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Introduction
Over the past decade, there has been a growing concern over inva-
sion of Florida Gulf Coastal Waters and beaches by several algal 
blooms created by “red tides”. These algal blooms create various 
toxins that pose high risks for marine life, livestock, birds, and hu-
mans [1, 2]. The algae become so numerous that they discolor gulf 
waters and beaches. Since the 1980’s, red tides have been seen in 
many countries throughout the globe (i.e., South America, Central 
America, Japan, caribbean, South Pacific regions, etc.). 

The organisms primarily responsible for the red tides are micro-
scopic algae called dinoflagellates [1]. When these blooms occur, 
it is not uncommon for beaches to be littered with thousands of 
dead fish, birds, and molluscs. These dinoflagellates produce sev-
eral different neurotoxins that not only kill marine life (e.g., tur-
tles, manatees, dolphins, etc.) and livestock, but can cause multiple 
inflammatory effects in humans from discomfort in the skin, rash-
es, burning in the eyes, throat infections, and coughing to serious 
lungs problems People with serious asthmatic conditions, emphy-
sema, or chronic lung disease could get in serious life-threatening 
situations. As of the moment, there are no proven countermeasures 
ether to treat against these neurotoxins or to prevent red tides and 
their effects, especially in humans.

Discovery and Development of a New Biologic Host-De-
fense Factor, HDFx
Our laboratories, for more than 50 years have been working on a 
new approach to develop host-defense factors that stimulate var-
ious arms of the innate and adaptive immune systems [3-43]. To 
this end, we have discovered a new host-defense factor our group 

termed “HDFx” that is a conserved protein found primarily in 
macrophages and natural killer (NK) cells [44-48]. So far, we have 
found its presence in rodents, rabbits, guinea-pigs, dogs, cats, and 
subhuman primates. 

Approximately 135 years ago, Elie Metchnikoff, the father of im-
munology, and Nobel laureate, hypothesized that the body, under 
stressful circumstances and adverse conditions, would produce 
powerful immunostimulants which could act on different arms of 
the innate immune system and serve to protect against major in-
sults, inflammatory conditions, and diseases [49]. Metchnikoff’s 
early studies pointed to the important contributions of macro-
phages and phagocytic leukocytes to natural (innate)resistance 
against pathogenic bacterial and viral microorganisms. Over the 
past 40 years, considerable evidence has accumulated to support 
a strong relationship between the functional (physiological) state 
of the microcirculation, circulating macrophages, alveolar macro-
phages, NK cells, the reticuloendothelial system (RES), and “pit 
cells” in the liver to host-defense and resistance to pathogens, trau-
ma, sepsis, wounding, circulatory shock and combined injuries [7, 
10, 20, 21, 24, 26, 27, 30, 38, 40, 43, 50-54]. 

Ongoing studies from our laboratories have shown that HDFx is 
protective (to varying degrees) against a variety of insults ranging 
from hemorrhage, trauma, endotoxins, a variety of bacteria (i.e., 
E. coli, S. enteriditis, C. welchii), combined injuries, fungal toxins, 
sepsis, experimental NASH, and inflammatory conditions [45, 46, 
48, 55]. HDFX also protects against cytokine storms as is often 
the cause of death in many infectious diseases [56-59]. A unique 
attribute of HDFx is its ability to accelerate wound healing [46]. 



Most importantly, HDFx has been demonstrated to inhibit release 
of multiple cytokines and chemokines, including TNF-alpha, IL-
6, IL-8, IL1-beta, IFN-gamma, and numerous macrophage factors 
[44, 56-59]. Thus, HDFx can either 

prevent or ameliorate “cytokine storms” induced by gram-negative 
and gram-positive microorganisms, trauma, and systemic inflam-
matory conditions, among other dangerous bodily insults [44, 56-
59]. 

Magnesium as a Pulmonary Vasodilator and Ant-inflam-
matory Agent
Approximately 50 years ago, we reported that magnesium (Mg) 
can be a powerful vasodilator of arteries, veins and microscopic 
blood vessels as well as an inhibitor of vasoconstrictor agents and 
pulmonary hypertension in animal models, neonates and adults 
[60-73]. Mg has been found, both experimentally and clinically, to 
be useful as an anti-inflammatory agent [74]. 

Suggested Use of Combined HDFx with Mg for Treat-
ment and Amelioration of Rashes, Skin Lesions, Inflam-
mations, and Coughing Induced by Red Tides in Humans
It Is now clear, in the case of vasculitis, and red tide inflammations 
in humans that these insults are associated with increased levels of 
cytokines and chemokines (e.g., INF-alpha, IL-1-beta, IL-2, IL-4, 
IL-8, IL-10, TNF-alpha, MCP-1, among others) which are pro-in-
flammatory in nature [1, 2, 75]. We have found that rats placed 
on Mg deficient diets for 21 days generate all of these pro-inflam-
matory cytokines and chemokines, in bloods, cutaneous tissues, 
myocardium and blood vessel vascular and endothelial cells, and 
demonstrate inflammations [76, 77]. Other investigators have also 
reported finding many of these cytokines and chemokines in Mg 
deficient animals and humans [78]. Many of these cytokines and 
chemokines, in Mg deficient animals, were found to be associat-
ed with microvascular remodeling and pathological alterations in 
the postcapillary venules, the major sites of inflammatory lesions 
[79-81]. Under high in-vivo microscopic observation, the venules 
were associated with reduced lumen sizes and adherence of leuko-
cytes and macrophages, similar to that observed in various forms 
of vasculitis, and most likely in cases of red tide. In view of our 
extensive findings, it is difficult to dismiss the probable role of a 
deficiency produced by red tides. Thus, we believe it is worth try-
ing to administer Mg salts and Epson salt baths to victims of red 
tides-induced inflammatory conditions. 

Since our work on “HDFX” demonstrates, it poses remarkable an-
ti-inflammatory actions and accelerates wound healing, we believe 
the Mg treatment should be combined with HDFx.

Conclusions and Future Thoughts
Although no “tried and true “countermeasures exist for treating the 
harmful effects of red tides in humans, animals and sea creatures 
the discovery of a new biologic, HDFx, presents cogent reasons 
for trying this conserved protein for its potential therapeutic ac-
tions along with Mg salts, due to their anti-inflammatory actions. 
HDFx has an added benefit since it accelerates wound healing. Mg 
has powerful vasodilator actions in the microcirculation allowing 
tissue perfusion and oxygenation of ischemic-inflamed tissues, as 

is found in the effects of red tides on the skin and lungs. We believe 
a cream containing HDFx and Mg would be powerful anti-inflam-
matory agents in the treatment of red tide poisoning.
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