
 Volume 4 | Issue 1 | 1

Citation: Patil, A. H., Patil, S. A. (2024). Quantification of Regression Test Suite Execution Time in Parallel Execution Setup with
Weighted Test Suite Split Algorithm. J Sen Net Data Comm, 4(1), 01-04.

Quantification of Regression Test Suite Execution Time in Parallel Execution Setup
with Weighted Test Suite Split Algorithm

Research Article

Abhinandan H. Patil* and Sangeeta A. Patil
*Corresponding Author
 Abhinandan H. Patil, Senior IEEE Member, Karnataka, India.

 Submitted: 2023, Dec 22; Accepted:2024, Jan 29: Published: 2024, Feb 02

Abstract
Regression test suite execution time study focus is essentially on two aspects. They are execution time reduction and making
effective use of available hardware resources and manpower. This paper investigates how the regression test suite can be
split into subsets to make use of parallel execution across several machines with identical execution speeds and asymmetrical
execution speeds. In the symmetrical execution speed setup, long test execution time test cases are evenly distributed across
all the hardware machines. However, in asymmetrical execution speed machines, more test cases are distributed to speed
machines to make efficient use of hardware resources. In all the situations where there is automation tool to execute the
individual test cases of test suite this approach can be employed to make effective use of hardware resources and to keep the
execution time within bounds. The Algorithms can also be used in situations where there are queues involved and serial, fixed
time service takes place for each of the entity being served.

J Sen Net Data Comm, 2024

Educational Content Creators at 14AISS, Karnataka, India

Keywords: Weighted Test Suite Split, Symmetrical Speed Machines, Asymmetrical Speed Machines, Effective Regression Test Execu-
tion Time, Regression Test Suite Time Reduction, Test Suite Execution Time Analysis.

1. Introduction
Main focus in Regression test execution is always on two points
viz. execution time and resources. Resources could be hardware or
manpower. In this paper the discussion is mainly in cases where
lab has multiple machines for execution of test cases. The idea
is to split the test suite into multiple sub test suites and execute
them on different machines. The machines under study could

have symmetrical or asymmetrical execution speeds. The paper
considers both the cases and suggests how the test suite should be
split and then goes ahead to quantify the execution time of whole
test suite. In first case the paper considers the case with identical
execution speed machines. In the second case paper considers the
case with different execution speeds.

Figure 1: Test Suite Parallel Execution

Journal of Sensor Networks and Data Communications
ISSN: 2994-6433

 Volume 4 | Issue 1 | 2J Sen Net Data Comm, 2024

2. Background Study
When there are multiple machines for execution of test suite, it is
a good strategy to split the test suite into multiple sub test suites
and execute them on different machines. The idea is to bring down
the execution cycle duration by making use of parallel execution
setup. Regression test team can maintain the execution time data
of each test case which will help further activities. Then comes the
strategy of splitting the test suite into suitable sub test suites.

3. Methodology and Algorithms
In this paper two algorithms are used:

3.1. Machines with Identical Execution Speeds
• Create a two dimensional data structure to hold the test suite
execution times. First index is for machine and second individual
test case on that machine.
• Create a single dimensional data structure to hold the sum of all
the test cases execution time for a given machine.
• Reverse sort the execution time of all the test cases.
• Distribute the reverse sorted test cases across the machines using
simple modulo logic.
• Once all the test cases are sorted, find the total execution of a
given set for a given machine.
• Now reverse sort the total execution of a given sets across the
machines. The first entity in this reverse sorted list gives the longest
execution of any set on given machines. Hence is the effective
execution time of whole test suite.

3.2. Machines with Different Execution Speeds
• Create a two dimensional data structure to hold the test suite
execution times. First index is for machine and second individual
test case on that machine.
• Create a single dimensional data structure to hold the sum of all
the test cases execution time for a given machine.
• Don’t sort the execution speeds. Perform the weighted split of the
test set in proportion of machine speeds.
• Step 3 is for ensuring the speed machines execute more test cases
than slower machines.
• While calculating the total execution of a given sub test suite
on given machine, take the speed of execution of machine into
consideration.
• Now reverse sort the total execution of a given sets across the
machines. The first entity in this reverse sorted list gives the longest
execution of any set on given machines. Hence is the effective
execution time of whole test suite.

4. Python Version of Algorithms with Execution Results

import math
import pandas
import os

def weighted_split_test_exec_time_list(original_test_exec_time_
list, weight_list, absolute_machine_speeds):

machine_i_test_set = []
machine_i_test_set_exec_time = []
prev_index = 0

for weight in weight_list:
next_index = prev_index + math.ceil((len(original_test_exec_
time_list) * weight))
machine_i_test_set.append(original_test_exec_time_list[prev_
index: next_index])
prev_index = next_index

for i in range(len(weight_list)):
machine_i_test_set_exec_time.append(
sum(machine_i_test_set[i])/absolute_machine_speeds[i])

print(machine_i_test_set)
for i in range(len(weight_list)):
print("Machine",i,"Will execute the following test
cases",machine_i_test_set[i],"in",machine_i_test_set_exec_
time[i],"unit time")

local_sorted_execution_time_on_machines = sorted(machine_i_
test_set_exec_time,reverse=True)
print("Longest time is", local_sorted_execution_time_on_
machines[0],"Which is effective execution time")

print("All Machines will put together will be busy
for",sum(machine_i_test_set_exec_time))

def identical_machines_total_execution_time(x, n):
machine_i_test_set = []
machine_i_test_set_exec_time = []
x = sorted(x, reverse=True)

for i in range(n):
machine_i_test_set.append([])

for i in range(len(x)):
machine_i_test_set[i % n].append(x[i])

for i in range(n):
machine_i_test_set_exec_time.append(sum(machine_i_test_
set[i]))

#print(machine_i_test_set)

for i in range(n):
print("Machine",i,"Will execute the following test
cases",machine_i_test_set[i],"in",machine_i_test_set_exec_
time[i],"unit time")
#print("Test Suite on Machine", i, "Will run for", machine_i_test_
set_exec_time[i],"Units of Time")

 Volume 4 | Issue 1 | 3J Sen Net Data Comm, 204

 local_sorted_execution_time_on_machines = sorted(machine_i_
test_set_exec_time,reverse=True)
print("Longest time is", local_sorted_execution_time_on_
machines[0],"Which is effective execution time")

print("All Machines will put together will be busy
for",sum(machine_i_test_set_exec_time))

def main():
df = pandas.read_csv(os.path.join(os.getcwd(), "Regression\\
testexecutiondata.csv"),
 sep=',')

data_set = df["execution_time"].to_list()

print("Data set is",data_set)

absolute_machine_speeds = [1, 2, 2, 1]
weighted_machine_speeds = [.16, .32, .32, .16]
identical_machine_speeds = [1, 1, 1, 1]

identical_machines_total_execution_time(
data_set, len(identical_machine_speeds))

weighted_split_test_exec_time_list(data_set, weighted_machine_
speeds, absolute_machine_speeds)

main()

To this code supply the following data.

test_case_no,execution_time
T1,20.1
T2,30
T3,40
T4,50
T5,13
T6,10
T7,12
T8,60
T9,15
T10,20.2
T11,24
T12,20.3

Results of execution are as follows:

Data set is [20.1, 30.0, 40.0, 50.0, 13.0, 10.0, 12.0, 60.0, 15.0, 20.2,
24.0, 20.3]

Machine 0 Will execute the following test cases [60.0, 24.0, 15.0]
in 99.0 unit time
Machine 1 Will execute the following test cases [50.0, 20.3, 13.0]
in 83.3 unit time

Machine 2 Will execute the following test cases [40.0, 20.2, 12.0]
in 72.2 unit time
Machine 3 Will execute the following test cases [30.0, 20.1, 10.0]
in 60.1 unit time
Longest time is 99.0 Which is effective execution time
All Machines will put together will be busy for 314.6

[[20.1, 30.0], [40.0, 50.0, 13.0, 10.0], [12.0, 60.0, 15.0, 20.2],
[24.0, 20.3]]
Machine 0 Will execute the following test cases [20.1, 30.0] in
50.1 unit time
Machine 1 Will execute the following test cases [40.0, 50.0, 13.0,
10.0] in 56.5 unit time
Machine 2 Will execute the following test cases [12.0, 60.0, 15.0,
20.2] in 53.6 unit time
Machine 3 Will execute the following test cases [24.0, 20.3] in
44.3 unit time
Longest time is 56.5 Which is effective execution time
All Machines will put together will be busy for 204.5

5. Execution Results Analysis
First Algorithm is able to sort the longest test cases evenly across
the identical execution speed machines. The second algorithm
executes more test cases on speed machines and takes the speed of
machines while calculating the effective speed of total test suite.
Test cases and their execution time can be maintained in comma
separated value files. This historical data can be maintained between
successive test executions. For generating the data programming
language features can be used with execution start and end time
stamps. The test execution time is the difference between end
time and start time. For the first hypothetical case, test team has
four identical speed test machines. For the second case, there are
four machines. Two machines are twice as speed as the rest of the
two machines. Therefore, the weighted speed data is assigned the
weights weighted_machine_speeds = [.16, .32, .32, .16] according
to the setup. As can be seen from the results in the first case test
cases with long execution time are evenly distributed across all the
four machines. In the second case, more test cases are assigned to
fast execution machines, while a smaller number of test cases are
assigned to slow machines. This uneven distribution is to ensure
that test cases make use of computational speeds appropriately.

When the test cases count is in excess of 1000, the methodology
can be still employed as long as proper comma separated values
are maintained properly. Using file read and write operation,
additional value can be maintained in the comma separated value
file which will tell which machine the test case is being assigned
and then the test case suite can be split according to the additional
field in the comma separated file. However, this methodology
assumes there is no preset execution order of the test cases. If there
is a particular order of test case execution, the test suite cannot be
split using the algorithms just mentioned in the paper.

6. Conclusion and Future Works
The Algorithms are able to achieve the intended functionality

 Volume 4 | Issue 1 | 4J Sen Net Data Comm, 2024

for both the cases viz. Symmetrical speed execution setup and
asymmetrical speed execution setups involving more than one
execution machines. Although the Algorithms are being proposed
for test execution, in general the Algorithms can be used for
any queueing scenario where service time is known apriori. The
proposed Algorithms can be used in Industrial setups. As part of
the future work the Algorithms will be proposed to appropriate
Industry counterparts and feedback will be incorporated
appropriately [1-18].

References
1. Abhinandan H. Patil. (2020). Computer System Performance

Analysis an Informal Approach. Text Book.
2. Abhinandan H. Patil. (2020). Mathematics Part 6: Mathematics

Learning with Aid of Software. Text Book.
3. Abhinandan H. Patil. (2020). Learning Python Through LAB

Based Approach. Text Book.
4. Patil, A. H. (2020). Regression Testing in Era of Internet of

Things and Machine Learning. Lulu. com.
5. Anthony Croft et al. (2021). Engineering Mathematics. Text

Book.
6. JVM Hotspot command line arguments.
7. Aranha, E., & Borba, P. (2009). Estimating manual test

execution effort and capacity based on execution points.
International Journal of Computers and Applications, 31(3),
167-172.

8. da Silva Aranha, E. H. (2009). Estimating Test Execution

Effort Based on Test Specifications (Doctoral dissertation,
thesis).

9. Muneer, I. (2014). Systematic Review on Automated Testing
(Types, Effort and ROI).

10. Nageswaran, S. (2001, June). Test effort estimation using use
case points. In Quality week (Vol. 6, pp. 1-6).

11. Di Leo, D., Natella, R., Pietrantuono, R., & Ovilio, B. (2012).
Test effort and test coverage: correlation analysis in a safety
critical operating system.

12. Test environment management best practices.
13. Hsieh, T. Y., Lee, K. J., & You, J. J. (2007, October). Test

efficiency analysis and improvement of SOC test platforms. In
16th Asian Test Symposium (ATS 2007) (pp. 463-466). IEEE.

14. Tahat, L., Korel, B., Harman, M., & Ural, H. (2012).
Regression test suite prioritization using system models.
Software Testing, Verification and Reliability, 22(7), 481-506.

15. Mathur, A. P. (2013). Foundations of software testing, 2/e.
Pearson Education India.

16. Jorgensen, P. C. (2013). Software testing: a craftsman's
approach. Auerbach Publications.

17. Patil, A. H., Goveas, N., & Rangarajan, K. (2016). Regression
Test Suite Execution Time Analysis using Statistical
Techniques. IJ Education and Management Engineering,
6(3), 33-41.

18. Oenen, J. V. (2010). Improving regression test code coverage
using meta heuristics (Doctoral dissertation, Thesis).

Copyright: ©2024 Abhinandan H. Patil, et al. This is an open-access
article distributed under the terms of the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in
any medium, provided the original author and source are credited.

https://opastpublishers.com/

https://books.google.co.in/books?hl=en&lr=&id=gRXBDwAAQBAJ&oi=fnd&pg=PA208&dq=4.%09Abhinandan+H.+Patil,+%E2%80%9CRegression+Testing+in+Era+of+Internet+of+Things+and+Machine+Learning%E2%80%9D,+text+book,+2020.&ots=d7n9c1S989&sig=YBGlB10oWoGpoXI5-NzT9OmknPw&redir_esc=y#v=onepage&q&f=false
https://books.google.co.in/books?hl=en&lr=&id=gRXBDwAAQBAJ&oi=fnd&pg=PA208&dq=4.%09Abhinandan+H.+Patil,+%E2%80%9CRegression+Testing+in+Era+of+Internet+of+Things+and+Machine+Learning%E2%80%9D,+text+book,+2020.&ots=d7n9c1S989&sig=YBGlB10oWoGpoXI5-NzT9OmknPw&redir_esc=y#v=onepage&q&f=false
https://www.oracle.com/java/technologies/javase/vmoptions-jsp.html
https://www.oracle.com/java/technologies/javase/vmoptions-jsp.html
https://www.oracle.com/java/technologies/javase/vmoptions-jsp.html
https://www.oracle.com/java/technologies/javase/vmoptions-jsp.html
https://www.oracle.com/java/technologies/javase/vmoptions-jsp.html
https://www.diva-portal.org/smash/record.jsf?pid=diva2%3A710179&dswid=-8831
https://www.diva-portal.org/smash/record.jsf?pid=diva2%3A710179&dswid=-8831
https://www.diva-portal.org/smash/record.jsf?pid=diva2%3A710179&dswid=-8831
https://www.diva-portal.org/smash/record.jsf?pid=diva2%3A710179&dswid=-8831
http://wpage.unina.it/roberto.pietrantuono/tesi/Tesi_Ovilio_Bartolomeo.pdf
http://wpage.unina.it/roberto.pietrantuono/tesi/Tesi_Ovilio_Bartolomeo.pdf
http://wpage.unina.it/roberto.pietrantuono/tesi/Tesi_Ovilio_Bartolomeo.pdf
http://www.softwaretestinghelp.com/test-bed-testenvironment-management-best-practices/
https://doi.org/10.1109/ATS.2007.67
https://doi.org/10.1109/ATS.2007.67
https://doi.org/10.1109/ATS.2007.67
https://doi.org/10.1002/stvr.461
https://doi.org/10.1002/stvr.461
https://doi.org/10.1002/stvr.461
https://doi.org/10.1002/stvr.461
https://doi.org/10.1002/stvr.461
https://doi.org/10.1201/9781439889503
https://doi.org/10.1201/9781439889503
https://doi.org/10.1201/9781439889503
https://doi.org/10.1201/9781439889503
https://doi.org/10.1201/9781439889503
https://doi.org/10.1201/9781439889503

