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Abstract
With the continuous expansion of unmanned aerial vehicle (UAV) applications, traditional inertial navigation technology 
exhibits significant limitations in complex environments. In this study, we integrate improved reinforcement learning (RL) 
algorithms to enhance existing unmanned aerial vehicle inertial navigation technology and introduce a modulated mechanism 
(MM) for adjusting the state of the intelligent agent in an innovative manner [1,2]. Through interaction with the environment, 
the intelligent machine can learn more effective navigation strategies [3]. The ultimate goal is to provide a foundation for 
autonomous navigation of unmanned aerial vehicles during flight and improve navigation accuracy and robustness.

We first define appropriate state representation and action space, and then design an adjustment mechanism based on the 
actions selected by the intelligent agent. The adjustment mechanism outputs the next state and reward value of the agent. 
Additionally, the adjustment mechanism calculates the error between the adjusted state and the unadjusted state. Furthermore, 
the intelligent agent stores the acquired experience samples containing states and reward values in a buffer and replays the 
experiences during each iteration to learn the dynamic characteristics of the environment. We name the improved algorithm 
as the DQM algorithm. Experimental results demonstrate that the intelligent agent using our proposed algorithm effectively 
reduces the accumulated errors of inertial navigation in dynamic environments. Although our research provides a basis 
for achieving autonomous navigation of unmanned aerial vehicles, there is still room for significant optimization. Further 
research can include testing unmanned aerial vehicles in simulated environments, testing unmanned aerial vehicles in real-
world environments, optimizing the design of reward functions, improving the algorithm workflow to enhance convergence 
speed and performance, and enhancing the algorithm's generalization ability.

It has been proven that by integrating reinforcement learning algorithms, unmanned aerial vehicles can achieve autonomous 
navigation, thereby improving navigation accuracy and robustness in dynamic and changing environments [4]. Therefore, 
this research plays an important role in promoting the development and application of unmanned aerial vehicle technology. 
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1 Introduction
1.1 Research Background
In recent years, the application fields of unmanned aerial vehi-
cles have been expanding, covering various areas, including mil-
itary operations, logistics and transport, geographic exploration, 
environmental monitoring, and so on. Navigation has become a 
focal point for unmanned aerial vehicle usage, as effective and 
accurate navigation is crucial for safe unmanned aerial vehi-
cle operations and task execution. Common small quadcopter 
unmanned aerial vehicles mainly rely on inertial navigation to 
provide position information [5]. The inertial navigation system 
(INS) is the main component of unmanned aerial vehicle navi-
gation [6]. INS measures the unmanned aerial vehicle's accel-
eration and angular velocity using an inertial measurement unit 
(IMU), and calculates the unmanned aerial vehicle's position 
and attitude through integration. However, traditional INS has 

significant limitations when facing complex environments and 
tasks. In dynamic environments, such as strong winds, air in-
terference, or obstacles, the measurements of the IMU may be 
disturbed, resulting in the accumulation of navigation errors and 
increased instability.

In order to solve the limitations of traditional INS, researchers in 
the industry have attempted to correct the results of inertial navi-
gation through filter algorithms, or to combine inertial navigation 
with computer vision to correct the navigation results. We pro-
pose to combine the improved reinforcement-learning algorithm 
with inertial navigation to correct the navigation results. The un-
manned aerial vehicle can sense the environment state in real-time 
and learn the optimal autonomous navigation strategy adapted to 
the environment through the reinforcement learning algorithm, 
thereby improving the accuracy and robustness of the navigation.
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Our goal is to study the unmanned aerial vehicle's inertial nav-
igation technology combined with reinforcement learning al-
gorithms, and introduce adjustment mechanisms to enable the 
agents to obtain the maximum reward value in simulation exper-
iments. By integrating the advantages of reinforcement learning, 
the unmanned aerial vehicle can continuously learn and opti-
mize the navigation strategy during the flight to better adapt to 
complex navigation scenarios, ultimately achieving autonomous 
navigation.

1.2 Study Objective
Our research aims to combine the improved reinforcement-learn-
ing algorithm with inertial navigation data to enable the un-
manned aerial vehicle to learn more effective navigation strate-
gies and improve navigation accuracy and robustness in dynamic 
environments. The results of the neural network program running 
are output in the form of pre-trained models.

Traditional inertial navigation technology has significant perfor-
mance limitations when facing complex dynamic environments. 
Therefore, we need to propose a new reinforcement-learning 
algorithm and apply it to navigation tasks to provide a theoreti-
cal basis for achieving high-precision autonomous navigation of 
unmanned aerial vehicles. We hope to provide a new solution for 
research and practical applications in the field of unmanned aeri-
al vehicle navigation, thus bringing technological breakthroughs 
to autonomous navigation issues for unmanned aerial vehicles in 
complex environments.

2 Related Work
2.1 Overview of Unmanned Aerial Vehicle Inertial Naviga-
tion Algorithms
Unmanned aerial vehicle inertial navigation systems (INS) 
mainly consist of accelerometers, gyroscopes, and magnetom-
eters [7]. Accelerometers are one of the core components of the 
inertial navigation system, used to measure the acceleration of 
the unmanned aerial vehicle in three directions. Gyroscopes 
are used to measure the angular velocity of the unmanned ae-
rial vehicle in three directions. By sensing the unmanned aerial 
vehicle's rotational motion, gyroscopes can provide continuous 
measurements of angular velocity. To reduce navigation errors, 
inertial navigation algorithms generally use filtering algorithms 
such as Kalman Filter (KF) and Extended Kalman Filter (EKF) 
to fuse the data from accelerometers and gyroscopes, estimating 
the unmanned aerial vehicle's position, velocity, attitude, and 
other information. These filtering algorithms establish state-
space and measurement models, combining the system's dynam-
ics and sensor noise characteristics to perform state estimation 
and prediction [8,9].  

2.2 Application of Reinforcement Learning in Navigation 
Tasks
Reinforcement learning is a machine learning method that learns 
the optimal strategy to achieve specific goals through interaction 
with the environment [10]. In recent years, reinforcement learn-
ing has made significant progress in the field of navigation, such 
as path planning and obstacle avoidance. Reinforcement learn-
ing can adapt to dynamic environmental changes in navigation 
tasks and update strategies through continuous interaction with 
the environment, thereby improving navigation performance. 

Reinforcement learning can be used for path planning and con-
trol in systems such as unmanned aerial vehicles, autonomous 
vehicles, and robots. By treating the environmental state as in-
put, reinforcement-learning algorithms can learn a policy net-
work to choose the optimal action based on the current state to 
reach a target location or complete a task. Reinforcement learn-
ing can autonomously explore and learn effective path planning 
strategies based on feedback from reward signals, adapting 
quickly to changes in complex environments. Furthermore, re-
inforcement learning can be used to solve obstacle avoidance 
problems in dynamic environments. In the navigation process, 
intelligent systems need to perceive and respond to the appear-
ance and movement of obstacles in real-time. Reinforcement 
learning can learn obstacle avoidance strategies that adapt to dy-
namic environments through interaction with the environment. 
The intelligent agent can use reinforcement learning algorithms 
to select appropriate actions based on the current state, avoiding 
collisions or finding the optimal path to bypass obstacles.

2.3 Adjustment Mechanism of our Proposed Algorithm
Based on the above content, the reinforcement learning algo-
rithm shows great potential when applied to navigation tasks, but 
there are also some shortcomings. First, reinforcement-learning 
models usually require a large amount of high-quality data to 
enable the agent to learn effective navigation strategies. Insuf-
ficient dataset quantity or large measurement errors can affect 
the generalization performance of the model. Second, there are 
many hyperparameters in reinforcement learning models that 
need to be adjusted, such as learning rate, reward coefficient, 
exploration rate, etc. For unmanned aerial vehicle (unmanned 
aerial vehicle) navigation tasks, the choice of different hyperpa-
rameters may have a significant impact on the model's perfor-
mance. Furthermore, the actual environment of unmanned aerial 
vehicle navigation tasks is typically complex and dynamic. To 
achieve the best application effect, the model needs an accurate 
modeling of the environment.

To address the above shortcomings, we choose the DQN algo-
rithm of reinforcement learning and innovatively introduce an 
"adjustment mechanism" to adjust the input state of the algo-
rithm, so that it can better interact with the environment. We 
name the improved algorithm the DQM algorithm, which stands 
for "Deep Q-network with Modulation" as it combines the ad-
justment mechanism with the DQN algorithm. In the traditional 
DQN algorithm, the agent selects its action based on the input 
state. After selecting the action, the agent performs the action 
and receives feedback from the environment. The adjustment 
mechanism focuses on the action execution part. The core of the 
adjustment mechanism is the "proportional-integral-derivative" 
control idea. Specifically, in each iteration, the algorithm reads 
the data from the dataset to obtain the initial state of the agent. 
Then, the agent needs to choose the appropriate action. The DQM 
algorithm limits the agent to choose only two actions: adjusting 
the state or not adjusting the state. If the agent chooses to adjust 
the state, the initial state is used as the input to the adjustment 
mechanism in the form of an array. The adjustment mechanism 
consists of proportional adjustment, integral adjustment, and de-
rivative adjustment, which adjust the input separately and then 
sum up the results. It should be noted that the state selection of 
the agent is discrete, while the "proportional-integral-derivative" 
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control idea is generally used to realize the adjustment and con-
trol of continuous systems. Therefore, both the integral adjust-
ment and the derivative adjustment should compute the discrete 
antiderivative/derivative of the input state with respect to time. 
Furthermore, in combination with unmanned aerial vehicle nav-
igation tasks, the algorithm will calculate the error between the 
adjusted state and the state calculated by the inertial navigation 
program, and the error is associated with the reward obtained 
by the agent. Furthermore, the adjustment mechanism outputs 
the adjusted state as the next state of the agent, and the agent 
also receives rewards from the environment. Specifically, the 
algorithm sets different reward functions so that the agent can 
maximize the reward value by continuously interacting with the 

environment and learn the optimal behavioral strategy. During 
each training process, the agent selects actions to use the learned 
Q-value function based on the current state; the Q-value func-
tion reflects the long-term cumulative reward obtained by taking 
a certain action in a certain state. If the agent chooses the action 
corresponding to the highest Q-value, it can maximize the future 
reward obtained. After obtaining the next state from the adjust-
ment mechanism, the agent updates the Q-value function based 
on the reward value and the next state. By continuously selecting 
actions, executing actions, and updating the Q-value function, 
the agent eventually learns the optimal behavioral strategy. The 
flowchart and pseudocode of the DQM algorithm is shown in 
Figure 1 and Figure 2:

Start

input states

choose action

error between two states=l
get next state

use PID modulation to get next state
compute the error between two next 

states

send to the buffer

optimize two nets

update two nets

End

random batch

backwardforward

not modulate modulate

Figure 1: Flowchart of the DQM Algorithm
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Figure 2: Pseudocode of the DQM Algorithm

The advantages of the DQM algorithm with the introduction of 
the adjustment mechanism are obvious. Firstly, the improved al-
gorithm simplifies the agent's action selection and reduces the 
complexity of the agent's action space by setting "adjustment 
state" and "non-adjustment state" actions, which improves the 
decision-making efficiency of the agent compared to the original 
DQN algorithm. Secondly, the improved algorithm associates 
the error with the reward, which can guide the agent to learn 
in the direction of reducing the error. This approach will make 
the agent pay more attention to the effect of state adjustment, 
thereby allowing the neural network program to converge faster. 
In addition, the improved algorithm innovatively combines with 
system control ideas, and the use of proportional-integral-de-
rivative adjustment mechanism allows the agent to adjust the 
state more flexibly to adapt to complex environments and dif-
ferent task requirements. Finally, based on the proportional-in-
tegral-derivative adjustment mechanism, it has a certain degree 
of interpretability itself; we can adjust the coefficients of propor-
tion, integral, and derivative according to specific requirements 
and the actual running situation of the program to achieve better 
state adjustment effects and enhance the adaptability of the al-
gorithm.

2.4 Application Scenarios of DQM Algorithm
Applying the DQM algorithm to unmanned aerial vehicle (un-
manned aerial vehicle) navigation tasks can fully utilize rein-
forcement learning's adaptability and dynamic optimization 
capabilities, providing a foundation for autonomous unmanned 
aerial vehicle navigation. In recent years, some scholars in the 
industry have studied and explored the application of reinforce-
ment learning in unmanned aerial vehicle technology. For ex-
ample, Li Huayuan proposed an adversarial attack reinforce-
ment learning algorithm based on collision risk prediction and 
opponent modeling for training strategies for unmanned aerial 
vehicle navigation tasks that balance safety and robustness [11]. 
Li Yanru and others studied the problem of autonomous plan-

ning of unmanned aerial vehicle flight paths based on the DQN 
algorithm [12]. Luo Jie developed an intelligent flight control 
system that can simulate and deploy unmanned aerial vehicle 
reinforcement learning algorithms [13]. Regarding autonomous 
unmanned aerial vehicle navigation, the industry focuses more 
on using reinforcement-learning algorithms to achieve autono-
mous planning of unmanned aerial vehicle flight paths and there 
is less research on combining reinforcement-learning algorithms 
with inertial navigation.

Autonomous unmanned aerial vehicle navigation refers to the 
unmanned aerial vehicle's ability to independently choose ac-
tions and paths based on changes in the environment and task re-
quirements, without human intervention, to complete navigation 
tasks. Based on the DQM algorithm, unmanned aerial vehicles 
continuously adjust their behavior and decisions based on the re-
ward signal feedback from the environment to learn the optimal 
navigation strategy. For example, the algorithm rewards correct 
execution of tasks or responses to environmental changes while 
providing less reward for incorrect behavior. Applying the re-
inforcement-learning framework can improve unmanned aerial 
vehicle's dynamic adaptability. In complex and uncertain envi-
ronments, unmanned aerial vehicles need to adjust navigation 
strategies in a timely manner based on changes in the environ-
ment and task requirements. Reinforcement learning allows un-
manned aerial vehicles to adapt quickly to environmental chang-
es and effectively improve navigation accuracy through real-time 
perception and learning. In addition, reinforcement learning can 
help unmanned aerial vehicles achieve environment perception 
and decision-making capabilities. When unmanned aerial vehi-
cles navigate autonomously in real-world environments, they 
need to perceive and make decisions based on various environ-
mental information, such as sensor data and map information, 
in real-time. The computer carried by unmanned aerial vehicles 
will extract and analyze useful features from perception data and 
make corresponding decisions based on the extracted features, 
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effectively improving navigation robustness.

3 Research Method
3.1 State Representation and Action Space Definition
The small unmanned aerial vehicle we are studying has 6 de-
grees of freedom. We assume (ax,ay,az)that the acceleration com-
ponents φof the unmanned aerial vehicle in three directions, 
θroll angle, ψpitch angle, and yaw angle, and the first-order de-
rivative of the three attitude angles - the angular velocity com-
ponents of the unmanned aerial vehicle in three directions, are 
integrated into the dataset that we selected as the state repre-
sentation for the agent and to provide data support for training 
neural networks and obtaining pre-trained models. To train the 
DQM algorithm, we store the state in the form of a numpy ar-
ray in a CSV file. The state representation is an abstraction and 
description of the current state of the unmanned aerial vehicle, 
providing important environmental information for the DQM 
algorithm. At the same time, the action space contains only two 
actions: adjusting the state or not adjusting the state. By defining 
the state representation and action space reasonably, the DQM 
algorithm can learn effective navigation strategies and make in-
telligent decisions.

3.2 Reward Function Design
The design of the reward function is crucial for the training 
and learning process of the algorithm. Based on the navigation 
task goals of the unmanned aerial vehicle, we designed a suit-
able reward function to guide the unmanned aerial vehicle to 
learn efficient navigation strategies. The reward function can 
give different reward signals according to the unmanned aerial 
vehicle's behavior and state changes, thereby guiding the un-
manned aerial vehicle to learn the correct actions and decisions. 
With a well-designed reward function, reinforcement learning 
algorithms can quickly converge and learn optimal navigation 
strategies. Considering that the DQM algorithm associates the 
rewards obtained by the agent with the error between the two 
states before and after adjustment, the reward function can be 
written as a univariate function of the error. When the agent does 
not adjust the input state, the error between the two states before 
and after adjustment is 0, and the reward value is set to 1. When 
the agent chooses to adjust the input state, the reward value is 
r for a single adjustment, and the error between the two states 
before and after adjustment is loss. Considering that the reward 
obtained by the agent increases with the decrease of the error, we 
introduce a function commonly used in elementary mathematics 
to represent the inverse correlation between the dependent vari-
able and the independent variable. The function relationship is 
shown in Table 1.

Function name Function expression
Inverse proportion function r=1/loss
Sigmoid function r=1/(1+e^(loss))
Inverse of logarithmic function r=1/ln(loss)
Inverse of quadratic function r=1/(loss^2)
Inverse of sine trigonometric function r=1/sin(loss)
Inverse of cosine trigonometric function r=1/cos(loss)
Inverse of tangent trigonometric function r=1/tan(loss)

Table 1: Relationship between the Reward Values Obtained By the Agent at Each Sampling Point and the State Error

3.3 Selection of Algorithm Framework at the Bottom Layer
We chose the DQM algorithm as the framework for unmanned 
aerial vehicle reinforcement learning. The DQM algorithm 
is an improvement on the DQN algorithm, which is based on 
the Q-learning algorithm. By combining deep neural networks, 
DQM achieves learning and optimization of decision problems 
in complex environments. During the training process, the DQM 
algorithm uses experience replay and target networks to solve 
the problems of sample correlation and unstable target values in 
traditional Q-learning algorithms. It also uses PID control and 
reward-error correlation to focus the training of the agent on 
reducing the errors caused by inertial navigation and provides 
the model with a certain level of interpretability. As a result, it 
has achieved significant results in various complex tasks and has 
wide application prospects.

3.4 Description of Inertial Navigation Calculation Program
We have developed an inertial navigation calculation program 
for a small unmanned aerial vehicle using the Python language. 
Firstly, the program is designed for an inertial navigation system 
that points to the geographic north. The origin of the coordinate 
system is set at an initial longitude of 116.344695283 degrees 

east, an initial latitude of 39.975172 degrees north, and an initial 
altitude of 30 meters. We provide initial values for attitude angles 
and velocities (corresponding to pitch, roll, and yaw angles in 
degrees, and velocities in the x, y, and z directions in meters per 
second). The program takes angular velocities and accelerations 
as inputs and outputs velocities and attitude angles. In particular, 
the inertial navigation program considers the variation in the 
acceleration due to gravity on the Earth's surface.

3.5 Selection of Training Data
Our training data comes from the EuROC-MAV dataset (referred 
to as the MAV dataset). The dataset includes visual and inertial 
data of unmanned aerial vehicles, saved in bag and zip files, which 
can be used for simulation in the ROS environment as well as 
training neural networks. It should be noted that the MAV dataset 
stores data for different task scenarios in separate folders. For the 
factory scene, the data is stored in the "machine_hall" folder. For 
indoor scenes, there are two folders "vicon_room1" and "vicon_
room2". Additionally, there are folders for calibration data. In 
the "machine_hall" folder, there are five subfolders, each storing 
inertial data from different locations. To simplify the task flow, 
we only use the data from the factory scene. Specifically, we use 
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the data stored in subfolder 1 (MH_01_easy) as the training set 
for the model and data from subfolder 2 (MH_02_easy) as the 
validation set.

3.6 Generation and Optimization of Pretrained Models
To obtain and optimize the reinforcement learning model, we 
wrote a neural network program in Python and used the torch 
library to establish the basic framework of the neural network. 
After training the neural network with the training set, we plot the 
graphs and output the pretrained model in the form of a .pth file. 
Furthermore, the output model is optimized using the data from 
the validation set [14]. Optimization adjusts the hyperparameters 

of the model using the data from the validation set to prevent 
overfitting. Finally, we evaluate the performance of the model 
on the training set and validation set using evaluation metrics.

4 Experimental Design and Result Analysis
4.1 Software and Hardware Environment for the Experiment
To validate the performance of the proposed algorithm in com-
plex environments, we set up the following experimental envi-
ronment, which provides adjustable parameters and conditions 
for training the reinforcement learning model, as shown in Table 
2.

Environmental Content
Software Environment Windows10；Anaconda3；Pytorch1.7.1；pandas1.0.5；scipy1.10.0；
Hardware Environment CPU: 8 core Xeon 6248R; GPU: RTX3090*1;
Storage Space Memory: 16GB; VRAM: 24GB;

Table 2: Experimental Environment Description
4.2 Performance on the Training Set
The neural network program was developed using the Python 
language based on the selected data, and it was trained on the 
training set. Considering that each training iteration on the 
training set requires the computation of 36,820 sample points 

(flight data sampled within a 36,820-nanosecond time interval), 
in order to avoid excessive resource consumption, the number 
of training iterations was set to 20. The settings for other 
hyperparameters are referred to in Table 3:

Name of parameters Hyperparameter Values
Batch Size (BATCH_SIZE) 32
Learning Rate (LR) 0.001
Agent Greedy Rate (EPSILON) 0.9
Reward Coefficient (GAMMA) 0.9
Target Network Update Frequency (TARGET_REPLACE_ITER) 100
Memory Capacity (MEMORY_CAPACITY) 2000
Agent Action Number / Neural Network Output Nodes (N_ACTIONS) 2
Agent State Number / Neural Network Input Nodes (N_STATES) 6
Proportional Control Coefficient (kp) 1.0
Integral Control Coefficient (ki) 0.5
Differential Control Coefficient (kd) 0.2
Reward Function Sigmoid Function
State Error Function Mean Squared Error Function
Neural Network Layers 1
Number of Intermediate Nodes in the Neural Network 10
Neural Network Loss Function Mean Squared Error Function

Table 3: Hyperparameter Settings for Performance on the Training Set

After training, the total reward value of the agent and the training loss as a function of the number of iterations can be obtained in 
the following figures:
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Figure 3: Graph of the Total Reward Value of the Agent as a Function of the Number of Iterations

Figure 4: Graph of the Loss Value of the Neural Network as a Function of the Number of Iterations

It is evident from the figures that our model performs well on 
the training set. As the number of training iterations increases, 
the total reward value obtained by the agent shows a "linearly 
increasing" trend. This is consistent with our design idea for the 
reward function under the DQM algorithm framework, which 
means that the agent receives a reward regardless of the action 
it takes, and the reward for adjusting the state is greater. In this 
case, the training goal of the agent is to maximize the reward 
value, and the training process will move towards "reducing the 
error of inertial navigation". In addition, for the training of the 

neural network, the error between the generated and the target 
labels needs to be computed at the end of each iteration, which 
serves as the loss function for the neural network. Our model is 
no exception, as the error between the evaluation network and 
the target network is computed at the end; the error eventually 
converges, proving that the adjustments made to the input state 
of the agent based on the proportional-integral-derivative (PID) 
control concept are effective in reducing the error in unmanned 
aerial vehicle's inertial navigation. However, starting from the 
third training iteration, the loss value of the neural network 
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fluctuates slightly as the number of iterations increases, which 
is related to the precision of the data provided by the dataset; 
once the measurement precision exceeds a certain threshold, 
the decimal places computed by the program no longer have 
physical significance, and the loss calculated by the loss function 
will increase. Therefore, a more reasonable training strategy 
is to reduce the size of the neural network and the number of 
training iterations, which not only reduces the computational 
requirements but also facilitates the deployment of the model on 
small unmanned aerial vehicles in practical applications.

4.3 Performance on the Validation Set
In order to better evaluate the model's generalization ability, 
the validation set contains data that is similar to but different 
from the training set, aiming to reflect the performance of the 
agent in different environments. The validation set consists of 
30,400 samples, recording flight data over a period of 30,400 
nanoseconds. Under the same values of hyperparameters, after 
20 rounds of validation, we can obtain the graph showing the 
total reward of the agent and the training loss as the number of 
rounds progresses:

Figure 5: Graph Showing the Change in Total Reward of the Agent with the Number of Rounds

Figure 6: Graph showing the change in loss of the neural network with the number of rounds
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Consistent with the performance on the training set, the total 
reward of the model on the validation set shows a "linearly in-
creasing" trend with the number of rounds, and the model per-
forms better on the validation set. The loss of the neural net-
work for each round shows a trend of "initial decrease and then 
convergence" as the number of rounds increases, and the loss 
eventually approaches 0. This fully demonstrates the superiority 
of the algorithm after introducing the adjustment mechanism, 
and the model performs exceptionally well on the validation set.

5 Discussion and Outlook
5.1 Discussion of Results
The DQM algorithm has shown significant advantages in this 
experiment. In comparison, this algorithm can improve the ef-
ficiency of agent navigation decisions in complex environments 
and reduce the errors of inertial navigation. The experimental 
results confirm the effectiveness of reinforcement learning in the 
field of unmanned aerial vehicle navigation and provide a new 
solution to the problem of autonomous unmanned aerial vehicle 
navigation.

The DQM algorithm we designed performs better in autonomous 
unmanned aerial vehicle navigation tasks. In this experiment, 
the intelligent agent trained by us achieved maximized rewards 
and minimized neural network losses through each round of it-
eration. The agent focuses more on the goal of reducing "inertial 
navigation errors" in a single round, and the algorithm has good 
convergence and high efficiency.

However, our research still has many limitations. Firstly, the 
adjustment mechanism of the DQM algorithm designed by us 
requires computing all the sampling points in the dataset, which 
greatly increases the computational power required to gener-
ate the pre-training model. Secondly, the dataset we used has a 
sampling time unit of nanoseconds, while the actual small un-
manned aerial vehicle deployment models often use seconds as 
the sampling time unit. There are details to be improved in terms 
of real-time performance and measurement accuracy of the data. 
Furthermore, our research has not yet revealed the underlying 
logic behind the adjustment mechanism, and the theoretical rig-
or on which the algorithm relies may be reduced. Furthermore, 
the experimental results may be influenced by multiple factors, 
such as the design of the reward function and the selection of al-
gorithm parameters. Although the reward function we designed 
performs well in practice, we have not further demonstrated its 
superiority in this type of problem. Furthermore, the data set size 
selected in our experiment is small, making it difficult to train a 
widely applicable pre-training model with strong generalization 
capability. Our future research can explore the aforementioned 
issues, such as improving the direction of the adjustment mech-
anism, optimizing the design of the reward function, evaluat-
ing performance in different environmental settings, algorithm 
adaptability, and deployment issues of the pre-training model, 
etc.

5.2 Algorithm Optimization Directions
Although the experimental results show good performance, 
there is still a large space for optimization. Here are some possi-
ble algorithm optimization directions:

• Optimization of reward function design: The design of the re-
ward function is crucial for the convergence speed and perfor-
mance of the algorithm. To further optimize 
• the reward function, one can consider introducing more navi-
gation metrics and objectives, increasing the complexity of the 
function relationship to more precisely guide the unmanned ae-
rial vehicle to learn ideal navigation strategies.
• Selection and improvement of the underlying framework: Al-
though the DQN algorithm was used as the underlying frame-
work in this experiment, there are other reinforcement learning 
algorithms that can be tried, such as Proximal Policy Optimiza-
tion (PPO), Deep Deterministic Policy Gradient (DDPG), etc. 
By selecting different algorithms and making improvements, 
one can try combining different modules and frameworks to ul-
timately achieve better training results.
• Fine-tuning of algorithm parameters: The parameter settings 
of the algorithm have a significant impact on performance. By 
systematically adjusting algorithm parameters such as learning 
rate, reward coefficient, etc., the convergence speed and stability 
of the algorithm can be optimized.
• Generalization and adaptability of the algorithm: Further re-
search on how to improve the algorithm's generalization and 
adaptability is an important optimization direction. In practical 
applications, unmanned aerial vehicles may face different envi-
ronments and tasks, so the algorithm needs to be able to adapt 
to different scenarios and requirements. This can be achieved 
by introducing more training data, increasing the diversity and 
complexity of the environment, and conducting more rigorous 
testing and validation.
• Practical application of the algorithm: How to apply the al-
gorithm to small-scale unmanned aerial vehicle systems in re-
al-world scenarios, taking into account hardware limitations and 
real-time requirements, is also a research problem that needs to 
be further explored.

In conclusion, although the unmanned aerial vehicle inertial nav-
igation technology incorporating the DQN algorithm has shown 
good performance in dataset training, we can still continuously 
design and optimize the architecture of the algorithm to make it 
better suited for the real environment of unmanned aerial vehicle 
flight and provide a foundation for achieving autonomous navi-
gation of unmanned aerial vehicles.

5.3 Application Prospects
The fusion of reinforcement learning algorithms and unmanned 
aerial vehicle inertial navigation technology is a technology with 
broad application prospects. In the military field, unmanned ae-
rial vehicles are one of the important military equipment, and 
improving navigation performance and achieving autonomous 
navigation are crucial for the execution of military tasks. Re-
inforcement learning-based unmanned aerial vehicle inertial 
navigation technology can enable unmanned aerial vehicles to 
better adapt to and perform tasks in complex battlefield environ-
ments, such as target reconnaissance and target strikes. In the 
field of logistics transportation, unmanned aerial vehicles have 
become an important means of logistics delivery. Reinforcement 
learning-based unmanned aerial vehicle inertial navigation tech-
nology can improve the path planning and obstacle avoidance 
capabilities of unmanned aerial vehicles in rapidly changing en-
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vironments, thereby improving the efficiency and safety of lo-
gistics transportation. In addition, reinforcement learning-based 
unmanned aerial vehicle inertial navigation technology can also 
be applied in the fields of geographic surveying and environmen-
tal monitoring. Through the high-precision navigation capability 
of unmanned aerial vehicles, it can achieve accurate collection 
of geographical information and real-time acquisition of envi-
ronmental monitoring data. Therefore, the application prospects 
of unmanned aerial vehicle inertial navigation technology fused 
with reinforcement learning algorithms are quite broad.
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