (assume, t) or for that particular instant value but in delay 
differential equation, system derivate at a certain time depends on 
the system at earlier time say t-τ. In this work delay differential 
equation has been used. DDE have two important terms: ‘pre-
interval’ and ‘pre-function’. Pre-interval is [-τ, 0] and Pre-function 
(Initial function) is xo(t)= ϕ(t) for t ϵ [to-τ, to].

In this work a prototype delayed system proposed by A. Uçar 
is considered. It has an autonomous continuous time delayed 
differential equation with cubic nonlinearity term. Diagrams 
are provided to show the solutions mode for different model 
parameters. The rich behavior of this system is numerically 
illustrated by writing 4th order Runge-Kutta codes.

Where, c and d are constants, t is independent variable and x 
is dependant variable. This system has time lag of τ which is a 
constant value.

Without delay (τ =0) this system has three fixed points. They are 
at x1*=0, x2*=   and x3*=- . Among of these three points x1* is 

unstable fixed point, but x2* and x3* are stable fixed points.

Numerical Analysis
A. Uçar’s proposed delayed dynamical model    
is analyzed by using 4th order Runge-Kutta method. This technique 
leads better accuracy. Numerical algorithm is provided here as a 
finite difference scheme. Important steps in using 4th Order Runge-
Kutta method in this delayed system is mentioned here.

Step-1: Function subroutine has been written for pre-function ϕ 
(t). It will provide data for the function for every change of time 
in the pre-interval.
Step-2: Values have been provided for c, d and τ
Step-3: Values also have been provided for step size(h) 
Step-4: Number of subdivisions provided by using step size that is 
used in step-3 number
Step-5: Number of subdivisions in the interval [0, τ]  has been 
determined
Step-6: Number of steps(k) in the pre-interval [-τ, 0] is also 
determined
Step-7: Number of steps(m) in the interval [-τ,tmax] is determined. 
Here tmax is the maximum value of time up to which solution 
desired.
Step-8: Pre-function output:

Loop1           i=0 to i=k
                              t(i+1)= -τ +i*h

                              x(i+1)=phi(t(i))
            end of Loop1
Step-9: Solution output:
             Loop2      j=k:m
                            t(j+1)=(j-k)*h
         k1=h*(c*x(j-k+1))-d*(x(j-k+1))^3
                            k2=h*(c*(x(j-k+1)+0.5*k1))-d*(x(j-k+1)+0.5*k1)^3
                            k3=h*(c*(x(j-k+1)+0.5*k2))-d*(x(j-k+1)+0.5*k2)^3
                            k4=h*(c*(x(j-k+1)+k3))-d*(x(j-k+1)+k3)^3
                            x(j+1)=x(j)+1/6*(k1+k2+k3+k4)
  end of Loop2
     Step-10: Plot of required data

Results and Discussion
System behavior has been analyzed for system without delay 
condition and when delay is considered and shown on Figures. 
As the system gets some delay it oscillates at first then comes to 
equilibrium position. This is type of system behavior is shown in 
Figure-2(b). Figures 2 to 4 indicate that as ‘c’ value increases from 
0.7 to 1.0 the solution behavior losses its equilibrium and tends 
to oscillate and orbitally stable limit cycle formed. The periodic 
behavior of solutions increases as ‘c’ increases. Numerical 
simulation also indicates that the period of the solution for c=1.2 is 
longer than that with c=1.0.

Figure-1: Phase portrait for system without delay
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Figure-2:

Figure-3:

Figure-4:

Figure 5 to 7 indicates the same behavior like what was found 
from Figures 2 to 4 for the same values of ‘c’,‘d’ and ‘τ’ values.  
However, this time initial function was taken negative so system 
patterns start from the opposite side compare to what we got from 
Figure 2 to 4. These type of behavior of this prototype delayed 
system matches well with Chunguang Li et al [17].
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Figure-5:

Figure-6:

Figure-7:

Figure-8 shows phase portrait for different parameter values. 
Figure 8(a) indicates that the system comes to equilibrium point 
for c=0.5 after several oscillations. Figure 8(b) indicates that self-
oscillation occurs in the system for c=0.9 value and encloses the 
stable equilibrium point. Figure 8(c) shows several oscillations 
with different frequencies and amplitudes for c=1.51. Figure 
8(d) shows strange behavior of the system for c=1.7. In chaotic 
systems with three-state variables this kind of oscillation is known 
as double-scroll chaotic-type behavior.
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Figure-8: xo=0.1, d=1,  =1 (a) c=0.5 (b) c=0.9 (c ) c=1.51 (d) 
c=1.7
 
Strange behavior of Figure 8(c) is more closely observed by 

drawing solution behavior curve. Time response of this type of 
system with τ =1, c=1.6 and d=1 is also depicted in Figure 9. More 
numerical simulations have been conducted to see the behavior of 
the system. Figures 10 shows some pictorial description of some of 
those phenomena when   was varied from 0.5 to 1.33 respectively. 
Figure 10(a) indicates that the model has one stable point i.e. the 
system comes to equilibrium after a certain time. Figure 10(b) 
indicates that the model has a limit cycle. Figure 10(c) indicates 
that the model has also limit cycles and Figure 10(d) indicates 
symmetric four limit cycles. Here initial function was taken as 0.1.

Figure-9: Time response of system for  =1, c=1.6, d=1[1].
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Figure-10: c=1, xo=0.1, d=1(a)  =0.5 (b) τ =1 (c) τ =1.3 (d) τ =1.33

Further numerical works have been conducted to see how system 
behaves with increasing τ is shown pictorially in Figure 11. It 
seems that when p becomes 1.5 then all oscillations depicted in 
Figure 10 vanishes and exhibits limit cycle behavior as shown 
in Figure 11(a). For τ value of 1.6 Figure 11(b) shows chaotic 
behavior but when τ becomes 1.64 the model comes to simple 
dynamics depicted in Figure 11(c). But when   is chosen 1.72 the 
model again shows chaotic behavior as shown in Figure 11(d).

Figure-11: c=1, xo=0.1,d=1 (a) τ =1.5 (b) τ =1.6  ( c) τ =1.64  (d)   
τ =1.72

As system changes behavior for  τ values from 1.64 so trajectory of 
the system was observed in that particular value. Figure 12 shows 
a typical trajectory of the model and shows behavior of the system 
for 0.001 integration step size by writing own 4th order Runge-
Kutta code. The linear and nonlinear feedback gain both fixed at 
unity with time delay taken as 1.64 values.

Figure-12: typical trajectory of the model for c=1,xo=0.1,d=1, 
τ =1.64

Up to this point it seems like the system behavior changes with 
varying parameters might have relation among parameters to 
have same type of behavior. So, it was needed to find out same 

-0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

x(t)

x(
t-t

au
)

-1.5 -1 -0.5 0 0.5 1 1.5
-1.5

-1

-0.5

0

0.5

1

1.5

x(t)

x(
t-t

au
)

-1.5 -1 -0.5 0 0.5 1 1.5
-1.5

-1

-0.5

0

0.5

1

1.5

-1.5 -1 -0.5 0 0.5 1 1.5
-1.5

-1

-0.5

0

0.5

1

1.5

x(t)

x(
t-t

au
)

-1.5 -1 -0.5 0 0.5 1 1.5
-1.5

-1

-0.5

0

0.5

1

1.5

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

x(t)
x(

t-t
au

)

-2
-1

0
1

2

-2
-1

0
1

2
-1.5

-1

-0.5

0

0.5

1

1.5

x(
t-t

au
)

x(t)dx(t)/dt

Adv Mach Lear Art Inte, 2021            Volume 2 | Issue 1 | 38www.opastonline.com

A

D

D

C

C

B



type of behavior for different sets of parameters. Also, that could 
indicate same type of chaotic behavior for a range of parameters. 
If for a range of parameters chaotic behavior seems same then 
it is qualitative preserved chaotic behavior (QPCB), otherwise 
chaotic behavior will be Unique Chaotic behavior (UCB).  If there 
could have a relation like  τ=p/c  where d is taken as unity then 
with a fixed value of p values curve be drawn for c vs. τ . Figure 
-13 implementing this concept. Every line indicates fixed value 
of p. From Figure-13 it is found that as c value increases τ value 
decreases.

Figure-14: xo=0.1, d=1 (a )c=0.6, τ =2.667  (b)c=0.8, τ =2  (c ) 
c=1, τ =1.2 (d) c=1.2,  τ =1.33

From Figure 11(b) it is found that chaotic behavior occurred for 
a particular value of c,d, τ values. Now to verify the qualitative 
preserved of this solution for p=1.6, some more numerical works 
have been done on that particular case. This time p is taken as 
constant 1.6 values but c and τ is varied. Figure 14 shows all of 
this behavior and looks like same chaotic behavior. So, the model 
exhibit qualitatively preserved chaotic behavior. From Figure 14 
it is found that all curves have same structure but different in size. 
This also indicates that similar behavior could be obtained for 
other range of model parameters.

Conclusion
In this work behaviors have been analyzed for the A. Uçar 
prototype delayed dynamical system up to certain extension for 
various parameter values. Results show that the system behavior 
more or like predictable up to a certain limit of parameters but 
shows chaotic behavior after a certain value. Qualitative Preserved 
Chaotic Behavior was used to observe the system behavior. 
Qualitative Preserved Chaotic Behavior could be used to analyze 
chaotic behavior for various systems as well. Results were 
compared with others findings [19-26] and matches all behaviors 
analyzed in this work. Step size was taken smaller but smaller 
value could show better behavior. It is expected that this finding 
will increase understanding of complex phenomena involved in 
delayed dynamical system.
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Figure-13: Preserved solution lines of the model 
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