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Abstract
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1. Introduction
The search for a consistent and testable theory of quantum gravity 
is one of the most important open problems in fundamental 
physics.The general theory of relativity is what is called 
classical, that is, non-quantum theory. The current theories for 
the other interactions are all quantum theories, or, moreover, it 
is these interactions that are described within the framework of 
quantum theory, which uses concepts radically different from 
classical physics.

Quantum theory is usually applied in the field of microphysics. 
This is the world of molecules, atoms, nuclei and elementary 
particles. Thus, quantum theory underlies not only physics, 
but also chemistry and biology. The smallest scales explored 
experimentally so far are those explored by particle accelerators 
such as the Large Hadron Collider. These smallest studied scales 
are on the order of 10−18 m.

All fields of the Standard Model carry energy and thus generate 
a gravitational field. Since these are quantum fields, they cannot 
be inserted directly into Einstein’s classical field equations. 
Only a consistent unification of gravity with quantum theory can 
describe the interaction of all fields at a fundamental level.

We call quantum gravity any theory (or approach) that applies 
the principle of superposition to a gravitational field. Einstein’s 
theory itself is incomplete. It is possible to prove singularity 
theorems, which state that, under certain assumptions, there are 
regions of spacetime where the theory fails. Specific examples 
include regions inside black holes and the origin of our universe. 
There is another type of singularity. Quantum field theories fail 
due to discrepancies that arise when studying space-time on 
arbitrarily small scales.

The physical scale where we definitely expect quantum 

effects of gravity to become relevant is the Planck level. The 
three constants G, h (and, accordingly, h/2) and c provide the 
corresponding scales of quantum gravity, since from them it 
is possible to construct (in addition to numerical coefficients) 
unique expressions for fundamental length, time and mass (or 
energy). Since Max Planck formulated them back in 1899, they 
are named Planck units in his honor.

To generate particles with masses on the order of the Planck 
mass and higher, it is necessary to build an accelerator of galactic 
dimensions. This is one of the most important problems in the 
search for quantum gravity: we cannot directly probe the Planck 
scale by experimental means.
Everything that has been said so far points to the need for a 
quantum theory of gravity. For more than a hundred years we 
have not had a complete quantum theory of gravity. But how can 
one construct such a theory? Let’s consider the main approaches 
along this path.
First, the connection between quantum mechanics (quantum 
theory with a finite number of degrees of freedom) and gravity is 
studied using the Schrodinger (or Dirac) equation in a Newtonian 
gravitational field.

There are also two approaches to constructing quantum gravity: 
the covariant approach and the canonical approach. Both 
approaches are aimed at constructing a quantum version of 
general relativity. The covariant approach gets its name from 
the fact that the four-dimensional (covariant) formalism is used 
throughout. In most cases, this formalism uses path integrals (in 
which four-dimensional spacetimes are summed up according 
to the principle of superposition). Like the photon in quantum 
electrodynamics, the particle is identified as a mediator of the 
quantum gravitational field - the graviton. It is massless, but has 
spin 2 (whereas a photon has spin 1). The fact that it is truly 
massless is indirectly confirmed by the detection of gravitational 
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waves - they move at the speed of light c.

It is believed that quantum general relativity is only an effective 
field theory, that is, this approach, using standard quantum field 
theory up to the Planck scale theory, is asymptotically safe. One 
promising approach is dynamic triangulation, so named because 
the spacetimes to be summed in the path integral are discretized 
into tetrahedra. One of the candidates for the creation of a final 
quantum field theory of gravity is supergravity. A candidate for 
the creation of a final theory of quantum gravity of a completely 
different nature is superstring theory (or M-theory) An alternative 
to covariant quantization is the canonical (or Hamiltonian) 
approach. The procedure here is similar to the procedure in 
quantum mechanics, where quantum operators are constructed 
for positions, momenta and other variables. This also includes a 
quantum version of energy called the Hamilton operator. 

In quantum mechanics, the Hamilton operator generates 
evolution in time according to the formula of the Schrodinger 
equation. In quantum gravity the situation is different. Instead of 
the Schrodinger equation, there are restrictions - the Hamiltonian 
(and other functions) are forced to vanish. This is due to the 
disappearance of space-time at a fundamental level. This is due 
to the fact that classical theory no longer has a fixed background. 
Background independence is one of the main obstacles to 
quantum gravity. An alternative formulation uses variables that 
have some similarities to the gauge fields used in the Standard 
Model. This approach is known as Loop Quantum Gravity [38]. 
In addition to the approaches already mentioned, there are many 
others. This article proposes another approach to constructing 
quantum gravity. We call it the integral method.

2. General information
The Planck length (denoted lP ) is a fundamental unit of length in 
Planck System of Units, equal in International System of Units 
(SI) approximately 1:6−35 meters. The Planck length is a natural 
unit of length because it only includes fundamental constants: 
speed of light, Planck's constant, and the gravitational constant. 
The Planck length is:                    = 1.616229(38)−35m, where:      
is Dirac constant                  where h is Planck constant; 
G - gravitational constant; c is the speed of light in a vacuum. 

Dimensional analysis shows that measuring the position of 
physical objects accurate to the Planck length is problematic.

In a thought experiment, to determine the position of an object, 
a stream of electromagnetic radiation, that is, photons, is sent 
to it. The higher the energy of the photons, the shorter their 
wavelength and the more accurate the measurement will be. It is 
assumed that if photons had enough energy to measure objects 
the size of the Planck length, then when interacting with the 
object they would collapse into a microscopic black hole and 
it would be impossible to measure. This imposes fundamental 
limitations on the accuracy of length measurements [1-3].

3. Qualitative substantiation of photon collapse on the 
Planck scale
According to general relativity, any form of energy, including 
photon energy, must generate a gravitational _eld. And the 
greater this energy, the more powerful the gravitational eld 
they generate [2]. Further: let's introduce the concept of \kinetic 
energy of photons", which is determined by the formula Ekin = 
P c, where P is the photon momen-tum, and c - their speed; this 
energy is a positive quantity and, with the free movement of 
photons, is not limited by anything; the total energy of a photon 
beam also includes the potential energy of interaction of photons 
with each other and this energy is a negative quantity [2].

3.1. Initial Reasoning
For two massive particles each with mass m, the potential energy 
of interaction depends only on the distance between them. 
Based on Newton's equation of gravity, the potential energy of 
interaction, when taking the state of innate removal of particles 
as zero, has the form [3].

Epot = −Gm2/r, where G is the gravitational constant; m is the 
mass of each particle; r is the distance between particles.

To find the total energy of a system of two bodies with mass m, 
you need to add up the kinetic energies of both bodies and add 
here their mutual gravitational potential energy, which together 
gives a constant: 
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Then the total energy of interacting photons is equal to the sum of the kinetic (in
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(photon spin is not taken into account here, but for now this is not significant). The
quantity λg ≈ (G/c3)P for a system of gravitationally interacting photons is an analogue
of the gravitational radius rg ≈ (G/c3)mc for a massive particle. To use this equation in
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Figure 1: The graph of the function E(λ)

quantum theory, we consider these quantities P and λ using the Heisenberg uncertainty
relation as the momentum and position uncertainties. By allowing one to obtain important
estimates in a fairly simple way, uncertainty relations turn out to be a useful ”working
tool” of quantum theory. According to the uncertainty relation, these quantities are
related to each other.

Assuming that P λ ≈ �, where � is the Dirac constant and using this relation (by
substituting P ≈ �/λ), we find the function E(λ) from the last equation
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quantum theory, we consider these quantities P and λ using the Heisenberg uncertainty
relation as the momentum and position uncertainties. By allowing one to obtain important
estimates in a fairly simple way, uncertainty relations turn out to be a useful ”working
tool” of quantum theory. According to the uncertainty relation, these quantities are
related to each other.

Assuming that P λ ≈ �, where � is the Dirac constant and using this relation (by
substituting P ≈ �/λ), we find the function E(λ) from the last equation
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into account the fact that photons have no mass, we believe that it is permissible for two
photons to substitute the value of the photon momentum divided by the speed of light
into this equation instead of the mass m, then there is P/c.[5]

This allows us to introduce the concept of potential energy of interaction of photons
with each other and define it as
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where lP = √   G/c3 is the fundamental Planck length, which appears automatically.
The graph of the function E(λ) constructed on the basis of this equation (Fig.1) shows that as the wavelength of photons λ decreases, 
their total energy increases, since the second term in the last equation at low photon momentum is practically zero. In this case, the 
maximum total energy E(λ) turns out to be approximately equal to the Planck energy EP, and the photon wavelength λ is almost 
comparable to the Planck length .

However, if the momentum of photons continues to increase, the total energy of the system of photons will begin to decrease due 
to an increase in the negative gravitational component of the total energy, which until this moment did not play a significant role. 
When the photon wavelength λ is equal to the Planck length lP ≈ 10−35m, the total energy of interaction of photons with each other 
becomes equal to zero, the photons collapse and turn into microscopic Planck black hole.

Thus, when electromagnetic radiation acquires Planck energy (that is, its wavelength λ becomes equal to the Planck length lP ), the 
electromagnetic radiation collapses. Therefore, it is no longer possible to use it as a tool for “probing” ultra-small distances. We 
have discovered the limit, the frontier of scientific research. A system of two or more gravitationally interacting photons is called a 
geon [6].
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where �P =
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�G/c3 is the fundamental Planck length, which appears automatically.
The graph of the function E(λ) constructed on the basis of this equation (Fig.1)

shows that as the wavelength of photons λ decreases, their total energy increases, since
the second term in the last equation at low photon momentum is practically zero. In this
case, the maximum total energy E(λ) turns out to be approximately equal to the Planck
energy EP , and the photon wavelength λ is almost comparable to the Planck length .

However, if the momentum of photons continues to increase, the total energy of the
system of photons will begin to decrease due to an increase in the negative gravitational
component of the total energy, which until this moment did not play a significant role.
When the photon wavelength λ is equal to the Planck length �P ≈ 10−35m, the total
energy of interaction of photons with each other becomes equal to zero, the photons
collapse and turn into microscopic Planck black hole.

Thus, when electromagnetic radiation acquires Planck energy (that is, its wavelength
λ becomes equal to the Planck length �P ), the electromagnetic radiation collapses. There-
fore, it is no longer possible to use it as a tool for “probing” ultra-small distances. We
have discovered the limit, the frontier of scientific research.

A system of two or more gravitationally interacting photons is called a geon.[6]

3.2 More rigorous reasoning

If we think more strictly, then we need to proceed from the Hamilton-Jacobi equation [6]

gik∂2S/∂xi∂xk = (m′)2 c2 (3.5)

with metric coefficients gik, taken from the Schwarzschild solution, where S - action,
m′ is the mass of the particle (we denote the mass of the central body here as m).

This equation is a generalization of the equation between relativistic energy and
momentum of a particle in special relativity

E2 − p2c2 = (m′)2c4 (3.6)

The generalized equation is covariant (the physical content of the equation does not
depend on the choice of coordinate system). In expanded form, the indicated Hamilton-
Jacobi equation has the form
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where N - angular momentum of the particle; rg is the gravitational radius of the central
attracting body with mass m.

For the above approximation, it is necessary to put in this equation the mass of
particles (photons) m′ equal to zero, neglect the angular momentum (spin) of photons N
and use the Heisenberg uncertainty relations P r ≈ �. Then we obtain an approximate
equation for the total energy
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energy EP , and the photon wavelength λ is almost comparable to the Planck length .

However, if the momentum of photons continues to increase, the total energy of the
system of photons will begin to decrease due to an increase in the negative gravitational
component of the total energy, which until this moment did not play a significant role.
When the photon wavelength λ is equal to the Planck length �P ≈ 10−35m, the total
energy of interaction of photons with each other becomes equal to zero, the photons
collapse and turn into microscopic Planck black hole.

Thus, when electromagnetic radiation acquires Planck energy (that is, its wavelength
λ becomes equal to the Planck length �P ), the electromagnetic radiation collapses. There-
fore, it is no longer possible to use it as a tool for “probing” ultra-small distances. We
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It can be rewritten as follows

where N - angular momentum of the particle; rg is the gravitational radius of the central attracting body with mass m.
For the above approximation, it is necessary to put in this equation the mass of particles (photons) m' equal to zero, neglect the 
angular momentum (spin) of photons N and use the Heisenberg uncertainty relations P r  ≈  . Then we obtain an approximate 
equation for the total energy

To find the total energy of a system of two bodies with mass m, you need to add
up the kinetic energies of both bodies and add here their mutual gravitational potential
energy, which together gives a constant: [4]

∑
(1/2)miv

2
i −Gm2/rij = const; i = 1, 2 (3.1)

Based on the admissible analogy with the potential energy of massive particles, taking
into account the fact that photons have no mass, we believe that it is permissible for two
photons to substitute the value of the photon momentum divided by the speed of light
into this equation instead of the mass m, then there is P/c.[5]

This allows us to introduce the concept of potential energy of interaction of photons
with each other and define it as

Epot = GP 2/c2r (3.2)

Here r must be compared with the photon wavelength λ.
Then the total energy of interacting photons is equal to the sum of the kinetic (in

order of magnitude) and potential energies and has the form

E = Ekin + Epot ≈ 1/2
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(photon spin is not taken into account here, but for now this is not significant). The
quantity λg ≈ (G/c3)P for a system of gravitationally interacting photons is an analogue
of the gravitational radius rg ≈ (G/c3)mc for a massive particle. To use this equation in
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quantum theory, we consider these quantities P and λ using the Heisenberg uncertainty
relation as the momentum and position uncertainties. By allowing one to obtain important
estimates in a fairly simple way, uncertainty relations turn out to be a useful ”working
tool” of quantum theory. According to the uncertainty relation, these quantities are
related to each other.

Assuming that P λ ≈ �, where � is the Dirac constant and using this relation (by
substituting P ≈ �/λ), we find the function E(λ) from the last equation

E(λ) =
�c
λ

(
1− �2P

λ2

)
(3.4)

4

To find the total energy of a system of two bodies with mass m, you need to add
up the kinetic energies of both bodies and add here their mutual gravitational potential
energy, which together gives a constant: [4]

∑
(1/2)miv

2
i −Gm2/rij = const; i = 1, 2 (3.1)

Based on the admissible analogy with the potential energy of massive particles, taking
into account the fact that photons have no mass, we believe that it is permissible for two
photons to substitute the value of the photon momentum divided by the speed of light
into this equation instead of the mass m, then there is P/c.[5]

This allows us to introduce the concept of potential energy of interaction of photons
with each other and define it as

Epot = GP 2/c2r (3.2)

Here r must be compared with the photon wavelength λ.
Then the total energy of interacting photons is equal to the sum of the kinetic (in

order of magnitude) and potential energies and has the form

E = Ekin + Epot ≈ 1/2

(
2P

c

)
c2 − GP 2

c2 λ
= P c

(
1− GP

c3 λ

)
= P c

(
1− λg

λ

)
(3.3)

(photon spin is not taken into account here, but for now this is not significant). The
quantity λg ≈ (G/c3)P for a system of gravitationally interacting photons is an analogue
of the gravitational radius rg ≈ (G/c3)mc for a massive particle. To use this equation in

rr r

Figure 1: The graph of the function E(λ)
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where r = λ - photon wavelength; rg = 2Gm/c2 is the gravitational radius of the central body.
In this expression, the gravitational mass m must be replaced by P/c, where P is the momentum of the photons; P ≈   /λ. The resulting 
equation, up to a coefficient 2, coincides with the equation established above for the total energy of the photon system.

To take into account the angular momentum of photons in the specified equation, you need to perform the substitution N2  = h2 l(l +1) 
where l is the quantum number of the total angular momentum of photons. Taking into account the angular momentum of photons 
leads to the appearance of a second, internal event horizon in the resulting Planck black hole (point 2 on the graph, Fig.2).

where r = λ - photon wavelength; rg = 2Gm/c2 is the gravitational radius of the
central body.

In this expression, the gravitational mass m must be replaced by P/c, where P is
the momentum of the photons; P ≈ �/λ. The resulting equation, up to a coefficient 2,
coincides with the equation established above for the total energy of the photon system.

To take into account the angular momentum of photons in the specified equation,
you need to perform the substitution N2 = �2l(l + 1), where l is the quantum number
of the total angular momentum of photons. Taking into account the angular momentum
of photons leads to the appearance of a second, internal event horizon in the resulting
Planck black hole (point 2 on the graph, Fig.2).

r r

Figure 2: The graph of the function E(λ) with allowance for the angular momentum l = 1

For a charged black hole, the metric coefficient g00, according to the Reissner-
Nordstrom solution, has the form [7]

g00 = 1− rg
r
+

GQ2

c4r2
(3.10)

where Q is the total charge of the black hole.
Considering that the Planck charge is Q =

√
�c [8], then at the Planck level
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Therefore, the metric coefficient g00 takes the form
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That is, the charge has virtually no effect on the overall functional dependence E(λ). The
general rule is that the metric coefficient gik cannot be greater than 1.

This thought experiment uses both general relativity and the uncertainty principle of
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Therefore, the metric coefficient g00 takes the form

That is, the charge has virtually no effect on the overall functional dependence E(λ). The general rule is that the metric coefficient 
gik cannot be greater than 1 [7, 8].
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This thought experiment uses both general relativity and the 
uncertainty principle of quantum mechanics. Both theories 
predict that it is impossible to measure with precision that 
exceeds the Planck length [7]. In any theory of quantum gravity 
that combines general relativity and quantum mechanics, the 
traditional concept of space and time does not apply at distances 
smaller than the Planck length or for periods of time shorter than 
the Planck time. It follows that at the Planck level all particles 
are massless and move at the speed of light. This conclusion 
follows from the very course of reasoning in this article, since 
the Planck length naturally appears as a result of the interaction 
of only massless energy quanta [9].

3.3. Planck Length and Dimension of Space
Now, according to the general belief of experts, “true” physics 
is formed under the Planck parameters l ∼ lP , t ∼ tP , M ∼ MP. 
Understanding the ongoing processes in this area will lead to 
the construction of a unified field theory, a quantum theory of 

gravity, the creation of a theory of the origin of the Metagalaxy 
and a quantitative representation of physical geometry [10]. The 
same applies to the dimension of space.

Analysis of the Hamilton-Jacobi equation for photons in spaces 
of different dimensions n indicates the preference (energy 
advantage) of three-dimensional space for the emergence of 
Planck black holes, real or virtual (quantum foam). When 
considering this issue, we will use the results obtained at one 
time by P. Ehrenfest [11,12].

Ehrenfest considers “physics” in n-dimensional space Un. In 
this case, he derives the law of interaction with a point center 
(similarly to the three-dimensional case) from the Poisson 
differential equation in Un for the potential that determines this 
interaction. Fundamental physical laws of interactions are given 
in variational form. The Lagrangian for the simplest case of a 
scalar massless field φ(t, x1, x2,••• ,xn) has the form
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since the Planck length naturally appears as a result of the interaction of only massless
energy quanta.[[9]
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creation of a theory of the origin of the Metagalaxy and a quantitative representation of
physical geometry.[10] The same applies to the dimension of space.

Analysis of the Hamilton-Jacobi equation for photons in spaces of different dimensions
n indicates the preference (energy advantage) of three-dimensional space for the emergence
of Planck black holes, real or virtual (quantum foam). When considering this issue, we
will use the results obtained at one time by P. Ehrenfest.[11] [12]

Ehrenfest considers “physics” in n-dimensional space Un. In this case, he derives
the law of interaction with a point center (similarly to the three-dimensional case) from
the Poisson differential equation in Un for the potential that determines this interaction.
Fundamental physical laws of interactions are given in variational form. The Lagrangian
for the simplest case of a scalar massless field ϕ(t, x1, x2, · · · , xn) has the form

L =

(
∂ϕ

∂t

)2

+
n∑

k=1

(
∂ϕ

∂xk

)2

This Lagrangian leads to the Poisson equation and hence to the point center field ϕ ∼
rn−2(ϕ ∼ ln r forn = 2). The dimension of space is taken into account here only as a
condition on the set of values that the index k can take. In the (3 + 1)-dimensional case
k = 1, 2, 3. Thus, this Lagrangian allows us to obtain the corresponding part of physics
in a space of any dimension. The Poisson equation is just mathematically equivalent to
the indicated Lagrangian (with a natural generalization to other fields).

In the spherically symmetric case in Un, from the Poisson equation or from Gauss’s
law for the field strength, expressions for the potential energy follow

E
(n≥3)
pot ≈ − km2

(n− 2)rn−2
; n ≥ 3 (3.13)

E
(2)
pot ≈ km2 ln r; n = 2 (3.14)

E
(1)
pot ≈ km2 r; n = 1 (3.15)

where k is the interaction constant in n-dimensional space. With the usual Newton’s
constant, it is found through the matching of potentials for 3-dimensional space and the
corresponding n-dimensional space.

7

relativity and quantum mechanics, the traditional concept of space and time does not
apply at distances smaller than the Planck length or for periods of time shorter than the
Planck time. It follows that at the Planck level all particles are massless and move at the
speed of light. This conclusion follows from the very course of reasoning in this article,
since the Planck length naturally appears as a result of the interaction of only massless
energy quanta.[[9]

3.3 Planck length and dimension of space

Now, according to the general belief of experts, “true” physics is formed under the Planck
parameters l ∼ �P , t ∼ tP , M ∼ MP . Understanding the ongoing processes in this area
will lead to the construction of a unified field theory, a quantum theory of gravity, the
creation of a theory of the origin of the Metagalaxy and a quantitative representation of
physical geometry.[10] The same applies to the dimension of space.

Analysis of the Hamilton-Jacobi equation for photons in spaces of different dimensions
n indicates the preference (energy advantage) of three-dimensional space for the emergence
of Planck black holes, real or virtual (quantum foam). When considering this issue, we
will use the results obtained at one time by P. Ehrenfest.[11] [12]

Ehrenfest considers “physics” in n-dimensional space Un. In this case, he derives
the law of interaction with a point center (similarly to the three-dimensional case) from
the Poisson differential equation in Un for the potential that determines this interaction.
Fundamental physical laws of interactions are given in variational form. The Lagrangian
for the simplest case of a scalar massless field ϕ(t, x1, x2, · · · , xn) has the form

L =

(
∂ϕ

∂t

)2

+
n∑

k=1

(
∂ϕ

∂xk

)2

This Lagrangian leads to the Poisson equation and hence to the point center field ϕ ∼
rn−2(ϕ ∼ ln r forn = 2). The dimension of space is taken into account here only as a
condition on the set of values that the index k can take. In the (3 + 1)-dimensional case
k = 1, 2, 3. Thus, this Lagrangian allows us to obtain the corresponding part of physics
in a space of any dimension. The Poisson equation is just mathematically equivalent to
the indicated Lagrangian (with a natural generalization to other fields).

In the spherically symmetric case in Un, from the Poisson equation or from Gauss’s
law for the field strength, expressions for the potential energy follow

E
(n≥3)
pot ≈ − km2

(n− 2)rn−2
; n ≥ 3 (3.13)

E
(2)
pot ≈ km2 ln r; n = 2 (3.14)

E
(1)
pot ≈ km2 r; n = 1 (3.15)

where k is the interaction constant in n-dimensional space. With the usual Newton’s
constant, it is found through the matching of potentials for 3-dimensional space and the
corresponding n-dimensional space.

7

This Lagrangian leads to the Poisson equation and hence to the point center field φ ∼ rn−2(φ ∼ ln r for n = 2). The dimension of space 
is taken into account here only as a condition on the set of values that the index k can take. In the (3 + 1)-dimensional case k = 1,2,3. 
Thus, this Lagrangian allows us to obtain the corresponding part of physics in a space of any dimension. The Poisson equation is 
just mathematically equivalent to the indicated Lagrangian (with a natural generalization to other fields).

In the spherically symmetric case in Un, from the Poisson equation or from Gauss’s law for the field strength, expressions for the 
potential energy follow

where k is the interaction constant in n-dimensional space. With the usual Newton's constant, it is found through the matching of 
potentials for 3-dimensional space and the corresponding n-dimensional space.

For the potential energy of interacting photons, these equations take the form (taking into account that
For the potential energy of interacting photons, these equations take the form (taking

into account that m → P/c ;P ≈ �/λ; r = λ)

E
(n≥3)
pot ≈ − k (P/c)2

(n− 2)rn−2
= − k (�/λ c)2

(n− 2)λn−2
; n ≥ 3 (3.16)

E
(2)
pot ≈ k (P/c)2 ln r = k (�/λ c)2 lnλ; n = 2 (3.17)

E
(1)
pot ≈ k (P/c)2 r = k (�/λ c)2 λ; n = 1 (3.18)

Then the total energy of interacting photons in spaces of different dimensions is approxi-
mately equal to

E(n)(λ) ≈ Ekin + E
(n)
pot (3.19)

where the kinetic energy Ekin = P c = � c/λ does not depend on the dimension of space.

Equations for the total energy E(n)(λ) ≈ Ekin + E
(n)
pot in spaces Un will have the form

r

Figure 3: The graphs of the functions E(λ) in n -dimensional spaces

(taking into account that k = c = � = 1)

E(n≥3)(λ) ≈ Ekin + E
(n≥3)
pot =

Pc

2
− kP 2

c2(n− 2)λn−2
=

(
1− 2

(n− 2)λn−1

)
1

2λ
; n ≥ 3

(3.20)

E(2)(λ) ≈ Ekin + E
(2)
pot =

Pc

2
+

k

c2
P 2ln λ =

(
1 +

2ln λ

λ

)
1

2λ
; n = 2 (3.21)

E(1)(λ) ≈ Ekin + E
(1)
pot =

Pc

2
+

k

c2
P 2λ =

1, 5

λ
; n = 1 (3.22)

Graphs of the functions E(n)(λ) are shown in the Fig.3 and indicate that the formation
of Planck black holes (real or virtual) is energetically most favorable in 3-dimensional
space.[13]
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Graphs of the functions E(n)(λ) are shown in the Fig.3 and 
indicate that the formation of Planck black holes (real or virtual) 
is energetically most favorable in 3-dimensional space [13]. If 
we assume that on the Planck scale virtual black holes form the 
so-called space-time quantum foam, which is the basis of the 
“fabric” of the Universe, then the energetic advantage during the 
formation of Planck black holes most likely predetermined the 
3dimensionality of the observable space [14]. It is not space that 
exists and imprints its form on things (in the form of a box filled 
with material objects according to Newton), but things and the 
physical laws governing them that define space. This point of 
view reaches its maximum validity in Einstein’s general theory 
of relativity [15].

3.4. Philosophy of Space Dimension
The concept of the dimension of space is associated with a 
specific physical law and is involved in one of the ideological 
confrontations in the history of physics - the confrontation 
between the concepts of absoluteness and relativity of space.
The first concept assumes that space is something absolute, 
given, something like a ready-made stage on which physical 
phenomena are played out, but which does not depend on these 
phenomena.

The second concept of the relativity of space means that spatial 
relations are some relationships between physical bodies.If space 

can be likened to a stage, then this scene is created during the 
performance itself, created by physical phenomena, interactions 
between bodies. And this scene cannot even be imagined to exist 
independently of interactions.The concept of absolute space 
prevailed in Newtonian mechanics.

The general theory of relativity was won by the concept of the 
relativity of space, of which Leibniz was a staunch supporter. 
Kant was also influenced by Leibniz’s views. At age 23, he 
wrote: “Three-dimensionality appears to result from the fact that 
substances in the existing world act on each other in such a way 
that the force of action is inversely proportional to the square of 
the distance... It is easy to prove that there would be no space 
and no extension if substances would not have any power to act 
externally. Without this force there is no connection - no order, 
without order there is no space [16].” That is, space is order in 
the totality of bodies, space is the relationship of bodies. These 
relationships are manifested in the forces acting between bodies 
[17].

Kant talks about a force inversely proportional to the square of 
the distance, which simply physically substantiates the three-
dimensionality of the observed space. We are considering 
general patterns in multidimensional spaces, once established by 
Ehrenfest, but in relation to massless energy quanta, the existence 
of which is characteristic of the Planck scale. Here it is natural to 
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assume that interactions between massless energy quanta create 
a system of relations that is energetically the most favorable. On 
the Planck scale, interactions between massless energy quanta 
(photons, gravitons, etc.), as a result of which Planck black 
holes, real and virtual, are formed (quantum “foam”, the basis of 
the fabric of the Universe), are energetically most favorable in 
the system of relations that form space of dimension three.

We come to the conclusion that the three-dimensionality of space 
is associated with the fundamental properties of the material 
world at the Planck level.

4. Towards Quantum Gravity
4.1. Uncertainty Relations on The Planck Scale
A particle of mass m has a reduced Compton wavelength

4 Towards quantum gravity

4.1 Uncertainty relations on the Planck scale

A particle of mass m has a reduced Compton wavelength

λC =
λC

2π
=

�
mc

(4.1)

On the other hand, the Schwarzschild radius of the same particle is equal to

rg =
2Gm

c2
= 2

G

c3
mc (4.2)

The product of these quantities is always constant and equal

rgλC = 2
G

c3
� = 2�2P (4.3)

Accordingly, the uncertainty relation between the Schwarzschild radius of the particle and
the Compton wavelength of the particle will have the form

∆rg∆λC ≥ G

c3
� = �2P (4.4)

which is another form of the Heisenberg uncertainty relation on the Planck scale. Indeed,
substituting here the expression for the Schwarzschild radius, we obtain

∆

(
2
G

c3
mc

)
∆λC ≥ G

c3
� (4.5)

By canceling identical constants, we arrive at the Heisenberg uncertainty relation [18]

∆ (mc)∆λC ≥ �
2

(4.6)

4.2 Uncertainty relations and Einstein’s equation

The uncertainty relation between the gravitational radius and the Compton wavelength
of a particle is a special case of the general Heisenberg uncertainty relation on the Planck
scale

∆Rµ∆xµ ≥ �2P (4.7)

where Rµ is a component of the radius of curvature of a small region of spacetime; xµ is
the conjugate coordinate of the small region.

In fact, the indicated uncertainty relations can be obtained based on Einstein’s equa-
tions

Gµν + Λgµν =
8πG

c4
Tµν (4.8)

where Gµν = Rµν − R
2
gµν is the Einstein tensor, which combines the Ricci tensor, scalar

curvature and metric tensor, Rµν - Ricci tensor, obtained from the spacetime curvature
tensor Rabcd by convolving it over a pair of indices, R is the scalar curvature, that is, the
convoluted Ricci tensor, gµν is the metric tensor, Λ is the cosmological constant, and Tµν
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4.2. Uncertainty Relations and Einstein’s Equation
The uncertainty relation between the gravitational radius and the Compton wavelength of a particle is a special case of the general 
Heisenberg uncertainty relation on the Planck scale

where Rµ is a component of the radius of curvature of a small region of spacetime; xµ is the conjugate coordinate of the small region.
In fact, the indicated uncertainty relations can be obtained based on Einstein’s equations

where  is the Einstein tensor, which combines the Ricci tensor, scalar curvature and metric tensor, Rµν - Ricci tensor, obtained from 
the spacetime curvature tensor Rabcd by convolving it over a pair of indices, R is the scalar curvature, that is, the convoluted Ricci 
tensor, gµν is the metric tensor, Λ is the cosmological constant, and Tµν is the energy-momentum tensor of matter, π is pi, c is speed 
of light in vacuum, G is Newton’s gravitational constant.

In this form, the essence of the right side of Einstein’s equations (4.8) is greatly obscured. It is advisable to rewrite these equations 
by grouping the constants into separate factors that have a specific meaning



 Volume 2 | Issue 1 | 148Curr Res Stat Math, 2023

is the energy-momentum tensor of matter, π is pi, c is speed of light in vacuum, G is
Newton’s gravitational constant.

In this form, the essence of the right side of Einstein’s equations (4.8) is greatly
obscured. It is advisable to rewrite these equations by grouping the constants into separate
factors that have a specific meaning

(
1

4 π

)
(Gµν + Λgµν) = 2

(
G

c3

)(
1

c
Tµν

)
(4.9)

A simple rearrangement of the factors allows us to gain deeper insight into the phys-
ical nature of the phenomenon. It is known that the factor (1/c)Tµν is associated with
the density and flow of energy-momentum of matter,[19] and with the help of the factor
(G/c3) you can make the transition to the Planck scale, since the same factor is present
in the expression for the Planck length �P =

√
(G/c3) �.

When deriving his equations, Einstein assumed that physical space-time is Rieman-
nian, that is, curved. A small region of Riemannian space is close to flat space.

Example: if you cut out a small enough area from a sphere, the geometry will be
imitated by Euclidean geometry. A similar technique—isolating the simplest from a more
complex geometry (in this case, Euclidean geometry) by isolating a small part of the total
space (here a sphere)—is a very common technique. Using the example of a sphere, it
becomes clear that with a decrease in curvature or an increase in size, the surface locally
approaches Euclidean space. Locally - in the small - the sphere can be approximated by
part of the plane; globally - as a whole - impossible. This approximation is also realized
in a more general case, when all curvature components decrease.[10]

For any tensor field Nµν... the value Nµν...

√
−g can be called the tensor density, where

g is the determinant of the metric tensor gµν . When the region of integration is small,∫
Nµν...

√
−g d4x is a tensor. If the region of integration is not small, then this integral will

not be a tensor, since it represents the sum of tensors given at different points and, there-
fore, is not transformed according to any simple law when transforming coordinates.[20]
Only small areas are considered here. The above is also true when integrating over the
three-dimensional hypersurface Sν .

Thus, Einstein’s equations for a small region of pseudo-Riemannian spacetime can
be integrated over the three-dimensional hypersurface Sν .

1

4π

∫
(Gµν + Λgµν)

√
−g dSν = 2

(
G

c3

)
1

c

∫
Tµν

√
−g dSν (4.10)

Since the integrable region of spacetime is small, that is, it is practically flat, from (4.10)
we obtain the tensor equation

Rµ =
2G

c3
Pµ (4.11)

where Pµ = 1
c

∫
Tµν

√
−g dSν is the 4-pulse component matter; Rµ = 1

4π

∫
(Gµν + Λgµν)

√
−g dSν
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A simple rearrangement of the factors allows us to gain deeper insight into the phys-
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where � is the Dirac constant. Then the commutator of the operators R̂µ and x̂µ is equal
to

[R̂µ, x̂µ] = −2i�2P (4.15)

This implies the above uncertainty relations

∆Rµ∆xµ ≥ �2P (4.16)
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constants on the right and left, we arrive at the Heisenberg uncertainty relations.
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(4.17)

Note that now, according to the equation Rµ = (2G/c3)Pµ, along with the expressions
for energy-momentum quanta Pµ = � kµ the expressions for the quantity Rµ = 2�2P kµ are
valid (but not spacetime quanta), where kµ is the wave 4-vector. That is, the quantity
Rµ (component of the Schwarzschild radius) is quantized, but the quantization step is
extremely small. This could serve as the basis for constructing a quantum theory of
gravity.

In the static case, the relation must be valid

R
(n)
0 = r(n)g = 2�2P k0(n+ 1/2); n = 0, 1, 2, .... (4.18)

that is, at the Planck level, the gravitational radius of black holes is quantized. Such
Planck black holes can be called space quanta, if a space quantum is defined as a minimal
volume that is further indivisible. In vacuum (n = 0) the gravitational radius of virtual

Planck black holes will be R
(0)
0 = r

(0)
g = �2P k0.

For a static spherically symmetric field and a static distribution of matter, the found
uncertainty relation takes the form

∆R0∆x0 = ∆rg∆r ≥ �2P (4.19)
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where rg is the Schwarzschild radius, r is the radial coordinate. Here R0 = rg, and x0 = ct = r, since at the Planck level matter moves 
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For vacuum at the Planck level, the last uncertainty relation ∆rg∆r ≥        will be characteristic, since a state of motion or a velocity 
vector cannot be assigned to vacuum. In Minkowski space, due to its high symmetry, vacuum is the same state for all inertial frames 
of reference; in any frame of reference it will appear to be at rest (static). Therefore, the Planck vacuum, according to the specified 
uncertainty relation, will generate wormholes and tiny virtual black holes (quantum foam).

4.3. Basic Equation of Quantum Gravity
From equations (4.11) and (4.14) it is clear that the basic equation of the quantum theory of gravity (Klimets equation)[21] should 
have the following form (similar to the Schrodinger equation) [22].
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theory of gravity (Klimets equation)[21] should have the following form (similar to the
Schrodinger equation)[22]

−2i�2P
∂

∂xµ
|Ψ(xµ)〉 = R̂µ|Ψ(xµ)〉 (4.20)

In equation (4.20), spatial and temporal coordinates are equal. The R̂µ operator acts as
a generator of infinitesimal displacements of quantum states. Its form depends on the
specific situation.

4.4 Estimation of the equations of general relativity at the
Planck level

The last uncertainty relation (4.19) allows us to perform some estimates of the equations
of general relativity in relation to the Planck scale. For example, the expression for the
invariant interval dS in the Schwarzschild solution has the form

dS2 =
(
1− rg

r

)
c2dt2 − dr2

1− rg/r
− r2(dΩ2 + sin2 Ωdϕ2) (4.21)

Substituting here, according to the uncertainty relations, instead of rg the value rg ≈ �2P/r
we get

dS2 ≈
(
1− �2P

r2

)
c2dt2 − dr2

1− �2P/r
2
− r2(dΩ2 + sin2 Ωdϕ2) (4.22)

It can be seen that at the Planck level r = �P the invariant interval dS is limited from
below by the Planck length; at this scale, division by zero appears, which means the
formation of real and virtual Planck black holes.

Similar estimates can be made for other general relativity equations. In macroscopic
physics, when encountering a heavy body, we must first of all estimate the ratio of the
gravitational radius to the distance to the center of gravity ζ = rg/r and we will already
know a lot about the magnitude of the effects associated with general theory of relativity.
For example, the ζ parameter determines the scale of change in the clock rate. For the
Sun, the ζ parameter is approximately 4 ·10−6 or 1.76 arcsec, that is, a ray of light passing
near the edge of the solar disk, it will deviate by an amount of the order of 4·10−6 radians.
For Mercury, this parameter will be 10−7, which in one hundred Earth years gives the
displacement of Mercury’s perihelion 43 arcsec. The ζ parameter is included in all other
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For Mercury, this parameter will be 10−7, which in one hundred Earth years gives the
displacement of Mercury’s perihelion 43 arcsec. The ζ parameter is included in all other
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In equation (4.20), spatial and temporal coordinates are equal. The Rµ operator acts as a generator of infinitesimal displacements of 
quantum states. Its form depends on the specific situation.

4.4.  Estimation of The Equations of General Relativity at The Planck Level
The last uncertainty relation (4.19) allows us to perform some estimates of the equations of general relativity in relation to the Planck 
scale. For example, the expression for the invariant interval dS in the Schwarzschild solution has the form

Substituting here, according to the uncertainty relations, instead of rg the value                  we get
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It can be seen that at the Planck level r = lP the invariant interval dS is limited from below by the Planck length; at this scale, division 
by zero appears, which means the formation of real and virtual Planck black holes. 
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a lot about the magnitude of the effects associated with general theory of relativity. For example, the ζ parameter determines the 
scale of change in the clock rate. For the Sun, the ζ parameter is approximately 4•10−6 or 1.76 arcsec, that is, a ray of light passing 
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estimates. But, as we found out above, the parameter ζ = rg/r at the Planck level has the form                   so in order to, in order to 
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to replace the relation rg/r with the expression ζ                 . Indeed, we saw above that the parameter ζ determines at the Planck level 
the collapse of photons, the dimension of space, the non-Euclidean nature of spacetime, and fluctuations of the spacetime metric.

4.5. Shimmering Spacetime Geometry and Virtual Black Holes
The gravitational field makes zero oscillations, and the geometry associated with it also oscillates. The ratio of the circumference to 
the radius fluctuates around the Euclidean value: the smaller the scale, the greater the deviations from Euclidean geometry become.

Let us estimate the order of the wavelength of zero gravitational oscillations, at which the geometry becomes completely different 
from Euclidean [23]. The degree of deviation of the ζ geometry from the Euclidean one in the gravitational field is determined by the 
ratio of the gravitational potential φ and the square of the speed of light c : ζ = φ/c2. When ζ<< 1, the geometry is close to Euclidean; 
at ζ ∼ 1 all similarity disappears. The oscillation energy of the scale L is equal to E = ћν ∼  ћc/L (c/L is the order of the oscillation 
frequency). The gravitational potential created by the mass m at such a length is φ = Gm/L, where G is the constant of universal 
gravity. Instead of m you should substitute the mass, which, according to Einstein’s formula, corresponds to the energy E (m = E/
c2). We get φ = GE/Lc2 = Gћ/L2c. Dividing this expression by c2, we obtain the deviation value ζ = Gћ/c3L2 = lP

2 /L2. Equating ζ = 1, 
we find the length at which the Euclidean geometry is completely distorted. It is equal to the Planck length  lP = √Gћ/c3 ≈ 10−35 m. 
This is where quantum foam comes in.

The spacetime metric g00 ≈ 1−∆g = 1−lP
2 /(∆r)2 fluctuates, generating the so-called spacetime quantum foam, consisting of virtual 

Planck black holes and wormholes [14]. But these fluctuations ∆g = 1−lP
2 /(∆r)2 in the macroworld and in the world of atoms are 

very small compared to 1 and become noticeable only on the Planck scale. Fluctuations ∆g must be taken into account when using 
the special relativity metric (+1,−1,−1,−1) in very small regions of space and at large momenta. Therefore, the expression for the 
invariant interval dS in spherical coordinates must always be written in the form
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(
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(∆r)2

)
c2dt2 − dr2

1− �2P/(∆r)2
− r2(dΩ2 + sin2 Ωdϕ2) (4.23)

However, due to the smallness of � 2P/(∆r)2, the expression for the invariant interval is
usually written in Galilean form (+1,−1,−1,−1), which is incorrect. The correct expres-
sion must take into account fluctuations of the spacetime metric and the gravitational
collapse of matter at the Planck distance scale. It can be seen that on the Planck scale
Lorentz invariance is violated.

In physical work, a certain small parameter is usually determined, which can be
neglected under clearly defined conditions. As a rule, the approximation is expressed in
the form of an inequality when the dimensionless quantity defining the approximation
becomes small compared to unity. For example, classical Newtonian mechanics is true if
two conditions are met: v/c � 1; �/S � 1 (c is the speed of light, v is the speed of the
body, � is Planck’s constant, S is an action).[10] In our case, special and general relativity
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However, due to the smallness of  lP
2/(∆r)2, the expression for the invariant interval is usually written in Galilean form (+1,−1,−1,−1), 

which is incorrect. The correct expression must take into account fluctuations of the spacetime metric and the gravitational collapse 
of matter at the Planck distance scale. It can be seen that on the Planck scale Lorentz invariance is violated.

In physical work, a certain small parameter is usually determined, which can be neglected under clearly dened conditions. As a rule, 
the approximation is expressed in the form of an inequality when the dimensionless quantity dening the approximation becomes 
small compared to unity. For example, classical Newtonian mechanics is true if two conditions are met: v/c << 1; ћ / S << 1 (c is 
the speed of light, v is the speed of the body, ћ is Planck's constant, S is an action).[10] In our case, special and general relativity are 
true when lP

2 / << 1  (lp is the Planck length, L is the macroscopic length). When lP
2 / L2  ∼  1 the laws of quantum gravity apply. 

Approximations reign in physics.

It is known that the coordinate speed of light ck in some place with gravitational potential φ = −Gm/r is equal to ck = c (1+2 φ/c2) = c 
(1−rg/r), where c is the physical speed of light. Then on the Planck scale, due to quantum  uctuations of the potential, the expression 
for the coordinate speed of light will take the form ck = c (1 − lP

2 /(∆λ)2).

Here λ is the wavelength of light emitted by the source. The greater the distance from the source the light travels and the shorter 
its wavelength, the more noticeable the dispersion of the rays will be due to accumulated distortions. In this case, the photon 
velocity inho-mogeneities ∆c = lP

2 / (∆λ)2 are determined not by the Planck length, but by its square, so that these inhomogeneities 
are immeasurably small (of the order of 10−56 c for  λ = 10−5 cm) and images of distant sources will be sharp even at metagalactic 
distances [24].

As noted in for a region of spacetime with dimensions L, the uncertainty of the Christoel symbols should be of order lP
2 /L3, and the 
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uncertainty of the metric tensor should be of order lP
2 /L2. If L is a macroscopic length, then quantum limitations are fantastically 

small and can be neglected even at atomic scales. If the value of L is comparable to lP , then maintaining the previous (ordinary) 
concept of space becomes more and more dicult and the in uence of microcurvature becomes obvious [25].

The expression for metric  uctuations is consistent with the Bohr-Rosenfeld uncer-tainty relation ∆g (∆L)2 ≥ lP
2 [8]. From this point 

of view, other expressions for  uctuations of the metric tensor, namely ∆g ∼ lP /L and its rst derivatives (Christoel symbols) ∆г ∼ lP
2 /

L2 , set to 1 by analogy with electrodynamics do not correspond to reality, since gravity (ge ometrodynamics) is fundamentally dierent 
from electrodynamics [26, 27]. Observations of the degree of blurring of distant stellar objects did not conrm these expressions. The 
correct expression is ∆g ∼ lP

2 /L2 [28].

As emphasized in these small-scale  uctuations indicate that everywhere in space something similar to gravitational collapse is 
happening all the time, that gravitational collapse is essentially constantly occurring, but the reverse process is also constantly 
occurring, that in addition to the gravitational collapse of the Universe and stars, it is also necessary to consider a third and the most 
important level of gravitational collapse at the Planck distance scale.

The uncertainty relations written above are valid for any gravitational elds, since in a suciently small 4-region of any gravitational 
eld space-time is practically  at. Note that according to Markov M.A. real Planck black holes with a mass of 10−5 g may not \
evaporate", but be stable formations [29]. The fact is that the entire mass of a black hole can \evaporate", with the exception of that 
part of it that is associated with the energy of zero-point, quantum oscillations of the black hole's matter. Such vibrations do not 
increase the temperature of the object and their energy cannot be radiated. On the other hand, the quantum laws of conservation of 
baryon and lepton charges should also prevent the complete evaporation" of a black hole. The residual mass is 10−5 g. Planck black 
holes have an extremely small interaction cross section 10−66cm2. This leads to the fact that stars and planets are almost completely 
transparent to them - the mean free path of a Planck black hole in matter of nuclear density is comparable to the radius of the visible 
part of the Universe, and therefore they are very dicult to detect. Therefore, Planck black holes, which arose as a result of the 
collapse of radiation in the rst fractions of a second of the Big Bang (for example, during the collision of energetic photons), could 
hypothetically serve as a source of mysterious dark matter. As is known, dark matter does not manifest itself in any way, except for 
the gravitational eect on the visible part of matter [14].

On the other hand, the uncertainty relation rgr ∆rg ∆r ≥ lP
2  indicates that on the Planck scale there is a vacuum consisting of virtual 

Planck black holes. The energy density of such a vacuum does not change as the Universe expands, which creates negative vacuum 
pressure. This vacuum can serve as a source of dark energy. From the uncertainty relation ∆rg ∆r ≥ lP

2 it follows that a decrease in 
∆r will lead to an increase in ∆rg and vice versa. When r << lP the Schwarzschild radius rg exceeds both r and the Planck length lP 
Therefore, any attempt to probe length scales r << lP will require localizing the energy within a radius that is much smaller than 
the corresponding Schwarzschild radius, rg >> lP. Thus, the corresponding act of measurement will result in the formation of a 
macroscopic classical black hole long before we have a chance to measure the distance r << lP [1].

It can be seen that the Planck length is the limit of distance, less than which the very concepts of space and length cease to exist. 
Any attempt to explore the existence of shorter distances (less than 1:66−35m) by carrying out collisions at higher energies would 
inevitably end in the birth of a black hole. Collisions at high energies, instead of breaking matter into smaller pieces, will lead to 
the birth of black holes of ever larger sizes [30]. Decreasing the Compton wavelength of the particle will lead to an in- crease in 
the Schwarschild radius of the black hole. The uncertainty relation between the Schwarzschild radius and the Compton wavelength 
gives rise to virtual black holes on the Planck scale [31].

Virtual Planck black holes are also important for the theory of elementary parti- cles. The fact is that when carrying out calculations 
in modern quantum theory and, in particular, when calculating the intrinsic energy of particles, the contribution of in-termediate 
states with arbitrarily high energy is usually taken into account, which leads to the appearance of known divergences. Taking into 
account the gravitational interac-tion of the corresponding virtual particles and the possibility of the emergence of virtual (short-
lived) black holes in the intermediate state should lead to the elimination of these divergences [14].

It can be seen that at the Planck level, matter is in a black hole state, and Planck black holes are characterized by dierent quantum 
numbers. It is assumed that the basis (nuclei) of quarks and leptons are Planck black holes and this may be an alternative to string 
theory [32]. Signicant matter can be built from Planck black holes. In a free state, Planck black holes, as noted above, can act as 
so-called dark matter.

The problem of singularities in Planck black holes is resolved if we assume that the singularities are multidimensional and therefore 
have unlimited capacity and nite density of matter [2]. It is assumed that the additional dimensions of space in the singularity are 
compactied (folded into rings). Thus, the three-dimensionality of the external, observ-able space is due to the energetic advantage in 
the formation of virtual Planck black holes, and the multidimensional nature of the singularities hidden under the event horizon in
black holes solves the problem of the innite density of collapsing matter.
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4.6 Space quantization and Planck length
In the 1960s, the hypothesis of the quantization of spacetime along the path of unifying quantum mechanics and general relativity 
led to the assumption that there are cells of spacetime with the minimum possible length equal to the fundamental length. According 
to this hypothesis, the degree of in uence of space quantization on transmitted light depends on the size of the cell. Research requires 
intense radiation that travels as far as possible. From the picture of space-time foam presented by Wheeler it follows that for photons 
with a wavelength λ propagating in the foam, the travel time T from the source to the detector must be indenite in accordance with 
the law , which can only depend on the distance traveled x, the wavelength of the particle λ and the Planck scale lP with a shape of 
type δT ∼ xn lp

1+m-n / λm , where m and n are model-dependent powers, and 1 +m− n > 0. The phenomenology of quantum gravity 
currently focuses mainly on eects suppressed at the rst power of the Planck scale, since stronger suppression leads to even weaker 
eects [33-36]. Therefore, the picture that experimenters are now focusing on corresponds to the following choice: n = m = 1, that is, 
δT ∼ x lp /λ.

Currently, a group of scientists has used data from the gamma-ray burst GRB 041219A, taken from the European space telescope 
Integral. The gamma-ray burst GRB 041219A was included in the one percent of the brightest gamma-ray bursts over the entire 
observation period, and its source is at least 300 million light years away. The Integral observation made it possible to estimate the 
cell size several orders of magnitude more accurately than all previous experiments of this kind.

Analysis of the data showed that if the granularity of space exists at all, then it should be at a level of 10−48 meters or less [24]. 
The theory of spacetime quantization is discredited by this. There are two options available to explain this fact. The rst option 
assumes that at the micro level|on the Planck scale|space and time vary simultaneously with each other, so that the speed of photon 
propagation does not change. The second explanation assumes that photon velocity inhomogeneities are determined not by the 
Planck length, but by its square (of the order of 10−66cm2), so that these inhomogeneities become immeasurably small. Indeed, in 
a gravitational eld, the coordinate speed of light changes, as a result of which light rays are bent. If we denote by c the physical 
speed of light at the origin, then the coordinate speed of light ck at some place with a gravitational potential φ will be equal to ck ≈ 
c(1 + φ/c2). But then, as was shown above, on the Planck scale ck ≈ c(1− lp

2/l2). That is,  uctuations in the speed of light ∆c ≈ clp
2/

l2 are determined not by the Planck length, but by the square of the Planck length and therefore are immeasurably small. In fact, 
if the wavelength of visible light is λ ≈ 10−5 cm, then in this case the ratio lp

2/λ2 = 10−66 / 10−10 = 10−56 is less than the ratio lp/λ
 = 

10−33/ 10−5 = 10−28 by 28 orders of magnitude [33]. From a modern point of view, the hypothesis of the quantization of spacetime is 
unsatisfactory. In fact, from Einstein's equations, as has been shown, the quantization of the curvature of spacetime (quantization of 
the Schwarzschild radius) follows. In accor-dance with this, the dispersion of light rays from distant galaxies is determined not by 
the Planck length, but by its square, n = 1; m = 2 and δT ~ x lp

2/ λ2, therefore,  uctuations in the speed of light will be immeasurably 
small and images of distant sources will be sharp even at metagalactic distances [37-40].

5. On the Problem of Singularities
5.1. Introductory Statements
One of the difficulties of the general theory of relativity is the problem of singularities, which actually arose from the moment 
Friedman obtained non-stationary cosmological solutions to the equations of the general theory of relativity and became even 
more acute in connection with the problem of gravitational collapse. Singularity denotes a state of infinite density of matter, which 
indicates the insufficiency of the general theory of relativity. Multidimensionality solves these problems.

5.2. How to Place the Universe at A “Point”
The Universe at a “point” is the author’s asserted possibility of placing spaces of any extent in a multidimensional “point” with a given 
size (that is, in a small region of multidimensional space), including the free placement of our entire Universe in a multidimensional 
“point” with a diameter of 10−33cm.For a book, as an example of a 3-dimensional object, the amount of information in the form of 
letters takes up V volume in the book.

If the same amount of information is placed in 2-dimensional space, that is, on a plane, then in the form of lines the information will 
occupy an area S with a square side a(2), and a(2) > a(3), where a(3) is the side of a 3-dimensional cube representing a book.The 
same amount of information, placed in a one-dimensional space, in the form of a string will stretch in length by the value a(1), and
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One of the difficulties of the general theory of relativity is the problem of singularities,
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solutions to the equations of the general theory of relativity and became even more acute
in connection with the problem of gravitational collapse. Singularity denotes a state
of infinite density of matter, which indicates the insufficiency of the general theory of
relativity. Multidimensionality solves these problems.

5.2 How to place the Universe at a “point”

The Universe at a “point” is the author’s asserted possibility of placing spaces of any
extent in a multidimensional “point” with a given size (that is, in a small region of
multidimensional space), including the free placement of our entire Universe in a multi-
dimensional “point” with a diameter of 10−33cm.

For a book, as an example of a 3-dimensional object, the amount of information in
the form of letters takes up V volume in the book.

If the same amount of information is placed in 2-dimensional space, that is, on a
plane, then in the form of lines the information will occupy an area S with a square side
a(2), and a(2) > a(3), where a(3) is the side of a 3-dimensional cube representing a book.

The same amount of information, placed in a one-dimensional space, in the form of
a string will stretch in length by the value a(1), and

a(1) > a(2) > a(3) (5.1)

Accordingly, as the number of dimensions of space increases, to accommodate the same
amount of information (in the form of letters), we will need an n-dimensional cube with
an ever smaller side a(n) of the corresponding n-dimensional cube, that is

a(1) > a(2) > · · · > a(k) > · · · > a(n) (5.2)

It is easy to show that a(n) and a(k) are related by the following relation

a(n) = a(k)k/n (5.3)

Indeed, (1.48) follows from the equality of volumes of information (or matter) in one or
another n-dimensional space

V (1) = V (2) = · · · = V (k) = · · · = V (n) (5.4)

where V (n) are “volumes” of n-dimensional spaces containing the same (equal) number
of units of information (or units of matter - atoms), located at the nodes of n-dimensional
cubic lattices with a step of d in one or another n-dimensional space. One can imagine
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particles in the direction of each coordinate axis transform into what we call continuum.
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V (1) = a(1)1;V (2) = a(2)2; · · · ;V (k) = a(k)k; · · · ;V (n) = a(n)n (5.5)

then (5.3) follows from here. Here, for example, a(1) = d · t, where t is the number of
lattice steps.

For a 3-dimensional space from (5.3) we obtain the following relation

a(n) = a(3)3/n (5.6)

An interesting conclusion follows from the relation (5.6). Suppose we need to place the
entire observable Universe together with matter in an elementary n-dimensional “cube”
with side a(n) equal to 10 · 10−33cm = 10 · �P (then there are ten units of Planck length),
where �P = 10−33cm is one unit of Planck length. How many dimensions of space do we
need for this?

The size of the observable Universe is 1028 cm or, in Planck length units, 1061�P
Planck length units. From the relation (5.6) we have

101�P = (1061�P )
3/n (5.7)

Hence n = 183. From (5.7) it is clear that already with 183 dimensions of space, the
entire observable Universe can be placed in a 183-dimensional “cube” with a side 10�P ,
that is, in fact, in a “point” (183-dimensional).

The density of matter in such a “cube” remains equal to the density of matter located
in the 3-dimensional space of the observable Universe. Indeed, the density of matter in
n-dimensional space is determined as follows: ρ(n) = M/V (n), where M is the mass of
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Hence n = 183. From (5.7) it is clear that already with 183 dimensions of space, the entire observable Universe can be placed in a 
183-dimensional \cube" with a side 10lP , that is, in fact, in a ''point" (183-dimensional).

The density of matter in such a ''cube" remains equal to the density of matter located in the 3-dimensional space of the observable 
Universe. Indeed, the density of matter in n-dimensional space is determined as follows: ρ(n) = M /V (n), where M is the mass of 
matter of the observable Universe, V (n) is the volume n-dimensional space, ρ(n) is the density of matter in n-dimensional space. 
And since, by condition, V (3) = V (183), then ρ(3) = ρ(183).

An illustrative example: folding a one-dimensional thread of length r1 into a flat twodimensional “mat” in the form of a spiral with 
a diameter of r2 or into a three-dimensional ball with a diameter of r3. It is clear that r1 > r2 > r3, that is, the compactness of the 
placement of the thread increases with increasing dimension of space, but the density of placement of the substance of the thread 
remains the same (the atoms of the substance of the thread will still be located at a distance of d from each other in the direction of 
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each n-th coordinate axis. (Fig.4)
Based on the above, we claim that any finite-dimensional space can be placed in an infinite-dimensional “point”.

It can be assumed that the singular “point” (that is, a very small region of space), from which, according to the general theory of 
relativity, our Universe arose, was multidimensional.
It can also be assumed that during the collapse of black holes, when the matter of the black hole reaches a certain (for example, 
Planck?) density, the collapsing matter in the center of the black hole (in the singularity) is squeezed out into other dimensions of 
space, which can be folded (compactified) into rings with a diameter on the order of the Planck density length.

6. Conclusion
The approach to quantum gravity outlined in the article is based on the assumption that in a small region Riemannian space-time 
is practically flat. This allows us to reduce the Einstein equation to a tensor equation of the first rank and study it from a quantum 
mechanical point of view. This brings us to the Planck limit. In this case, three-dimensionality arises as the most energetically 
favorable state of quantum foam, the basis of the fabric of the Universe. Taking into account metric fluctuations in special relativity 
(at the Planck level) should lead to the elimination of divergences in quantum field theory. The hypothesis that the singularity of 
black holes is multidimensional eliminates the question of its infinite density. In constructing the theory, philosophical considerations 
played a certain role.
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