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Abstract
This report covers work since a previous article on quantum probability. It provides evidence that quantum proba-
bility has a stochastic nature. This evidence is based on the number of electrons that need to be sent through a two-
slit interferometer to gain a clear pattern of self-interference, which when compared with the number that would 
be expected to be sufficient in order for the position probability distribution of the self-interference wavefunction to 
take clear shape suggests that there is more variability present than that described by the formulation of quantum 
mechanics, which implies the presence of an underlying and as yet unrecognized physical process.

Introduction
This is a report on a previous article [1] that presented a hy-
pothesis that there is a stochastic archetype of quantum proba-
bility. That article noted an unexplained coincidence in quantum 
mechanics, namely that mathematically the interference term in 
the squared amplitude of superposed wavefunctions gives the 
squared amplitude the form of a variance of a sum of correlated 
random variables, not the form of a probability. 

The article examined whether there could be an archetypical 
variable behind quantum probability that provides a mathemati-
cal foundation that observes both quantum and classic probabili-
ty. The properties that would need to be satisfied for this to be the 
case were identified, and a generic hidden variable that satisfies 
them was found that would be present everywhere, transforming 
into a process-specific variable wherever a quantum process is 
active. Uncovering this variable confirmed the possibility that 
there is a stochastic archetype of quantum probability. 

The aim now is to summarize the previous article and then pro-
vide practical experimental context for it by reporting work done 
since then in examining the quantum probability distribution in-
volved in and the results of the famous 1989 experiment by To-
nomura and colleagues that demonstrated the self-interference 
of electrons sent one by one through a two-slit interferometer, 
and by reporting the evidence found from this examination that 
supports the hypothesis of the previous article.

Key aspects of the previous article
The paradox
In the previous article the Schrödinger picture and the causal 
interpretation as recounted by Peter Holland in his quantum the-

ory of motion [2] were used, confined to a single spatial dimen-
sion to keep a focus on concepts. In one spatial dimension x 
he squared amplitude of the wavefunction is |ψ(x,t)|2=ψ(x,t) ψ* 
(x,t), where ψ*is the complex conjugate of ψ, and the probability 
density f (x, t) associated with the location of the particle being 
between x and x + dx at time t is given by

where C(t) is a normalization constant ∫-∞ ψψ* dx, which varies 
with t. Provided that ∫-∞ ψψ* dx is finite, C(t) rescales the squared 
amplitude to a probability density by satisfying ∫-∞

  f(x,t)dx=1 and 
reflects the fact that the particle exists somewhere at time t.

The one-dimensional Schrödinger equation is:

where m is the inertial particle mass, V=V(x,t) is the potential 
energy due to an external classic potential field, ℏ = h/2π, and h 
is Planck’s constant. In this setup the superposition ψsum=ψ1+ψ2 
of two wavefunction solutions of equation (1) is also a solution 
of the Schro ̈dinger equation, and calculating the squared ampli-
tude of the superposition gives

The third term on the right describes the interference between 
the superposed waves, and its sign is variable depending on the 
phase difference [2]. Using the standard measure of h and ex-
pressing cos [2π(S1-S2)/h] in the form cos (2πn+θ), where n is an 

 
 

The aim now is to summarize the previous article and then provide practical experimental context for it by 

reporting work done since then in examining the quantum probability distribution involved in and the results of 

the famous 1989 experiment by Tonomura and colleagues that demonstrated the self-interference of electrons 

sent one by one through a two-slit interferometer, and by reporting the evidence found from this examination 

that supports the hypothesis of the previous article. 

 

Key aspects of the previous article 

The paradox 

In the previous article the Sch  ̈ inger picture and the causal interpretation as recounted by Peter Holland in his 

quantum theory of motion [2] were used, confined to a single spatial dimension to keep a focus on concepts. In 

one spatial dimension x he squared amplitude of the wavefunction is | (   )|   (   )  (   ), where   is 

the complex conjugate of  , and the probability density f (x, t) associated with the location of the particle being 

between x and x + dx at time t is given by 

 

 (   )    (   ) 
 (   )

 ( )  

 

where  ( ) is a normalization constant ∫       
   , which varies with t. Provided that ∫       

   is finite, C(t) 

rescales the squared amplitude to a probability density by satisfying ∫  (   ) 
        and reflects the fact that 

the particle exists somewhere at time t. 

 

The one-dimensional Sch  ̈ inger equation is: 

 

        . 
  

  
   
   /        (1) 

 

where m is the inertial particle mass,    (   ) is the potential energy due to an external classic potential 

field,   =    , and h is Planck’s constant. In this setup the superposition            of two wavefunction 

solutions of equation (1) is also a solution of the Sch  ̈ inger equation, and calculating the squared amplitude of 

the superposition gives 

 

                     0
  (     )

 1     (2a) 

 

The third term on the right describes the interference between the superposed waves, and its sign is variable 

depending on the phase difference [2]. Using the standard measure of h and expressing    0  (     ) 1 in the 

form cos (     ), where n is an integer and 0      , then    0  (     ) 1 =     (     )         and 

equation (2a) simplifies to 

 

                                                             (2b)  
 

The aim now is to summarize the previous article and then provide practical experimental context for it by 

reporting work done since then in examining the quantum probability distribution involved in and the results of 

the famous 1989 experiment by Tonomura and colleagues that demonstrated the self-interference of electrons 

sent one by one through a two-slit interferometer, and by reporting the evidence found from this examination 

that supports the hypothesis of the previous article. 

 

Key aspects of the previous article 

The paradox 

In the previous article the Sch  ̈ inger picture and the causal interpretation as recounted by Peter Holland in his 

quantum theory of motion [2] were used, confined to a single spatial dimension to keep a focus on concepts. In 

one spatial dimension x he squared amplitude of the wavefunction is | (   )|   (   )  (   ), where   is 

the complex conjugate of  , and the probability density f (x, t) associated with the location of the particle being 

between x and x + dx at time t is given by 

 

 (   )    (   ) 
 (   )

 ( )  

 

where  ( ) is a normalization constant ∫       
   , which varies with t. Provided that ∫       

   is finite, C(t) 

rescales the squared amplitude to a probability density by satisfying ∫  (   ) 
        and reflects the fact that 

the particle exists somewhere at time t. 

 

The one-dimensional Sch  ̈ inger equation is: 

 

        . 
  

  
   
   /        (1) 

 

where m is the inertial particle mass,    (   ) is the potential energy due to an external classic potential 

field,   =    , and h is Planck’s constant. In this setup the superposition            of two wavefunction 

solutions of equation (1) is also a solution of the Sch  ̈ inger equation, and calculating the squared amplitude of 

the superposition gives 

 

                     0
  (     )

 1     (2a) 

 

The third term on the right describes the interference between the superposed waves, and its sign is variable 

depending on the phase difference [2]. Using the standard measure of h and expressing    0  (     ) 1 in the 

form cos (     ), where n is an integer and 0      , then    0  (     ) 1 =     (     )         and 

equation (2a) simplifies to 

 

                                                             (2b) 
 

 

The aim now is to summarize the previous article and then provide practical experimental context for it by 

reporting work done since then in examining the quantum probability distribution involved in and the results of 

the famous 1989 experiment by Tonomura and colleagues that demonstrated the self-interference of electrons 

sent one by one through a two-slit interferometer, and by reporting the evidence found from this examination 

that supports the hypothesis of the previous article. 

 

Key aspects of the previous article 

The paradox 

In the previous article the Sch  ̈ inger picture and the causal interpretation as recounted by Peter Holland in his 

quantum theory of motion [2] were used, confined to a single spatial dimension to keep a focus on concepts. In 

one spatial dimension x he squared amplitude of the wavefunction is | (   )|   (   )  (   ), where   is 

the complex conjugate of  , and the probability density f (x, t) associated with the location of the particle being 

between x and x + dx at time t is given by 

 

 (   )    (   ) 
 (   )

 ( )  

 

where  ( ) is a normalization constant ∫       
   , which varies with t. Provided that ∫       

   is finite, C(t) 

rescales the squared amplitude to a probability density by satisfying ∫  (   ) 
        and reflects the fact that 

the particle exists somewhere at time t. 

 

The one-dimensional Sch  ̈ inger equation is: 

 

        . 
  

  
   
   /        (1) 

 

where m is the inertial particle mass,    (   ) is the potential energy due to an external classic potential 

field,   =    , and h is Planck’s constant. In this setup the superposition            of two wavefunction 

solutions of equation (1) is also a solution of the Sch  ̈ inger equation, and calculating the squared amplitude of 

the superposition gives 

 

                     0
  (     )

 1     (2a) 

 

The third term on the right describes the interference between the superposed waves, and its sign is variable 

depending on the phase difference [2]. Using the standard measure of h and expressing    0  (     ) 1 in the 

form cos (     ), where n is an integer and 0      , then    0  (     ) 1 =     (     )         and 

equation (2a) simplifies to 

 

                                                             (2b) 

(2a)

2 
 

slit interferometer, and by reporting the evidence found from this examination that supports 
the hypothesis of the previous article. 
 
 
2. Key aspects of the previous article 
 
The paradox 
 
In the previous article the Sch  ̈ inger picture and the causal interpretation as recounted by 
Peter Holland in his quantum theory of motion [2] were used, confined to a single spatial 
dimension to keep a focus on concepts. In one spatial dimension x he squared amplitude of 
the wavefunction is | (   )|   (   )  (   ), where   is the complex conjugate of  , 
and the probability density f (x, t) associated with the location of the particle being between x 
and x + dx at time t is given by 
 

 (   )    (   ) 
 (   )

 ( )  

where  ( ) is a normalization constant ∫       
   , which varies with t. Provided that 

∫       
   is finite, C(t) rescales the squared amplitude to a probability density by satisfying 

∫  (   ) 
        and reflects the fact that the particle exists somewhere at time t. 

The one-dimensional Sch  ̈ inger equation is: 

    
  

  .   

  
   
   
/        (1) 

where m is the inertial particle mass,    (   ) is the potential energy due to an external 
classic potential field,   =    , and h is Planck’s constant. In this setup the superposition 
           of two wavefunction solutions of equation (1) is also a solution of the 
Sch  ̈ inger equation, and calculating the squared amplitude of the superposition gives 

                         0
  (     )

 1     (2a) 

The third term on the right describes the interference between the superposed waves, and its 
sign is variable depending on the phase difference [2]. Using the standard measure of h and 
expressing    0  (     ) 1 in the form cos (     ), where n is an integer and 0      , 

then    0  (     ) 1 =     (     )         and equation (2a) simplifies to 

      
    

                                                    (2b) 

The remarkable feature of Equation (2b) is that the cosine is mathematically equivalent to and 
has all the attributes of a coefficient of correlation. Thus, from the standard result in statistics 
for the variance of the sum of two correlated random variables, the squared amplitude is 

Comment [TJ2]: If possible the 
umlaut should be over the "o" 

Comment [TJ3]: Incomplete 

Comment [TJ4]: Incomplete 

2 
 

slit interferometer, and by reporting the evidence found from this examination that supports 
the hypothesis of the previous article. 
 
 
2. Key aspects of the previous article 
 
The paradox 
 
In the previous article the Sch  ̈ inger picture and the causal interpretation as recounted by 
Peter Holland in his quantum theory of motion [2] were used, confined to a single spatial 
dimension to keep a focus on concepts. In one spatial dimension x he squared amplitude of 
the wavefunction is | (   )|   (   )  (   ), where   is the complex conjugate of  , 
and the probability density f (x, t) associated with the location of the particle being between x 
and x + dx at time t is given by 
 

 (   )    (   ) 
 (   )

 ( )  

where  ( ) is a normalization constant ∫       
   , which varies with t. Provided that 

∫       
   is finite, C(t) rescales the squared amplitude to a probability density by satisfying 

∫  (   ) 
        and reflects the fact that the particle exists somewhere at time t. 

The one-dimensional Sch  ̈ inger equation is: 

    
  

  .   

  
   
   
/        (1) 

where m is the inertial particle mass,    (   ) is the potential energy due to an external 
classic potential field,   =    , and h is Planck’s constant. In this setup the superposition 
           of two wavefunction solutions of equation (1) is also a solution of the 
Sch  ̈ inger equation, and calculating the squared amplitude of the superposition gives 

                         0
  (     )

 1     (2a) 

The third term on the right describes the interference between the superposed waves, and its 
sign is variable depending on the phase difference [2]. Using the standard measure of h and 
expressing    0  (     ) 1 in the form cos (     ), where n is an integer and 0      , 

then    0  (     ) 1 =     (     )         and equation (2a) simplifies to 

      
    

                                                    (2b) 

The remarkable feature of Equation (2b) is that the cosine is mathematically equivalent to and 
has all the attributes of a coefficient of correlation. Thus, from the standard result in statistics 
for the variance of the sum of two correlated random variables, the squared amplitude is 

Comment [TJ2]: If possible the 
umlaut should be over the "o" 

Comment [TJ3]: Incomplete 

Comment [TJ4]: Incomplete 

2 
 

slit interferometer, and by reporting the evidence found from this examination that supports 
the hypothesis of the previous article. 
 
 
2. Key aspects of the previous article 
 
The paradox 
 
In the previous article the Sch  ̈ inger picture and the causal interpretation as recounted by 
Peter Holland in his quantum theory of motion [2] were used, confined to a single spatial 
dimension to keep a focus on concepts. In one spatial dimension x he squared amplitude of 
the wavefunction is | (   )|   (   )  (   ), where   is the complex conjugate of  , 
and the probability density f (x, t) associated with the location of the particle being between x 
and x + dx at time t is given by 
 

 (   )    (   ) 
 (   )

 ( )  

where  ( ) is a normalization constant ∫       
   , which varies with t. Provided that 

∫       
   is finite, C(t) rescales the squared amplitude to a probability density by satisfying 

∫  (   ) 
        and reflects the fact that the particle exists somewhere at time t. 

The one-dimensional Sch  ̈ inger equation is: 

    
  

  .   

  
   
   
/        (1) 

where m is the inertial particle mass,    (   ) is the potential energy due to an external 
classic potential field,   =    , and h is Planck’s constant. In this setup the superposition 
           of two wavefunction solutions of equation (1) is also a solution of the 
Sch  ̈ inger equation, and calculating the squared amplitude of the superposition gives 

                         0
  (     )

 1     (2a) 

The third term on the right describes the interference between the superposed waves, and its 
sign is variable depending on the phase difference [2]. Using the standard measure of h and 
expressing    0  (     ) 1 in the form cos (     ), where n is an integer and 0      , 

then    0  (     ) 1 =     (     )         and equation (2a) simplifies to 

      
    

                                                    (2b) 

The remarkable feature of Equation (2b) is that the cosine is mathematically equivalent to and 
has all the attributes of a coefficient of correlation. Thus, from the standard result in statistics 
for the variance of the sum of two correlated random variables, the squared amplitude is 

Comment [TJ2]: If possible the 
umlaut should be over the "o" 

Comment [TJ3]: Incomplete 

Comment [TJ4]: Incomplete 



Adv Theo Comp Phy, 2022  Volume 5 | Issue 3 | 561

integer and 0 ≤ θ ≤2π, then cos [2π(S1-S2 )/h]  = cos (2πn+θ)=cos 
θ  and equation (2a) simplifies to

The remarkable feature of Equation (2b) is that the cosine is 
mathematically equivalent to and has all the attributes of a coef-
ficient of correlation. Thus, from the standard result in statistics 
for the variance of the sum of two correlated random variables, 
the squared amplitude is mathematically equivalent to this vari-
ance, where the two variables have variance R1

2 and R2
2 and a 

correlation coefficient of cos θ. 

The approach taken
The starting point taken in the previous article to resolve the 
paradox was to suppose that before normalization, the squared 
amplitude is associated with a hidden variable whose mean 
equals the variance of another closely related and relevant hid-
den variable, a property called there the mean/variance property. 
Finding a pair of such variables with the properties needed to 
be consistent with quantum mechanics was the purpose of the 
previous article. The generic forms of such variables were called 
the unit base variable and the unit squared amplitude variable, 
respectively, with  the unit base variable having a mean of zero 
and variance of one, and the unit squared amplitude variable be-
ing the square of the unit base variable in order that its mean 
equals 1, the variance of the unit base variable (the mean/vari-
ance property).

The element of a wavefunction that is directly relevant to equa-
tion (2b) and capable of having these properties is its real part, 
the product of its amplitude and the cosine of its argument, 
which captures its essence. Accordingly, it was proposed that 
the unit base variable may be the product of two independent 
variables, an amplitude variable, and a cosine variable, and the 
unit squared amplitude variable and the related unit base vari-
able would form the pair being searched for. 

The search for these variables led to:

1. A generic variable Z which is the square of another generic 
variable W, which is the product of two independent seed vari-
ables A and C:
a. Variable A~U (0,3), which is a generic stochastic analogue of 
the amplitude of a wavefunction, and
b. Variable C~U (-1,1), which is a generic stochastic analogue of 
the cosine of the argument of a wave function.
2. The dependent unit base variable Wis the zero mean/unit vari-
ance generic stochastic analogue of the real part of a wavefunc-
tion, properties that come from the supports of A and C.
3. The dependent unit squared amplitude variable Z is the unit 
mean generic stochastic analogue of the square of the real part 
of a wavefunction.

When and where a quantum process is active, the unit generic 
variables W and Z were hypothesized to become i.i.d at each 
such point and time (x, t), instantaneously transforming through 
scaling by a scale factor (SF) into specific stochastic processes. 
In the case of W, SF is the square root of the the deterministic 
squared amplitude of the specific quantum process that is ac-

tive there and then, and in the case of Z, SF is that deterministic 
squared amplitude. The probability density and cumulative den-
sity functions of W and Z and of the transformed scaled variables 
which were denoted X and Y respectively were then derived. 

The generic variables that culminate in the unit squared ampli-
tude variable Z are not linked to any point in space or time. It 
seems that Z describes a regular simultaneous vibration-like phe-
nomenon throughout the universe, effectively a universal clock 
in which the intensity of the phenomenon varies randomly from 
instant to instant, with points on the support of Z, 0 < z ≤ 9 be-
ing in correspondence with this intensity. In each instant this ge-
neric variable was formulated to be simultaneously transformed 
across the universal set of active quantum processes, wherever 
and for as long as a process is active, into a corresponding uni-
versal set of process-specific squared amplitude variables and 
their stochastic processes. This transformation involves the ge-
neric universal variable Z becoming a set of independent and 
identically distributed variables spanning each spatial point and 
time at which a quantum process is active (but remaining generic 
and universal elsewhere), with the realization of the variable at a 
point being scaled by SF, the deterministic squared amplitude of 
the specific quantum process that is active there.

The crux of the previous article
In short, the previous article presented a formulation in which 
behind the squared amplitude of either a superposed or individu-
al wavefunction as formulated in the causal interpretation, there 
could be an associated specific variable Y at each applicable 
point in space and time that originates from a universal generic 
archetypical variable Z.
 
The variable Y has a mean at each point and time that equals, and 
whose average realization over repeated trials of an experiment 
converges to, the deterministic squared amplitude. When the 
counts of realizations at each point and time are normalized to 
their relative frequencies, their averages converge with repeated 
trials to the set of probabilities predicted by the causal interpre-
tation of quantum mechanics that the particle whose motion is 
described by its wavefunction is at these points. 

Importantly, the article showed that despite being developed us-
ing classic probability theory, the variable Y and its stochastic 
process can relate to either a local or a nonlocal quantum me-
chanical process. 

The normalized squared amplitude in the two-slit interfer-
ometer experiment
The setup
The setup for a two-slit interferometer experiment follows Hol-
land [3] which in turn follows Philippidis et al [4]. Electrons are 
sent one at a time from a source through a two-slit barrier and 
detected at a screen. The direction from the source perpendicular 
to the screen is the x axis of a two-dimensional coordinate sys-
tem with origin 0 where the x axis meets the barrier, and the y 
axis is the other one. The slits are denoted B and B'and their cen-
tres are at the points (0,±Y). The wave incident on the slits is tak-
en to be plane, ψ=aei(k1 x+k2 y) where a is a constant and u1=ℏk1/m 
and u2=ℏk2/m are the x and y components of velocity and  k1,k2 
are the reciprocals of the wavelengths in the respective x and y 
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directions. It is assumed that two Gaussian wave packets are formed at the slits and that the instant when this happens is time zero, 
t=0. The packets move with relative group velocity 2u2 and spread into one another, with interference coming from both relative 
motion and dispersion [5]. 

Holland gives [5] the wavefunctions of the two packets ψB (x,y,t),ψB' (x,y,t) and the total wavefunction ψ(x,y,t)=N[ψB (x,y,t)+ ψB' 
(x,y,t)], where N=                                    is the normalization constant of the total wavefunction, and σ0 is is the rms at each slit [6]. 
Our interest is in the probability distribution of the electron position in the y dimension, which is considered next. 

The squared amplitude and its parameters
Holland gives the normalized squared amplitude of the total wavefunction to be [7]:

We will now study the probability distribution in a case where 
the screen is 35cm behind the slits. The parameters adopted are 
informed from Holland [8], who based them on actual experi-
ments [9], and are as follows: 

u1=1.3x1010 cm s-1, u2=1.5x104 cm s-1, σ0=10-5 cm, Y=5x10-5 cm, 
with
(m=9.11x10-28g, ℏ=1.055x10-27g cm2 s-1), and t=2.7x10-9s, the lat-
ter because 
x=u1 t, and the x-component of an electron reaches the screen 
35cm beyond the origin at the interferometer at t=x⁄u1 =2.7x10-9)
seconds. 

From the expression in the previous subsection N=0.707105464 
and in conjunction with it the plane wave constant a is set to 
1.0133279 to achieve a numerically calculated cumulative prob-
ability density equal to one at y = .0004 cm, the righthand end of 
the probability support, which in this setup is -.0004 cm≤y≤.0004 
cm, with the range of .0008 cm representing the detection width. 

The pdf has a mean μ=0 and using [6] a standard deviation σ= 
1.56659x10-4 and is shown in Chart 1, which clearly shows a pat-
tern of multiple probability peaks and troughs. These will trans-
late, as the cumulative number of electrons sent through the in-
terferometer increases, into increasingly distinct bands of dense 
detection separated by sparse detection with varying detection 
density within the bands from peak to trough, and vice versa, 
taking shape across the entire detection screen. The cumulative 
density function of this distribution and its trendline are shown 
in Chart 2, and Chart 3 gives the values of y at each numbered 
point. The difference between each of the 201 points is 0.000004 
cm, with every eighth of the 201 points in the support of the 
distribution, including end points being shown. y ranges from 
-.0004 to .0004 and is zero at point 101, where the pdf is at its 
maximum.

Note: For continuous random variables the probability that the 
variable takes on any particular value is 0, and it is of course 
common for pdf values to exceed one.
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Evidence that quantum probability is itself stochastic 

At this point the aim would usually be to simulate equation 3 and compare the results with those obtained 

experimentally using a setup for which the parameters described above are suitable. However, the probability 
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the normalization constant of the total wavefunction, and    is the rms at each slit [6]. Our 
interest is in the probability distribution of the electron position in the y dimension, which is 
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The squared amplitude and its parameters 

Holland  gives the normalized squared amplitude of the total wavefunction to be [7]: 
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Evidence that quantum probability is itself stochastic
At this point the aim would usually be to simulate equation (3) 
and compare the results with those obtained experimentally us-
ing a setup for which the parameters described above are suit-
able. However, the probability distribution described by equa-
tion (3) does not lend itself to simulation, nor are the parameters 
necessarily suitable for every setup, and it is necessary to adopt 
an alternative approach. Fortunately, the celebrated experiment 
performed by Tonomura [10], in particular Figure 2 from the 
paper that is reproduced below, provide such an alternative.

Figure: Buildup process of electron interference pattern. Num-
ber of electrons: (a) 8; (b) 200; (c) 6,000; (d) 140,000.

This figure acts as the experimental equivalent of a simulation, 
illustrating the number of electrons (140,000) that needed to 
be emitted in order for the relatively clear image (d in Fig. 2) 
of self-interference to have formed on the detection screen of 
the interferometer, with the central bands showing a pattern of 
detection density akin to that given by the probability density 
function shown in Chart 1 and described by equation (3). Adopt-
ing a set of parameters that describe the setup in the Tonomura 
experiment and plugging them into equation (3) should yield a 
probability distribution similar to that in Chart 1 and specific to 
the Tonomura experiment.

The number of realizations needed to clearly simulate a dis-
tribution 
However, before discussing this further, we turn to a simulation 
of the probability density f(x) and cumulative density F(x) of 
the standard normal distribution to see how many realizations 
are needed for a relatively clear picture of these distributions to 
emerge. The result of 5000 realizations of the pdf is shown in 
Chart 4 and of the cdf in Chart 5. The difference between each 
of the 24 points in the charts is .25, creating 24 bins in which the 
values from 5000 realizations using the Excel function NORM-
INV(RAND(),0,1) are counted, according to which bin their 
value falls, in a similar fashion to that described in Appendix 
C of the previous article (but see the caveat below), and with x 
ranging from -3 to 3. 

These counts are then expressed as relative frequencies by divid-
ing by 5000 to get the increase in the cdf in a bin and in the case 
of the pdf by multiplying the relative frequencies by 4 to allow, 
as explained below, for the fact that f(x)= d⁄dx F(x). The result-
ing simulated f(x) values span a range from -.0040 to .0056 with 
a peak of .4 when x=0, and the corresponding F(x) values range 
from .0022 to .9968. These charts give a relatively sharp picture 
of the standard normal distribution. 

The reason that the factor 4 that is applied to the relative fre-
quencies of bin counts to arrive at the pdf is that using the stan-
dard normal distribution the expected number of realizations in 
a bin beginning at x and ending at x+.25 is 5000(F(x+.25)-F(x)) 
and the average rate of change in the cdf over the range of the 
bin is ((F(x+.25)-F(x))⁄.25, making 4 times the relative frequen-
cy of the bin count the simulated average value of f(x) within the 
range of the bin.

[Caveat: The notation at the end of Appendix C in the previ-
ous article has caused some confusion. To be clear the reference 
there to a bin ranging from SF to 1.25SF means the bin from 1 to 
1.25 for the relevant SF, and likewise the cdf interval  in the term 
5000(𝐹(1.25SF) − 𝐹(SF)) that follows means the cdf at 1.25 for 
the relevant SF minus the cdf at 1for that SF]

The significance of this exercise is that if 5000 realizations of 
a simulated standard normal variable are sufficient to provide 
a relatively clear picture of its distribution then, provided that 
a degree of relative, rather than absolute, clarity is acceptable, 
5000 simulations are also enough to do the same for any other 
distribution where the probability distribution and the parame-
ters it employs are known [11], including the interference distri-
bution described by equation (3) with parameters that describe 
the setup in the Tonomura experiment. Why then does it take 
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140,000 electron emissions through a two-slit interferometer to 
gain a relatively clear picture of the self-interference effect?

Conclusion - the answer to this question
It is suggested that the answer to the question above is that the 
nature of probability in quantum mechanics is not solely deter-
mined by the normalized squared amplitude of the wavefunction 
of a quantum mechanical process, but rather originates from a 
random variable whose mean equals that deterministic squared 
amplitude. The resulting variability around the mean would lead 
to a much larger number than the otherwise sufficient 5000 or so 
electron emissions to be necessary for a relatively clear picture 
to form, as happened in the Tonomura experiment, and for the 
average of the realizations of the squared amplitude variable at 
a point and time (x, t) to converge to the deterministic squared 
amplitude as it is formulated in the causal interpretation of quan-
tum mechanics.

This suggestion is of course only a mathematical one which, if 
valid, would be the manifestation of some underlying and as yet 
unrecognized physical process that introduces more variability 
into quantum probability than is described in the existing formu-
lation of quantum mechanics. Regrettably, it is beyond the scope 
of this report and outside the field of its author to speculate on 
what such a process might be. 
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