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Introduction
Fermat's Last Theorem (sometimes called Fermat's conjecture, 
hereinafter referred to as FLT) states that no three positive in-

tegers x, y and z satisfy the equation n n nx y z+ =  for any 
positive integer n greater than 2 (n > 2). The theorem has been 
solved by the British mathematician Andrew Wiles in 1994, but 
his proof method is complex. Whether there is "a wonderful 
proof" called by Fermat has always inspired people to explore. 
It is found that there is indeed a simple method to prove that the 
FLT holds in a large range [1].

Through hundreds of years of in-depth and lasting research, we 
only need to prove that the proposition is true when n=4 and 
n is an odd prime number [2]. The former has been proved by 
Fermat's infinite descent method, and the latter is the research 
content of this paper [3]. For the convenience of discussion, sup-
pose that  , and x, y and z are mutually prime, that is, gcd (x, y, z) 
= 1. FLT is classified into the following two cases for discussion:

(A)                    it is proved that FLT is true when .

(B)                     it is proved that FLT is true when .

This paper proves that (A), and the next step is to prove that (B).
First, we give the relationship between exponent n and x, y, z.

Lemma 1.1:                 for the equation 
  
there is .

Proof. Since                 so
       

                            (1.1)

Lemma 1.1 is proved.

Corollary 1 For any positive integer x, if  , FLT is true.
Proof. According to Formula (1.1), we have
                           
                 (1.2)

Therefore

                                                  (1.3)

For any positive integers y, z, we have
 
                                         (1.4)

From Formula (1.3) and Formula (1.4), we know that when  
x<n, the two are contradictory. It is easy to know that when  x<n 
, FLT is true. Corollary 1 is proved. According to corollary 1, 
hereinafter we agree that. 
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Proof.  For any positive integer  

let    , according to lemma 2,          . At 
the same time, for any positive integer m, let            , 
according to lemma 3,                 . Easy to know,  

                                                               for any positive integer 
y with                   , z in equation                              is between 

two adjacent  positive integers y and y + 1. Therefore, z must not 
be a positive integer and FLT holds. 
Theorem 1 is proved.

Conclusion
This paper proves that for all positive integers 
 and          for any positive integer y with               

         FLT holds. The next step is to prove that y is in the 

interval         and FLT is correct.
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